کانی شناسی و زمین شیمی عناصر نادر خاکی در نهشتیه‌ی لاتریت زان، استان تهران

فاطمه کنگری، فراهانی ۱، علی اصغر کلارکی ۲، علی عابدینی ۱

۱- گروه زمین شناسی، دانشگاه علوم طبیعی، دانشگاه تبریز، تبریز، ایران
۲- گروه زمین شناسی، دانشگاه علوم، دانشگاه روبه، ارومیه، ایران

چکیده: افق لاتریت باریک در ۲۵ کیلومتری جنوب شرق دمودن، استان تهران واقع شده است. این افق به صورت چینه‌سان به‌طور واضح در بخش تحتالی شلی و گهواره‌های ساندن شمشک (وراسیک) گسترش یافته است. بررسی‌های کانی شناسی نشان میدهند که در این افق شلی و گهواره‌های ساندن شمشک بخش‌های متعددی از گونه‌های زیر اصلی این افق هستند: کانی‌های جنگلی، سنگ‌های نمک‌دار و مخلوطین گونه‌های ساندن شمشک و گهواره‌های شلی. لاتریت به‌طور گسترده‌ای در همه این درون‌سنگ‌ها به شکل و حالت متنوعی حضور دارد. این افق در خصوص تعداد شناخته شده‌ی اکتشافات رادیوسیمیتیک بسیار کم است. بررسی‌های کانی شناسی نشان میدهند که در این افق سه نوع مختلفی از گونه‌های ساندن شمشک و گهواره‌های شلی وجود دارند: گونه‌های سنگساره، گونه‌های نمکی و گونه‌های سنگ‌دار. در پایان، نتایج بررسی‌های کانی شناسی در این افق نشان می‌دهد که این افق از نظر کانی‌شناسی و عناصر زمین‌شیمی به‌طور کلی به‌طور کافی مورد به‌طور کامل مورد بررسی و تحلیل قرار گرفته است.
کورلینی بسته به احتمالیت دو میزان بیشتر، قرار گرفته شد. سازند
الیکا در بخش بزرگی شامل آن‌ها ناکیفی بهترین ریز دانه بوده
که روی آن دومه‌های قوه آی و روز رنگ دیده می‌شوند.
پس از تشکیل دومه‌های الیکا (ترسی‌های تریتریک) در بیشترین
بخش ترکس فوتوگرافی انجام شده است. فرسایش و
هوازدگی طی این خشک‌ترین سبب گسترش سوپرگرافی کارسی در بخش دومه‌های شده است. در سیلوری از مناطق
سلسله جالب بزرگ حاصل شده در بخش مخته و روند مورد
سگنهای آشفته‌ای زمانی سازند الیکا را پوشانده و در اواخر
ژوراسیک، تعیین‌گیری‌های قادر با سگنهای سازند شکست عشاقی
شبل و ماسه سنگ‌های گرد زغال سنگ تشکیل شده-
اند. در این منطقه سازند شکست شکسته‌ای
افقت از سگنهای قادر با در بخش قاعدگی خود دارای
میزان شکستن قرار گرفته و در این منطقه,
به جز سروی گواو کرتن، جوان‌ترین رسوب‌ها مربوط به سازند
کرگ (الوئی) هستند (شکل 10).
جدول 1: نتایج تجزیه شیمیایی ICP-MS و ICP-ES عنصر اصلی، چراغ‌پذیر جزئی و نادر خاک در نمونه‌های صورت برسی افق لاترشی برای مشاهده موقعیت نمونه‌ها در نمودار برسی به شکل 2 مراحل شد.

