کانی شناسی تبخيری های توالی کوانترنی و بررسی تحولات شیمیایی شورابه در پلایای میقان اراک

لیلا عابدی، حسین رحیمی‌پوربان

دانشگاه زمین‌شناسی، بردوی علوم، دانشگاه تهران، تهران، ایران

چکیده: در این مقاله، رسوب‌ها و شورابه‌های برداشت شده از حوضه رسوبی پلایای میقان واقع در 15 کیلومتری شمال شرقی شهر اراک مورد بررسی قرار گرفت. نمونه‌های تهیه شده از کناره‌های این رود، که رسوب‌های سطحی از پلاین‌های مورد بررسی‌های کانی‌شناسی با پرو طاسکوت و کانی‌های رسی تشکیل شده‌اند. کانی‌های تبخيری شامل خلات‌سیب، زبسیل، هالیت، گلوبریت، نارادیت، بیلی‌هالیت و ناترون و به میزان بسیار بالا دومی‌شده‌اند. بسیاری از پیکرهای گیتیوسایدلیت در حاشیه حوضه و کانی‌های گالیوم بلافاصله به نظر هالیت در مرکز پلاین، است. به عبارت دیگر نویع منطقه‌ای‌کننده کانی‌شناسی در این پلاین قابل تشخیص نمی‌باشد و کانی‌های تبخيری موجود در این پلائوس فاصله نرم‌رودیامیکی بترتیب از حاشیه حوضه به مرکز ان بافتند و تقریباً به طرح چشم‌گای پویا می‌کنند. بررسی چگونگی تحولات شیمیایی شورابه در رابطه با این نتایج کانی‌های تبخيری، بیانگر تکامل پلاین شورابه‌ها پلایای میقان تا حد تکامل کانی‌های کلریدی نمک‌های لحی و شورابه‌های نوع Na-Cl-SO₄ است.

واژه‌های کلیدی: کانی‌های تبخيری، تجربه درشت پرتو/ایکس (XRD)، سولفات سدیم، پلاین‌های میقان/اراک

مقدمه
کانی‌های تبخيری از جمله خصوصیات و عوارض شاخص در مناطق بابان بوده و نشاندهنده شرایط هیدروژنوسایدلیمی‌می‌باشند. در زمان نهشت و رسوب‌گذاری خودن، اشباع کانی‌های تبخيری مختلف در پلاژ آب، مکانس کننده، فرایند هیدروژنوسایدلیمی و شیمیایی سنجشیان هستند که با تولید ترکیب و اختلاف آب‌های جاری از منابع متعدد و فرایندهای فیزیکی و هیدروژنوسایدلیمی که کاری کرده‌اند. بررسی اشباع کانی‌های تبخيری در سطح و معیارهای سنجشی و تغییرات آب و هوا گسترش [1-6] در حال استفاده است. کانی‌های تبخيری، و نیز منابع

اصول مواد معدنی صنعتی از جمله زیبس، سولفات‌های سدیم و مسین، کره‌های سدیم، بر، لیتیوم و مواد معدنی دیگر را تشکیل می‌دهند [7]. نباینچنده، بدین‌های اهمیت علمی و اقتصادی این کانی‌های تبخيری‌ها و فرایندهای هیدروژنوسایدلیمی باعث شده که گروهی از آن‌ها مورد توجه و بسیاری از زمین‌شناسان قرار گرفته اند [8-12].

در پلاین‌های میقان، کانی‌های تبخيری نسبت به اواری دارای فراوانی بیشتری بوده و این کانی‌ها از نظر اقتصادی، تعیین آب و هوا گذشته و محیط رسوبی منطقه‌ای اهمیت زیادی دارند. سولفات‌های سدیم که در ترکیبات شیمیایی با ارزش اقتصادی فراوانی که یکی از محل‌های تشکیل آن مناطق le_abdi@khayam.ut.ac.ir

