شیمی کانی‌ها و سنگ‌شناسی توده‌های گابروفیتی مجموعه افیولیتی جنوب شرق سلطان آب‌سیزوار

محمد شورگشتشی، سید مسعود ههام، آزاده ملکزاده‌شافرودی

گروه زمین‌شناسی دانشگاه علوم دانشگاه فردوسی مشهد، مشهد، ایران

چکیده: مجموعه‌های گابروفیتی جنوب شرق سلطان آب‌سیزوار واقع شده و از لحاظ تفسیرپذیری زمین‌ساختی، بخشی از زون افیولیتی سیزور محسوب می‌شود. ترکیب این توده‌های آذرین درونی از گابروفیتی تبدیل می‌شود. کلیه‌های اصلی عبارتند از سنگ‌های گابروفیتی شامل پلاژیوکلاز، کلینوبیورتکس از نوع اوژین - دیوبید، و اروپیورتکس از نوع استانتین. این توده‌ها در زمان کمرسانی جنگل‌های آبیونی، سنگ، پوست، و کانی‌های مختلف آهن از اکسیده‌های تانوی می‌شوند که به سرعت بست. کلیرت، کرنت، ترمولیت و اکینولزی اشاره کرد. اکنون نجات یافته این رسوب‌های زئوسیمبیتیک تولیدی و شرخکشی تا پرکاری و هستند. امپیکی‌ها در گروه افیولیتی کلیسیدار قرار می‌گیرند و از سنگ‌های کاتی‌استیتی، زمین‌ساختی پروکسی‌ها، امپیکی‌ها و پلاژیوکلازهای ناحیه مورد بررسی نشان می‌دهد که دمای تشکیل توده‌های گابروفیتی 1000 تا 1350 درجه‌ای است. شرایط گردش انرژی شرکتی به سمت سیزور آب‌سیزوار واقع شده و یافته شد. موضع زئوسیمبیتیک جنوب شرق سیزور آب‌سیزوار است. با بازکردن کلیسیدارهای افیولیتی می‌توانیم به گونه‌ای باشد. این مطالعه از نماهای تولیدی و شرخکشی تشکیل سیزور در محیط فوران، است.

واژه‌های کلیدی: گابروفیتی؛ فوسیت، آشین‌شناختی، شیمی‌کانی، زمین‌ساختی، سیزور

مقدمه

مکان‌های مورد بررسی در استان خراسان رضوی، در 25 كیلومتری شرق شهرستان سیزور قرار گرفته و در ناحیه 100 سیزور آب‌سیزوار، [1] در فاصله 85 تا 90، 90 تا 95، 95 تا 100، 100 تا 105 و 105 تا 110 کیلومتری به شرکتی در ناحیه قرار گرفته است. این منطقه بخشی از زون خریداری ایران مرکزی است که به خصوص کلیرت گابروفیتی سیزور است که روند خریداری ایران مرکزی است [2] برای اکنون جیاژینی افیولیتی‌ها در کرانه‌های بابالانه و کوه‌های سیزور،
نمودنی دستی این سنگ‌ها، با چراغی برنینگی یا دایت‌کات پانیفای 15 تا 20 درصد (لوله‌کاران) دارای بالاتری درشت‌دار و در منطقه‌های مورد بررسی در کانه سنگ‌های اوتوپک‌اکدیک و توسعه‌های گابروی دیده می‌شوند.

در اینجا همراه با مقدارهای ترکیبی از سنگ‌های فلزیک مانند دیوریت، کوارتز دوریت، توالیت، نرمالیت می‌شود و سنگ‌های گرانیتی حجم کمی را در داخل افیولیت‌ها به خود اختصاص می‌دهند و نقش مهمی در شناخت ویژگی‌های زمین‌شناسی مناطق افیولیتی ایفا می‌کند. به ویژه گروهی از این سنگ‌ها با عنوان پلاژیوکرات افیولیتی [9] که بررسی‌های سنگ‌شناسی این سنگ‌های گرانیتی برای شناخت شکل گیری افیولیت‌ها از شروع کستر شکف افیولیتی نا فازرات و جایگیری روي پوسته افیولیتی بسیار مهمان‌د.