<table>
<thead>
<tr>
<th>Samples</th>
<th>BL (R-1)</th>
<th>RL (R-2)</th>
<th>YL (R-3)</th>
<th>L.GL (R-4)</th>
<th>OGL (R-5)</th>
<th>GGL (R-6)</th>
<th>RGL (R-7)</th>
<th>GGL (R-8)</th>
<th>BGL (R-9)</th>
<th>GGL (R-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>27.3</td>
<td>26.3</td>
<td>25.7</td>
<td>26.6</td>
<td>26.6</td>
<td>27.3</td>
<td>27.6</td>
<td>27.7</td>
<td>27.9</td>
<td>27.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>27.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>27.5</td>
</tr>
<tr>
<td>MgO</td>
<td>27.5</td>
</tr>
<tr>
<td>CaO</td>
<td>27.5</td>
</tr>
<tr>
<td>Na₂O</td>
<td>27.5</td>
</tr>
<tr>
<td>K₂O</td>
<td>27.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>27.5</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>27.5</td>
</tr>
<tr>
<td>MnO</td>
<td>27.5</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>27.5</td>
</tr>
<tr>
<td>LOI</td>
<td>27.5</td>
</tr>
<tr>
<td>SiO₂ (wt%)</td>
<td>27.5</td>
</tr>
<tr>
<td>Ba(ppm)</td>
<td>27.5</td>
</tr>
<tr>
<td>Co</td>
<td>27.5</td>
</tr>
<tr>
<td>Ga</td>
<td>27.5</td>
</tr>
<tr>
<td>Hf</td>
<td>27.5</td>
</tr>
<tr>
<td>Nb</td>
<td>27.5</td>
</tr>
<tr>
<td>Th</td>
<td>27.5</td>
</tr>
<tr>
<td>U</td>
<td>27.5</td>
</tr>
<tr>
<td>V</td>
<td>27.5</td>
</tr>
<tr>
<td>Zr</td>
<td>27.5</td>
</tr>
<tr>
<td>Y</td>
<td>27.5</td>
</tr>
<tr>
<td>Ni</td>
<td>27.5</td>
</tr>
<tr>
<td>La</td>
<td>27.5</td>
</tr>
<tr>
<td>Ce</td>
<td>27.5</td>
</tr>
<tr>
<td>Pr</td>
<td>27.5</td>
</tr>
<tr>
<td>Nd</td>
<td>27.5</td>
</tr>
<tr>
<td>Sm</td>
<td>27.5</td>
</tr>
<tr>
<td>Eu</td>
<td>27.5</td>
</tr>
<tr>
<td>Gd</td>
<td>27.5</td>
</tr>
<tr>
<td>Tb</td>
<td>27.5</td>
</tr>
<tr>
<td>Dy</td>
<td>27.5</td>
</tr>
<tr>
<td>Ho</td>
<td>27.5</td>
</tr>
<tr>
<td>Er</td>
<td>27.5</td>
</tr>
<tr>
<td>Tm</td>
<td>27.5</td>
</tr>
<tr>
<td>Yb</td>
<td>27.5</td>
</tr>
<tr>
<td>Lu</td>
<td>27.5</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>27.5</td>
</tr>
<tr>
<td>LREE/HREE</td>
<td>27.5</td>
</tr>
<tr>
<td>(La,Yb)N</td>
<td>27.5</td>
</tr>
</tbody>
</table>
شکل 1 (الف) موقعیت منطقه مورد بررسی در نقشه جغرافیایی ایران [30]. ب) پخش برگ شده الیزبر مرکزی که منطقه مورد بررسی در آن واقع است و (ب) نقشه زمین شناسی منطقه مورد بررسی [39] که موقعیت افق لاتریتی قاعده زوراسیک را روانی آن مشخص شده است.

شکل 2 ۲ سنون چینه شناسی نیمرخ انتخابی در عرض افق لاتریتی زان. محل نمونه‌هایی که آنالیز شیمیایی شدند با دوباره نشان داده شدهاند.
شکل ۲ (الف) ظرفیت مطلق با حالت برخی در واحدهای لاتریتی مختلف نهشته زان، ب) هاله اکسید اهر در کانسگ خاکستری، ب) بافت لبرگنگ در کانسگ زرد و ن) باند ملاکیر در محل کنتاکت سازندگی الیکا و شمشک (دید به سمت غرب).

تیتانومگنتیت، زیرگن و پیریت را نیز آشکار کرده است. قطعات پیریت به صورت باقی مانده‌هایی داخل گونه مشاهده می‌شوند (شکل ۳-الف و ن). عصره در کانسگ‌های لاتریتی هم در سه‌بهکانی تیتانومگنتیت و هم به صورت کانی‌های اکسیدی تیتانوم (روتنیل و اناتاز) حضور دارد (شکل ۳-ب، پ، ت و ج). کانی زیرگن در ابعاد ریز در متن کانسگ‌ها پراکنده است (شکل ۳-الف).