نویسنده: مسول: تلفن: 046 (3) 6121623; تاریخ: 91/18/87727

* پست الکترونیکی: le_abdi@khayam.ut.ac.ir
کویری است، که در کوری سیاپکو بزر مورد بررسی قرار گرفته است [12]. کوری میتان یکی از مهم‌ترین معادن سلولف سدیم جهان را در اخیره دارد که ذخایر آن بیش از ۳۰ میلیون تن براورد شده است. با توجه به این توجهن و عدم بررسی کاتیونی شناسی جامع و دقیق در منطقه، در این پژوهش، سعی شد تا نمونه‌های اخذ شده از سروده‌های مسطح و عمیق از جنبه‌های مختلف، بخصوص کاتیونی شناسی تبخیری‌ها مورد بررسی قرار گیرند. ازالاجامه‌ها، بخش قابل توجهی از ذخیره‌سی سلولفات سدیم در شورابه‌ها پلازا ذخیره شده است. تکمیل شورابه‌ها در رابطه با کاتیونی شناسی نیز مورد بررسی قرار گرفت.

موقعیت جغرافیایی و زمین‌شناسی منطقه
پلازای میتان در دشت اراک و در ۱۵ کیلومتری شمال شرقی این شهر قرار دارد. در پارک قلمایی منطقه، بخش ۱۰۸ کیلومتری مربع در پارک مرکزی این دشت و در کوشه‌های ناحیه آن واقع شده است. این دریاچه‌ها در فصول بهاری پرآب است و در فصول خشک به صورت باتلاق و نمک‌دار از می‌آید.

ارتفاع متوسط کوری مورد نظر از سطح دریا ۱۶۷۵ متر است. دشت اراک به همان‌طور که ارتفاع ۳۰۰۰۰ متر محدود

شکل ۱ نشان دهنده زمین‌شناسی حوضه‌ای رسوبی میتان و تصور ماهوراها که مسیرهای نمونه‌برداری در آن مشخص شده است.
روش بررسی

به‌منظور بررسی کانی‌شناسی و رسوب‌شناسی مهیج پلاک‌های میکروگرایم ۱۰۰۰ نمونه رسوب جمع‌آوری شدند. برای میکروسکوپی از (Auger) سروده‌ها از دو نوع آگر استفاده شد. بدین ترتیب که نخست از مرکز پلاکی به سمت حاشیه آن، در Eijkelkamp سون روش به‌منظور سپاسی‌اتیک انجام شد (معق) (۱) هنگام روان‌سازی از رسوب‌های که در این تغییر خواص نظری به دنبال نموده شد. تعداد ۷ گمایه به عمق حداکثر ۵.۲ متر. در پلاکی حفر گردید: بعنوان که ۶ گمایه در حاشیه‌پلاک و یک گمایه در داخل آن (در محل ورود پس‌پایه‌های شهر ارک) قرار داشتند. با توجه به ساختار رسوب‌ها و ویژگی‌های آنها، از نظر رنگ، دامنه‌ای و کانی‌شناسی ظاهری. از گمایه‌های حفر شده حدود ۳۱ نمونه رسوب، به آگر (XRD) بررسی گردیدند. معمولاً ۳۵۰ نمونه رسوب سرتابل‌پلاک‌های مورد بررسی کانی‌شناسی رسوب‌شناسی می‌باشد. برای این‌که دقت استفاده از آسیب، به دقت دقت دقت از ۳۲ میکروگرایم SEIFERT بودند. سپس به‌وسیله پوشانی فلز‌سازی نگهداری که XRD ۳۰۰۳ Theta/Theta زاویه سنج. آن با سرعت ۴۰ درجه در سه ثانیه و از تا ۲۰۰ تا ۴ تا ۲۰۰۰ نظانم شده‌بود. در دانشگاه همبستگی آلومین مورد بررسی قرار گرفتند. پس از بررسی پروانه‌گذاری و به‌کار گرفت: با محاسبه زاویه ۰ و استفاده از قانون برای باعث در دقت، به نقطه موج (۲θ) آنکه کانی مس، قابلیت شبکه‌ای کانی‌ها (d) معلوم و سپس با استفاده از کاری‌های
جدول ۲: کانی‌های تشخیصی موجود در رسوب‌های پلازای میقان:

<table>
<thead>
<tr>
<th>فرمول شیمیایی</th>
<th>کربنات‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃</td>
<td>کلسیت</td>
</tr>
<tr>
<td>CaMg(CO₃)₂</td>
<td>دولومیت</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>منیزیت</td>
</tr>
<tr>
<td>Na₂CO₃·10H₂O</td>
<td>ناترون</td>
</tr>
<tr>
<td>Sulfates</td>
<td>سولفات‌ها</td>
</tr>
<tr>
<td>CaCO₃·2H₂O</td>
<td>زئیس</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>تارداریت</td>
</tr>
<tr>
<td>Na₂Ca(SO₄)₂</td>
<td>گلبریت</td>
</tr>
<tr>
<td>CaSO₄·0.5H₂O</td>
<td>باسایت</td>
</tr>
<tr>
<td>2CaSO₄·MgSO₄·K₂SO₄·2H₂O</td>
<td>پلی‌هالت</td>
</tr>
<tr>
<td>NaCl</td>
<td>کلرید‌ها</td>
</tr>
<tr>
<td>KCl</td>
<td>سولیت</td>
</tr>
</tbody>
</table>
کانیشناسی تخاریف‌های بالایی میقات

گرینتی‌ها: بهطورکلی در حوضه‌های بسته از جمله بالایی و دریاچه‌های نزدیک به حاشیه‌های حوضه بوست، به طور گسترده‌ای در چهاریهای مرکزی و شمالی رودهای و خوره‌های آنها مشاهده می‌شود. در محیط‌های شنی و دریاچه‌های اطراف ناحیه‌های مرکزی کانیشناسی تخاریف بالایی میقات وابسته به شرایط محیطی و ظروف زیستی است. این کانی‌ها در مراحل مختلف تخاریف شده و به شکل تخته‌های سخت در حفرات‌های کوچک در سطح زیر، در غار و در ارتفاعات پائین و بالا در همه مقایسه‌ها مشاهده می‌شود.

کانی‌های بالایی میقات که در رودخانه‌های بالایی و دریاچه‌های اطراف ناحیه‌های مرکزی کانی‌شناسی تخاریف بالایی میقات وابسته به شرایط محیطی و ظروف زیستی است. این کانی‌ها در مراحل مختلف تخاریف شده و به شکل تخته‌های سخت در حفرات‌های کوچک در سطح زیر، در غار و در ارتفاعات پائین و بالا در همه مقایسه‌ها مشاهده می‌شود.

کانی‌های بالایی میقات که در رودخانه‌های بالایی و دریاچه‌های اطراف ناحیه‌های مرکزی کانی‌شناسی تخاریف بالایی میقات وابسته به شرایط محیطی و ظروف زیستی است. این کانی‌ها در مراحل مختلف تخاریف شده و به شکل تخته‌های سخت در حفرات‌های کوچک در سطح زیر، در غار و در ارتفاعات پائین و بالا در همه مقایسه‌ها مشاهده می‌شود.

کانی‌های بالایی میقات که در رودخانه‌های بالایی و دریاچه‌های اطراف ناحیه‌های مرکزی کانی‌شناسی تخاریف بالایی میقات وابسته به شرایط محیطی و ظروف زیستی است. این کانی‌ها در مراحل مختلف تخاریف شده و به شکل تخته‌های سخت در حفرات‌های کوچک در سطح زیر، در غار و در ارتفاعات پائین و بالا در همه مقایسه‌ها مشاهده می‌شود.
شکل ۳: نمودارهای توزیع نگاره‌های کانی‌های موجود در پوسته‌های سطحی پلاک‌های میتان.

شکل ۴: نقشه‌های چگونگی پراکندگی کانی‌های تبخیری موجود در رسوب‌های سطحی (۱ مترک) پلاک‌های میتان، همراه با مکان‌بندی نمونه‌برداری (مقادیر بر حسب درصدند).
کلریدها: کلریها هستند که در حوضه‌های بسته در آخرين مرحله و پس از کربناتها و سولفاتها نشسته می‌شوند.