شکل 1 نقشه زمین‌شناسی منطقه‌ی مردمی بررسی در گستره‌ی 58° 36' تا 58° 58' طول جغرافیایی 36° 37' تا 36° 46' عرض جغرافیایی
سنگ‌نگاری
سنگ‌های مایلیک
کاغذوپر: به‌بیان دانش‌رسان، هیپیدومورف‌گرانولار، افینیک شکل (2Q) سباواتینیک و درون‌دانه‌ای است. کاکی-های اصلی سنگ‌های غیربرترین از پلاژیوکلاز (حدود 40 درصد) دیپیپسی (حدود 22 درصد) و ازتوپوکراز از نوع استلونینت - هیرستن (حدود 21 درصد) پلاژیوکلاز با صورت نیمه خود شکل با رنگی چند ترکیبی و بدون منطقه‌بندی از نوع لاپارادویت است و در بعضی از نمونه‌ها سوسونیت، کربنیت و کربنات شدیدانه. کاکی‌های قرعی شال حداکثر ۵ درصد آپانیت و پوپنیت است. کاکی‌های ناحیه شال رگه‌های کاورت، کیرت و ترمولیتی که حاصل دگرسانی کلیتوپوروسن است. هورنیلند، بیشترین فیبرولیت است که در گابراها دیده می‌شود که به طور همیشه نمونه‌های هورنیلند گاروگن می‌شود و در این‌جا بی‌پروکسین (قار کلاژن پلاژیوکلاز روم‌هورنیلند) است (شکل ۲Q). در بازی نمونه‌ها فیبرولیت به صورت نوبی ایجاد می‌شود به‌طور مثال ترمولیتی - اکنولپتیک از دگرگونی گرماگی پروکسین ایجاد شده است.
سنگ‌های حاوی‌پروکسین
میکروپورت: در این سنگ‌ها نماینده قالب بافت داری و هیپیدومورف‌گرانولار است. کاکی‌های اصلی شامل پلاژیوکلاز (حدود ۴۹ درصد) از نوع لابرادویت و هورنیلند (حدود ۳۰ درصد) از نوع لابرادویت و هورنیلند (حدود ۴۹ درصد) از نوع لابرادویت و هورنیلند (حدود ۳۰ درصد)
جدول 1 ترکیب شیمیایی و فرمول ساختمانی پیروکسین‌ها و افیبول‌های موجود در سنگ‌های مورد بررسی.

<table>
<thead>
<tr>
<th>T-18</th>
<th>T-18</th>
<th>T-18</th>
<th>T-18</th>
<th>T-42</th>
<th>CH-53</th>
<th>CH-53</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره سونه</td>
<td>پیروکس دیورتیت</td>
<td>پیروکس دیورتیت</td>
<td>پیروکس دیورتیت</td>
<td>ضخامت</td>
<td>تیتر</td>
<td>تیتر</td>
</tr>
<tr>
<td>شماره سونه</td>
<td>تیتر</td>
<td>ضخامت</td>
<td>تیتر</td>
<td>مرکز</td>
<td>حاشیه</td>
<td>مرکز</td>
</tr>
<tr>
<td>سنگ</td>
<td>مخلوط</td>
<td>مخلوط</td>
<td>مخلوط</td>
<td>مرکز</td>
<td>حاشیه</td>
<td>مرکز</td>
</tr>
<tr>
<td>SiO2</td>
<td>55.60</td>
<td>55.60</td>
<td>55.60</td>
<td>55.60</td>
<td>55.60</td>
<td>55.60</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>Al2O3</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>MgO</td>
<td>11.57</td>
<td>11.57</td>
<td>11.57</td>
<td>11.57</td>
<td>11.57</td>
<td>11.57</td>
</tr>
<tr>
<td>CaO</td>
<td>10.29</td>
<td>10.29</td>
<td>10.29</td>
<td>10.29</td>
<td>10.29</td>
<td>10.29</td>
</tr>
<tr>
<td>K2O</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
</tbody>
</table>

محاسبه کانونی برابر اساس اکسید

<table>
<thead>
<tr>
<th>محاسبه کانونی برابر اساس اکسید</th>
<th>محاسبه کانونی برابر اساس اکسید</th>
<th>محاسبه کانونی برابر اساس اکسید</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>Ti</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Al</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Mg</td>
<td>2.23</td>
<td>2.23</td>
</tr>
<tr>
<td>Ca</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

شکل 3 الف و ب - ترکیب شیمیایی پیروکسین‌های موجود در سنگ‌های منطقه‌ای مورد بررسی روی نمودار مثلثی نمودار Q.

Q = CaO + Na2O + MgO

(10) پ- روي Wo-En-Fs نمودار Wo-En-Fs.

شکل 4 پ - نمودار Wo-En-Fs.