ترکیب کانیشناسی براساس نتایج تجزیه پراش پرتو (XRD) X (دیاسپور، همانتیت، گوتیت، اناتاز و کانولیت) کانی‌های اصلی، بوهمیت، سیدریت، روتیل و کوارتز کانی‌های فرعی لاتریت ران هستند (جدول ۲ و شکل ۴). گوتیت و همانتیت تقریباً به مقدار یکسان در افق هوازی گسترده یافته‌اند و مقدار دیاسپور به بوهمیت در واحدهای مختلف نهشته فرزونی دارد (شکل ۵-الف، پ، ت و ج).

بررسی‌های SEM علاوه بر فازهای کانایی فوق، حضور کانی‌های مشخصه در افق لاتریتی زان.

جدول ۲ کانی‌های مشخصه شهر بروش پراش پرتو (XRD) X در افق لاتریتی زان.

<table>
<thead>
<tr>
<th>دیاسپور</th>
<th>گوتیت</th>
<th>بوهمیت</th>
<th>سیدریت</th>
<th>کوارتز</th>
<th>اناتاز</th>
<th>کانولیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شکل ۵ تصاویر میکروسکوپ الکترونی روشنی از دو کانسگن لاتریتی زان آلیف) قطعات مربوط به گوتیت، زیرکن و دیاسپور (واعده. ب) کاتی تیتانومگنجیت و پیریت که بهصورت قطعات درشت و ریز باقی مانده است (واعده. ج) تمرکز تیتانیوم در کاتی تیتانومگنجیت، ت) دیاسپور و گوتیت در مجوازت هم (واعده. (BGL) قطعات آناناز بهصورت پراکنده در زمینه (واعده. (BGL) قطعات گوتیت و همانند در مجوازت هم (واعده. (LGL) باقی مانده‌های پیریت داخل گوتیت (واعده. (BGL)
الویمیوم هر ماره است. بنا به نمودار، کانسنگهای GL، BGL، GGL و OGL، RGL و DGL در مرحلهی کالیولینیت شدن سنگ YL و BL، RL، LGL و GGL در مرحلهی کالیولینیت شدن ضعیف تا متوسط (که نشانگر میزان جدايش کالیولینیت شدن) از Fe$_3$O$_4$ از Al$_2$O$_3$ بیشتر از کربنات میزان جدايش کالیولینیت شدن. قرار دارند. بر اساس این نمودار، نهشته زان درجه سه آنتی کالیولینیت را تجارب گические در این نهشته و نبی عاملیت یافته‌های زمین‌ساختی جداگوتن در این نهشته و نبی عماملیت یافته‌های زمین‌ساختی در منطقه (گسلها و دیگر شدن شدید نهشته) و حضور بیوهیمی، به نظر می‌رسد کنگیت کانی آلومینیومیت اولیه این نهشته بوده است که مطابق به تعیین تئوره‌های زمین‌ساختی ساختی بر روی نهشته و فشار تطبیقی فوائص سبب تبدیل گیمینیت به بیوهیمی به دیپسوس سبب گردن است. همین‌طور گیمینیت کانی اصلی آهن‌دار این نهشته‌ها در محیط‌های اکساییسی سطحی پیچیده اکسایسیسی احتمالاً از اکسایسیسی پیچیده (شکل 6، 17) و همین‌طور نبی نظر مستقیم از اکسایسیسی پیچیده با آنزایی گیمینیت تشکیل شده است.

آنالیز در حضور غلظت‌های بایین از انرژی قلیاپیکی یک فاز کانی‌ای داده در دماهای سطحی است (شکل 3) و در شرایط احیایی قلیاپیکی در ذخایر، بارزماندی تشکیل می‌شود (شکل 32). کالیولینیت از دگرگان فلدسپارا حاوی شده است. اطلاعات ترمودینامیکی دیفسوس (شکل 32) در کلاسیک (شکل 2) و گیمینیت (شکل 32) برای تفسیر محیط تشکیل لارزیت زان در نمودار شکل 6 توضیح داده شد. این کالیولینیت محیط تشکیل این لارزیت را به شکل pH اکسایسیسی تای قلیاپیکی (4.5 تا 9) و Eh اکسایسیسی تای نامی آکسایسیسی تشکیل می‌دهد (شکل 6)،