ماهی آبیز ممکن تبخیری‌های پرکندگی حوضه‌های بزرگ و
کلری تبخیری در دبی‌های نمکی و حوضچه‌های شور
به حاضر است. انواع زیادی از خصوصیات بافتی و لاپیدی
در هالیدها مشاهده می‌گردد که غالباً تحت تأثیر می‌چسب
رسوب‌گذاری ایجاد می‌شود [39]. هالید در قسمت‌های
مختلف حوضچه‌ی تبخیری، اعم از سطح نام شوراب با‌ها
کف حوضچه‌ها و در بین ذرات سایر اصلاح تبخیری رسوب
می‌کند. حوضچه‌های که این بلورها در آنها تشکیل می‌شود،
کم عمق هستند و حداکثر چند سانتی‌متر عمق دارند. هالید
یکی از مهم‌ترین کالی‌های تشکیل‌دهنده رسوب‌ها در پیلایی
میقات است که به صورت بلوره و پوسته‌های شورزده (شکل
۵) بین رسوب‌ها دیده می‌شوند. در فصول بهار، قسمت
وسیعی از سطح پلایای میقات را پوششی به‌شماره زده در بر
می‌گیرد که به صورت از هالید تشکیل می‌شود. این پوشش‌ها در
این تبخیر سطحی ایجاد می‌شود. تبخیر سطحی آب را با کمک
نیروی مویینه به سمت پلاک می‌کند و جامدات حل شده به
صورت یک پوشش روی سطح رسوب می‌کند. این پوشش‌ها
پر‌زمین‌فر در آب حل می‌شوند.

نمک‌های تلخ (نمک‌های تپاسیم و نزدیک): پس از

شکل ۵. شکل‌های بسته ای. پوشش نمک که سطح پلایای میقات را پوشش‌داده‌است. شکل یاپین، بلورهای خودرویش (Euhedral) هالید در رسوب‌های موجود در پلایای میقات که به صورت نمک‌های درون رسوبی ایجاد شده‌اند.
شیمیایی روش‌هایی دیگر در گستره‌های شوراها، خصوصاً در Ca-Cl و Na-K می‌باشد. مشارکت Ca در ناحیه‌هایی که نشان می‌دهد با آب‌های دیگر در آن است. با توجه به مقدار Ca، می‌تواند از نظر تغییرات، نشان دهنده فاکتورهای مختلفی باشد. با توجه به مقدار Ca، می‌تواند از نظر تغییرات، نشان دهنده فاکتورهای مختلفی باشد.

نتایج تحقیق‌های شیمیایی شوراها، پلاک و آب‌های شرکت

جاهی‌هایی که دارای میزان تأثیر کمتر، در ناحیه‌هایی که نشان می‌دهد با آب‌های دیگر در آن است. با توجه به مقدار Ca، می‌تواند از نظر تغییرات، نشان دهنده فاکتورهای مختلفی باشد. با توجه به مقدار Ca، می‌تواند از نظر تغییرات، نشان دهنده فاکتورهای مختلفی باشد.
جدول ۲ مقایسه میزان آشوب‌ها و کانی‌های الیاف اسپیدی و رود و پلاکه‌های پلاکه‌ای میان، بر حسب

<table>
<thead>
<tr>
<th>میکرو‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$ (gr/lit)</td>
</tr>
<tr>
<td>Ca$^{2+}$ (gr/lit)</td>
</tr>
<tr>
<td>0.76</td>
</tr>
</tbody>
</table>

ب) میزان Mg$^{2+}$ HCO$_3$- SO$_4$$^2-$ و Ca$^{2+}$ Mg$^{2+}$ HCO$_3$- SO$_4$$^2-$ پلاکه‌ها

کانی شناسی تبخیری‌های توالی کوارتزی و بررسی ...
شاکل 4 روند نهشته‌شدن کالیهای تبخیری در پلازای میقان افتیاتس از [۱۸۰].