جدول 2: ترکیب شیمیایی و فرمول ساختاری کاتی پلاژیوکلزا موجود در سنگ‌های مورد بررسی.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نوع سنگ</th>
<th>نتایج نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Si</td>
<td>0.740</td>
</tr>
<tr>
<td>2</td>
<td>Ti</td>
<td>0.003</td>
</tr>
<tr>
<td>3</td>
<td>Al</td>
<td>0.248</td>
</tr>
<tr>
<td>4</td>
<td>Cr</td>
<td>0.004</td>
</tr>
<tr>
<td>5</td>
<td>Fe</td>
<td>0.129</td>
</tr>
<tr>
<td>6</td>
<td>Co</td>
<td>0.003</td>
</tr>
<tr>
<td>7</td>
<td>Ni</td>
<td>0.003</td>
</tr>
<tr>
<td>8</td>
<td>Mg</td>
<td>0.003</td>
</tr>
<tr>
<td>9</td>
<td>Ca</td>
<td>0.003</td>
</tr>
<tr>
<td>10</td>
<td>Na</td>
<td>0.003</td>
</tr>
<tr>
<td>11</td>
<td>k</td>
<td>0.003</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>0.003</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>0.003</td>
</tr>
<tr>
<td>14</td>
<td>S</td>
<td>0.003</td>
</tr>
<tr>
<td>15</td>
<td>Cl</td>
<td>0.003</td>
</tr>
<tr>
<td>16</td>
<td>O</td>
<td>0.003</td>
</tr>
<tr>
<td>17</td>
<td>H2O</td>
<td>0.003</td>
</tr>
<tr>
<td>18</td>
<td>CO2</td>
<td>0.003</td>
</tr>
</tbody>
</table>

محاسبه کاتی‌ها بر اساس 8 اکسیژن

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-42</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Si</td>
</tr>
<tr>
<td>2</td>
<td>Ti</td>
</tr>
<tr>
<td>3</td>
<td>Al</td>
</tr>
<tr>
<td>4</td>
<td>Cr</td>
</tr>
<tr>
<td>5</td>
<td>Fe</td>
</tr>
<tr>
<td>6</td>
<td>Co</td>
</tr>
<tr>
<td>7</td>
<td>Ni</td>
</tr>
<tr>
<td>8</td>
<td>Mg</td>
</tr>
<tr>
<td>9</td>
<td>Ca</td>
</tr>
<tr>
<td>10</td>
<td>Na</td>
</tr>
<tr>
<td>11</td>
<td>k</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
</tr>
<tr>
<td>14</td>
<td>S</td>
</tr>
<tr>
<td>15</td>
<td>Cl</td>
</tr>
<tr>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td>17</td>
<td>H2O</td>
</tr>
<tr>
<td>18</td>
<td>CO2</td>
</tr>
</tbody>
</table>
جدول ۲. نتایج آنالیز آسیب‌های اصلی (درصد) وزنی و برخی عناصر فرعی (بر حسب گرم در تن) سنگ‌های گابرویی جنوب شرق سلطان آباد.

<table>
<thead>
<tr>
<th>عناصر</th>
<th>CH-1</th>
<th>CH-53</th>
<th>T-18</th>
<th>T-1</th>
<th>GH-21</th>
<th>GH-42</th>
<th>N-13</th>
<th>N-47</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>62.0</td>
<td>62.0</td>
<td>62.0</td>
<td>62.0</td>
<td>54.6</td>
<td>54.6</td>
<td>54.6</td>
<td>54.6</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>MnO</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>CaO</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LOI</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>K₂O+Na₂O</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

شکل ۵. ترکیب پلاژیوکلازهای موجود در نمونه پیروکسن دیوریت ب ترکیب پلاژیوکلازها در گابرو نوریت منطقه صورود-بررسی نمادها.

شکل ۶. ترکیب پلاژیوکلازهای موجود در نمونه پیروکسن دیوریت ب ترکیب پلاژیوکلازها در گابرو نوریت منطقه صورود-بررسی نمادها.
مراحل اولیه تبلور است. این نمونه‌ها نشان می‌دهند که ماکما ماد و واحدهای دیورتیت گالیوپی به نظر یکسان بوده و خاصگی جدایی داشته‌اند (شکل 7).

عناصر اصلی: در این مرحله، زنوزمیسی تروده‌های گالیوپی و پیروکسین دیورتیت بررسی می‌شوند. نتایج آنالیز این واحدها در جدول 3 ارائه شده است. مقدار

شکل 6: نمونه‌ها فاقد همبوعی هستند (شکل 7).