زمین شیمی

به تقطیر کلی فرآیند لارزیتی شدن شام در دست رفت عنصر عنصر مولیبدن و اکسیدهای آنها از سنگ اولیه و غنی شدگی نسبی عنصر کم مولی و اکسیدهای آنهاست. مقادیر عنصر اصلی شیمیایی 10 عنصر اولیه از راه Al$_2$O$_3$ و Fe$_3$O$_4$ و SiO$_2$ برای به مقدار بیشتر ترسیم شده است (شکل 7). این نمودار درجه‌های مختلف لارزیتی شدن را در واحدهای مختلف نهشته‌ها بارزماندی تشکیل می‌دهد (شکل 7). افزایش شدت هوازدگی با کاهش شدید در مقدار سیلیس و غنی شدگی نسبی آهن و
توزیع و جدايش عنصر نادر خاکی (REE)

شکل ٨ نمودار ٣ متغیره

[١٧] SiO₂-Fe₂O₃-(Al₂O₃ + TiO₂)

[١٣آ] چهند فرابند لاکتیشی در واحدهای مختلف نسبی زان را نشان می‌دهد.

شکل ٩ نمودار ٣ متغیره

[١٣آ] Al₂O₃-Fe₂O₃-SiO₂

[١٣آ] چهند فرابند لاکتیشی در واحدهای مختلف نسبی زان را نشان می‌دهد.

بالایی و توزیع دوباره REE‌ها در بخش‌های میانی و پایینی نیم‌خود شاهد است. فاکتوری که موجب ترتیب REE‌ها در بخش‌های بالا و پایین مورد بررسی را فراهم می‌کرده است، آسیب‌گیری pH محول‌های نیم‌خود جنگل‌پوش اسپیدی به دلیل عملکرد سنگ بستر کربناتی به عنوان یک میانگین فعال است. هر چند که به نظر می‌رسد عواملی نظیر تفاوت در معیار پایداری کاری از نظر جانبی حامل ماده‌های قابل مصرف سون REE‌ها در پایین می‌تواند با آن که جزئی از نظر pH‌ها نشانه و در شرایط خشک می‌تواند تنیبیست می‌شود.[١٣آ] چهند فرابند REE‌ها نیز با مشابهی اکسیده‌های [١٣آ] Ti-Nb REE هیدروکسید‌های فریک [١٣آ] و هم‌عابدهای کربناتی [١٣آ] می‌تواند صورت بگیرد.

تغییرات مقادیر ∑REE و ∑LREE و ∑REE

[١٣آ] این نیم‌خود، به طور نامنظم و بطور کلی در بخش‌های میانی و پایینی نسبی به نیم‌خود جنگل‌پوش سخت می‌شود. گروه بالا REE‌ها نیز از فرابند REE‌ها خارج می‌شوند و REE‌ها کمتر از [١٣آ] ∑REE در این سازوکار تحرک می‌کنند. در اینجا شاهد است، سپس تحرک از بخش‌های
تعیین سنگ مادرن [86] معمولاً سنگ‌های پایین‌تریابی REE ها در واحد‌های مختلف اقاقیا بی‌زمین. هنگامی شوه نسبت به ترکیب کندریت (50) (شکل 12)، نشان می‌دهد که در دسته‌ی REE ها و کندریت غنی شده‌اند با این تفاوت که REE ها نسبت به HREE شدیدتر است. الگوی توزیع غنی‌شده‌ای در کانسگنه‌ها که HREE از REE برای همه‌ی سنگ‌های ارث‌رسیده‌ی بالقوه، بررسی‌های انجام شده نشان می‌دهد که الگوی توزیع در مواد هوازد و کانسگنه‌های برموداسی شاخ‌های زمین‌شیمیایی مهمی برای REE و HREE در عرض اقاقیا برموداسی زان.

شکل 10. تغییرات REE و HREE در سنگ‌های ارث‌رسیده‌ی بالقوه.

\[\sum_{REE}, \sum_{LREE}, \sum_{HREE} \]

چنانکه در این نمودار بی‌دست یک‌مایده یک‌سان‌یابی DREE و HREE میان با افزایش شدت لامیناسی کاهش می‌یابد.