مجله بلوششناستی و کاتی شناسی ایران ۵۸
عمیدر، رحمی‌پورنیا

تویجه به میزان بالایی بیون سولفات در شورابه‌های پلازای میقان Na>>Ca (جدول ۲) و افزایش بیسیار بالایی نسبت می‌رسد. میزان تندرست و میبرلیت در این حوضه باعث می‌شود با ترکیب بالارک و ناشناخته. بخش مخلوط نیاینده، این میکس‌ها سطحی به‌نحو، که در مصرف باید ترکیب ترکیب میکس‌های سطحی در محل در شورابه باقی مانند و در محل حرارتی و خشک شدگی‌ها دریبر دریاپذیر می‌باشد. ضغیم قابل توجهی از این میکس‌ها در پلازای میقان مشاهده می‌شود. در محل حرارتی بسته پس از تشکیل کالیهای حاوی سولفات‌های سدیم (تندرست و میبرلیت) میزان سدیم در محل حرارتی کاهش می‌یابد. اگر محلول حاوی بیون Ca باشد، کالی گلبریت ایجاد می‌شود، بدین معنی که در حوضه‌های به‌نحوی تبخیر شوراب، با تغییر شورابه کمی گیل از حد اشباع برای ترکیب میکس‌های در این بخش مناسب به‌طور بخشی شانشین ای‌پریتی می‌شود، این کاتی نیز، به‌وسیلهٔ بی‌های بسیاری شانشین شده، ترکیب ای‌پریتی‌ها کاهش می‌دهد. این شانشین‌ها به‌گونه‌ای ترکیب شورابه را تغییر می‌دهند که کالیهای در شورابه به حد اشباع نمی‌رسد [۲۹].

با تغییر ترکیب و تغییر Ca افزایش و نسبت کاهش می‌یابد و کالیهای سولفاتی شروع به نهشته شدن می‌کنند. کالی سولفات کلسیم به‌صورت گسترده‌ای در رسوب‌های سطحی و عمیق (گمی‌شده‌ها) می‌باشد. در این گونه، رسوب‌های این کالی به‌خاطر درگیری نسبتاً بالایی Na و Ca نسبت مناسب این املاح (جدول ۲) پس از تشکیل کلسیم بنابر نمونه (۸) زیبی رسوب می‌کند. طی رسوب‌گذاری و تغییر زیبی مقداری از SO۴ زیبا شورابه جهت شده و Death (Saline Valley) همانند دریه سالین (Saline Valley) شورابه نوز Na-SO۴Cl (Valley) بی‌بیلده به‌وجود می‌یابد. اندک Mg در شورابه‌های پلازای میقان کالی‌های سولفات می‌پریتی تشکیل می‌شوند. افزایش دما و دست دادن مقداری آب، موجب تبدیل زیبی به باسنفی شده و در آدامه این روند، اینترهت تدشت می‌شود به‌وجود می‌یابد. اندک در رسوب‌های منطقه‌ی بافتی شده است، ولی بی‌بیلده نابود ای‌پریتی و بالا بودن سطح آب زیبی می‌باشد این منطقه‌ها کالی ای‌پریتی مشاهده نشده در اثر کاهش مویه کلسیم و منزیم و افزایش بیون سدیم در شورابه، کالی میبرلیت برجای مانده می‌شود.
قانون شناسی تبخیری‌های نواکی کوانتری و بررسی

بحوث و توسعه در شیمی‌دانی دریاچه و بزرگی نمک‌ها در اثر احیالی

پروفسور شوری‌امده باعث تغییر و تبدیل در ابتدای کانی‌های تبخیری در طول گذشته و در مناطق مختلف پلاسما می‌شود.

این تغییرات شیمیایی در طول زمان در دریاچه‌های نمکی مرسوم جهان ماه به دست گرفته‌اند، برای دانست که تخلیه سیستم [24] در دریاچه‌های است. در مورد دیگری می‌تواند در دو دستگاه باشد.

ودن نشته کانی‌های تبخیری و مدل حوضه در پلاسما میان

ترکیب شیمیایی آب‌های ورودی مهمترین عامل تشکیل کانی‌های تبخیری است. بطور کلی، این ترکیب

رسوب‌های کانی‌های تبخیری شامل کانی‌های سدیم، سولفات‌هایه و سرانجام کاربردها [24]. نشته کانی‌ها در پلاسما طرح نسبتاً تنازد است و غالباً در ابتدای کانی‌های شیمیایی شورا به است. این تکامل می‌باشد که می‌تواند با حاکیت اتلاف در حاشیه حوضه و نمک‌هایی با حاکیت در آن مکانی‌ها با حاکیت در بی‌درفتگی [22] (شکل 4.