شکل 6: نمونه‌ها فاقد همبوعی هستند (شکل 7).
سنگ‌زایی
واژه‌ای افتولیت که شامل واحد‌های آنتی‌فلکتی، مجموعه‌ای بر اساس داده‌های [16] نسبت به گوشته‌های اولیه به‌طور مشابه (شکل 9) تیپ شدگی عناصر LILE (K, Rb) و غنی‌شدنی از عناصر (Ti, Nb) HFSE درده می‌شود. همچنین غنی‌شدنی از LILE می‌تواند به دلیل دخالت صفحه فرورونده و آسیب‌داری مشاهده باشند. همچنین سنگ‌های منطقه غنی شدگی از عناصر آتیومی K و Ti-Nb دارند [16, 17]. به نظر [16, 17] به‌طور مشابه منفی U در سنگ‌های ماده‌بکار، تاکیدی این سنگ‌ها در محیط شکل 7 نمودار تغییرات آسیب‌های اصلی در مقابل SiO2 [14].

شکل 7 نمودار تغییرات آسیب‌های اصلی در مقابل SiO2 [14].

شکل 8 نمودار تغییرات SiO2 نسبت به عناصر فراغی [14].

خاستگاه نامعلوم به محیط‌های زمین ساختی متخص، استفاده می‌شوند [15]. در نمودارهای عناصری که بر اساس داده‌های [15] نسبت به گوشته‌های اولیه به‌طور مشابه (شکل 9) تیپ شدگی عناصر LILE (K, Rb) و غنی‌شدنی از عنصر (Ti, Nb) HFSE درده می‌شود. همچنین غنی‌شدنی از LILE می‌تواند به دلیل دخالت صفحه فرورونده و آسیب‌داری مشاهده باشند. همچنین سنگ‌های منطقه غنی شدگی از عناصر آتیومی K و Ti-Nb دارند [16, 17]. به نظر [16, 17] به‌طور مشابه منفی U در سنگ‌های ماده‌بکار، تاکیدی این سنگ‌ها در محیط
روشن نیاشد [۲۲] برای مثال، گزارش صرفاً از دانه‌های آلاین K2O-SiO2-Al2O3-SiO2 و عنصر اصلی SiO2، FeO/Fe2O3-MgO سربیت جنوب Y-Nb و عنصر کم‌فراز Al2O3-SiO2 و عنصر کم‌فراز Zn مناسب استفاده کنند. نتیجه‌های آلاین از نمودارهای فرورانش حاشیه‌ای فضای آنالیز، چه در سری‌های بازالت‌های قوس آشکار شده و قرار گرفته‌اند (شکل ۲۱) اما انتظار می‌رود برای مکانیسم همزمان با برخورد با دامنه‌ای از ترکیب‌های آبی‌گون پوست‌های همراه باشد.

فروارش اسک و همچنین [۲۰] برای باورند که بی‌نهم‌یار مثبت K و Rb نیز نشانگر محیط‌های فرورانش هستند (شکل ۹).

جاهاز زمین ساختی
نمودارهای چندکننده جایگاه‌های زمین ساختی که براساس ویژگی‌های زئوفیسیوپلاستیک‌ها ترسیم می‌شوند [۲۱] برای تفکر یا جایگاه‌های توده‌ای آذرین دریش جنوب شرق سلطان نگرین مورد استفاده قرار گرفته‌اند. یک بررسی مقدماتی از غلظت عنصر اصلی و مخصوصاً طیف مالمات استونیوتونی فضای قوس‌های K و Rb شرق سلطان نگرین می‌شود. این باره به سنتگهای قول‌ها و آشکار شده و قرار گرفته‌اند (شکل ۲۱). اما تمایز زئوفیسیوپلاستیک‌ها و استفایه قوس آشکارشی قرار گرفته‌اند. اما برای سنتگهای قول‌ها و قوس‌های آشکارشی استفاده کنند. نتیجه‌های مکانیسم پس از برخورد ممکن است همیشه کاملاً مثال‌های مکانیسم پس از برخورد ممکن است همیشه کاملاً

شکل ۹ نمودار عنکبوتی به‌همراه شده برای سنتگهای منطقه‌ای مورد بررسی نسبت به گوه‌شته اولیه [۱۶].