شکل 12. الگوی عناصر نادر خاکی به هنگام زانه به ترکیب کندریت (88).
در واحد DGL حدود 1/7 کمتر از بقیه‌های کننده HREE دهنده‌های جدیدی ناجیز LREE از این کانسک است. pH و REE این مسئله احتمالاً با افزایش شدید pH محیط در زمان کشش این کانسک واکنش است که سبب افزایش تمرکز REE نشده است. افزایش pH محیط های کانسک نوریت‌زا و به علت بهتر تغییرات pH مهم‌ترین فاکتور کنترل کانسک جدایی HREE از کانسک به های مورد بررسی است. افزون بر این، غنی‌شدن بیشتر HREE را می‌توان به عوامل زیر نسبت داد: (1) پتانسیل بینی کمتر HREE نسبت به DGL (2) میزان همبستگی کربناتی HREE با pH قلیایی (ایجاد شده بوسیله سنگ‌های بستر کربناتی) [20,10]. (3) شرایط قلیایی برای جذب سطحی کانی HREE بوسیله سنگ‌های مناسبی است [35] و (4) با کاهش عدد اتمی بوسیله کشت باید کانی‌های سطحی به محلول فراخوانده جذب بر LREE کانی‌های افزایش می‌باید [46].

(۱) (La/Yb)N و LREE(La-Sm)/HREE(Gd-Lu) (ب) (La/Sm)N و (Gd/Yb)N تغییرات HREE از محیط و غنی‌شدن بیشتر HREE این HREE از این محیط است. مقدار HREE

![شکل ۱۳: (الف) تغییرات LREE(La-Sm)/HREE(Gd-Lu) (ب) (La/Sm)N و (Gd/Yb)N](image-url)
کاتی‌های میزان‌ها عنصر نادر خاکی (REE) در فرارودهای هوازده به دلیل حضور کاتی‌های اولیه آنتن آینتمان در فلزسایر و پویوندی از نمونه‌های کوستی از حضور کوارتز. [55] غنی شدن REE در بخش متفاوت مختلف لارتیزی می‌تواند توزیع لارته در آن چنین اندازه‌ای هم به توده‌های HREE و LREE تشکیل کاتی‌های فسفاتی نیز آسیب به موادی باشد که در میزان‌های مهم از این عنصر محسوس می‌شوند. غنی شدن REE نیز می‌تواند توزیع حضور کاتی‌های سنگین در جرای نظر و نیازان دارای (Scavengers) در اصل این عنصر عمل می‌کند [58]. میزان‌های LREE در ارقآی لارتیزی زان، ضریب همبستگی رتبه اسپرمونیات Si,Fe با REE [59] به HREE و REE دارای همبستگی شیب‌های 2/3 و Zr < 1/2 همانند HREE در این محمدی‌ها به دلیل کاتی‌های زیرک و رویک و آنتانز میزان‌های اصلی و کاتی‌های مهم باکتری‌ها در این کاتی‌های HREE و LREE لازم به بازاری است که برکن فقط توزیع Ce و Sm, Nd در کنترل خود داشته است. همبستگی مناسب با REE در M(Sm, Nd) با Ba, Tb و Eu [60], [61] و Zr < 1/2 (P2O5) [62] و Zn. REE [BaAl3((REE,PO4)3(OH)2)H2O] در فرارودهای آنتن به تغییر به تجزیه‌ای که در این فرارودهای زمین‌ساخته در این فرمول‌های پیشنهادی محاسبه شده است. تغییرات این گونه و تغییرات این گونه که برای شیمی‌پیمایی محاسبه محاسبه مناسب به این VREE می‌باید با تغییر به همبستگی شیب‌های 2/3 به HREE و REE به اختلال میان تغییرات REE با این به شیب و آینتمان در REE به نهشته به شیب می‌باید کاتی‌های اکسید که در لارتیزی زان منتقل می‌شود. سازد.
Mortas bauxite deposit (Seydisehir/Konya-southern Turkey", Chemie der Erde-Geochemistry 69(2009) 143-159.
[19] Laskou M., Andreou G., "Rare earth elements distribution and REE-minerals from the

هیدروکسیدهای منکن درجهٔ بعدی اهمیت را در میزان این عنصر دارد.

قدرتانگی

تکانگانی از حمایت‌های مالی معاونت پژوهشی و تحصیلات تکمیلی دانشگاه نوروز برخوردار بوده‌اند، لذا شایسته است نهایت سیاسی و قدردانی خود را ابراز دارند. تکانگان همه‌جان از نظرها و بی‌شناخته‌های ارزش‌های و سازندگی داوران محتوم مرجع سیاسی‌گزای می‌نماید.

مراجع

[31] Temur S., Kansun G., "Geology and petrography of the Mastadagi diaspore bauxites,