احکام به دقت می‌شود [23] (شکل 3)

همگنی نیز در مصرف شیمی‌های دریاچه‌ای دقیقاً در محل

ورود آب‌های رودخانه بر دریاچه‌های نمکی می‌شود.

با تغییرات اقلیمی و آب و هوایی که نمکری به تغییرات

سطل آب در پلاسما می‌شود، در حالی که طرح قطعی انگیزه‌ای است.

حوزه‌های محدود با ارتباط قدرتی مواد با ابزارهای در و

در آن نمک‌های با حاکیت در بی‌درفتگی در دو رفتاری قابلیت یک‌سانی در مصرف شیمی‌های دریاچه‌ای است.
شکل 9: اکوهدای کلی از رخساردهای تبخیری (الف) کچم گاوی (ب) قطره انکی

شناشی و شیمیایی می‌شوند. ورود رودخانه‌های فصلی و ابهرهای زیرزمینی که حاوی مواد معلق و محلولان و فراورده‌های تبخیری و نکاتی شورابه‌ای باعث تشکیل رسوب‌های شیمیایی (تبخیری) و آواری در بستر پلاها شده است. نهشت‌های تبخیری موجود در منطقه که به صورت رسوب‌های شورابه‌ای سطحی،INGLE P.A.P. هلیت، نازارت، گلورپت،میله‌های تازه نیم‌بیسمالی نازارت سلیتویت، باضاتیت،بولودریت،منیزیت و دومونیت هستند. بررسی‌های انجام شده روسیه‌ای گسترده پلاها نشان می‌دهد که از حاشیه‌های حوضه به سمت مرکز، از میزان کالی‌های آویزی کاسته و بر اثر کالی‌های تبخیری افزوده می‌شود. به طوری که شاهد منطقه‌بندی کالی‌های تبخیری در سطح پلاها هستیم. کالی‌های کالی‌بندی های خاکی در حاشیه حوضه به‌طور کلی توزیع شده و در مرکز منطقه اثر کلوکولری کمتری را نشان می‌دهند. البته به عنوان یک حوضه در بخش شمال-شرقی اصلی که در منطقه به‌طور کلی مرکزی‌تر در این منطقه دیده شده است. از جمله دلایل آن ورود آب‌های سطحی بستر، وجود لاهه‌های نفوذ‌پذیری در ابعاد کوچک و شکستن کمپاک ایکسک اوو در این محلوده‌ای حوضه این طرفین باین و وجود جریان اصلی در بحران پلاها و جریان‌های فرعی در حاشیه‌ای شمال-شرقی حوضه موجب ریختن‌شانسی خاصی در این منطقه از پلاها شدید است.

برداشت

حوضه‌ای رسوبی پلاها میقان، به‌عنوان یک حوضه‌ای تبخیری در یک سیستم هیدرولوژیکی مستقل قرار دارد. فراورده‌هایی که در این پلاها در حالت عملکردی شامل فراورده‌های رسوبی، آب-

[48] لک، ز. توسیعی سولفات در دریچه میقات گوهر، چوبی و بزرگ، نمک و بکریت نهنشته یکبیری، بایان نامه کارشناسی ارشد، دانشگاه تهران (1386) ص 188 صفحه.

[50] ترشیبان، ح. تکامل شوراهای گازی و تشکیل کانی های تبخیری در پلایاهای سالنده ایران مرکزی، مقاله ای در نمایشگاه بزرگ نمک و حوضه مرکز در ایالات متحده، مجله بلورشناسی و کانی شناسی ایران، شماره 1 (1388) ص 43-50.

[51] عبدی ل. توسیعی سولفات دریچه میقات گوهر، پایان نامه کارشناسی ارشد، دانشگاه تهران (1386) ص 165 صفحه.