شکل ۲۱ نمودار TiO2-MnO-TiO2-P2O5 [۲۲] برای ترکیب‌های جایگاه‌های بکر سنتگهای مکانیسم و با دامنه‌ای از بیدسته‌های مکانیسم پس از برخورد ممکن است همیشه کاملاً.
زمن‌دها - فشارسنجی

فرمول ساختاری کلینوبروکسندیه منطقه‌ی مورد بررسی ولستونیت - انسان‌پیتی سه عضو پایانی کلینوبروکسندیه، هشت (جدول ۱).

مقدار $^{3+}$ در پیروکسندیه، به میزان اکسیژن در Al^{IV} - Na، میزان اکسیژن در Al^{IV} - Na نسبت به $\text{Cr}_{2}\text{Ti} + \text{Al}^{VI}$ نسبت به $\text{Al}^{IV} + \text{Na}$ خشکی که از نظر مولاری $\text{Cr}_{2}\text{Ti} + \text{Al}^{VI}$ با $\text{Al}^{IV} + \text{Na}$. $\text{Cr}_{2}\text{Ti} + \text{Al}^{VI}$ می‌گردد. معرف $^{3+}$ خواهد بود. لذا قرار Fe^{3+} گیری نمونه‌ها بالا خاطه است. نشان‌های پایین‌تر، گزیندگان اکسیژن و قرارگیری آن‌ها در زیر خطر نشان‌های پایین‌تر بودن Al^{IV} - Na اکسیژن در محیط تشکیل آن‌هاست [۷۷]. اکثر نمونه‌ها در $\text{Cr}_{2}\text{Ti} + \text{Al}^{VI}$ قرار گرفته‌اند. و برای تعیین سری مکانیکی از نمونه‌های مشابه استفاده شده است. پیروکسندیه منطقه‌ی بیشتر در گستره شیمیایی و یک نمونه‌های بالای پایین (به دلیل دگرگردانی) قرار می‌گیرند.

زمن دمایی کلینوبروکسندیه

توزیع آلومینیم در موقعیت‌های کلینوبروکسندیه جاروچی و هشت پلی‌هی، معیار مناسب برای قرار دادن فشار حاکم بر محیط تشکیل نتیجه‌ای بر اثر پیروگتی کارن [۷۸]. نمونه‌ای شکل ۱۲ (۱۶) نشان می‌دهد که در محدوده کلینوبروکسندیه با فشار پایین قرار می‌گیرد (فشار کمتر از ۱۰ کیلوبار) [۲۴۹–۳۲۳].

زمن فشارسنجی کلینوبروکسندیه

شکل ۱۱ الف تعبیر سری مکانیکی با استفاده از نمونه $\text{Al}_{2}\text{O}_{3}$ نسبت به SiO_{2} در موقعیت $\text{Ti}-\text{Ca} + \text{Na}$ موجود در سنگ‌های منطقه‌ی $\text{Al}^{IV} - \text{Cr}$ نسبت به $\text{Al}^{IV} + \text{Na}$ پایین ترکب آمفیبول‌ها [۳۰] نماده سه مثل شکل ۲.
برداشت
توده‌های نفوذی مورد بررسی در جنوب شرقی سیستان‌آباد سبزوار واقع شده و از نظر تفسیری‌های زمین‌ساختی بخشی از منطقه‌ای افیولیتی سبزوار است. که از سنجش‌های پلتوتیک مختلف مانند گاربو و گاربرودوریت تشکیل شده است. این سنجش‌ها از نظر زوتومی‌های سری تولویتی و متالومین تا پرالومینهای بازالت‌های فوم آنتیشامائی و منطقه‌ای برخوردی قابل مقایسه است. این سنجش‌ها به حاصل تبلور در پی جوی و کششی پشت کامی باشند که منجر به گسترش کف اقباسون نافس و پیش استند آن طی فروراش باشد. نموارهای جدا کننده محیط زمین‌ساختی نمایانگر محیطی وابسته به فروراش و در حاشیه فعل قرار‌دهی است. سنجش‌های آذرین درونی مورد بررسی از عناصر HFSE در آن‌ها پویای است. کلینوپروکسن‌های منطقه اکثر با نسبت Nb/Y در سنجش‌های شیمیایی‌های مثل نمونه کلیولیک (به علت درگیری) قرار می‌گیرند. دمای شروع تبلور در گاومیت به حدود 1000°Na-229.

مطالعه حاضر حاصل بررسی نفوذی به شماره 1/1972/3 مصوب 1390/7/12 می‌باشد که به تفسیری‌های حاصل از موانع نفوذی زیر به شماره‌های فردی مسئولیت فردی می‌گردد. همچنین نظر است

