بررسی ترکیب شیمیایی و کانی شناسی مارنهای سازند میشان در شمال اهواز برای استفاده به عنوان مواد اولیه آجربریزی

هوشنگ پورکاپس، شهراب ویسه، شرکه خیاط نیکنام، ایران، میرضا زراوندی

چکیده: در این پژوهش، ویژگی‌های کانی شناسی و شیمیایی مارنهای سازند میشان در منطقه‌های شمال شرق اهواز برای استفاده در صنعت آجر بررسی شده است. بررسی‌های کانی شناسی، جمله و شیمیایی به روش‌های پراش پروتو ایکس (XRF) و فلورورسانت پروتو ایکس (XRD) انجام شد. ترکیب کانی شناسی منطقه اغلب دارای کانی‌های اصلی کوارتز، کلسیت، دولومیت و کانی‌های فرعی شامل ارتکلاژ، Fe₂O₃، Al₂O₃، CaO، SiO₂ و MgO کلریت، هیوکوپین و موکاپونیت است. این کانی‌ها دارای صدای، اکسیده‌های شیمیایی بیشتر شده‌اند. اکسیده‌های بنیادی بر رفتار فیک مواد اولیه آجر تأثیر دارند. میانگین MgO در اکسیده‌های کلی دارای ترکیب شیمیایی مناسب خاک آجربریزی (استاندارد شماره 11162) تندیک است. از نظر ترکیب شیمیایی و کانی شناسی، این کانی‌ها نسبت به مواد اولیه معدنی مانند رس و پرماهی می‌توان مارنهای منطقه را در صنعت آجر به کار برد.

واژه‌های کلیدی: مارنهای آجر، استاندارد، کانی شناسی، ترکیب شیمیایی

مقدمه
مارنهای آجر از رس آهک‌دار، یا مخلوط رس و ذرات کلسیت و دولومیت است که توسط به‌هکم، درجه‌گر تراکم و سختی کمتر و نسبت به رس، خاصیت خمیری و چسبندگی یاپای-تری دارد. مارنهای آجر در دارای مقادیر زیادی کریستال باشند. به طور معمول برای تولید آجر مناسب نیست. یلی می‌توان باشی‌پسی‌های دارای مقادیر مناسب کریستال و ترکیبات مشکل در پروژه‌های آجر و بلک سیک تولید کرد.

۱) فرانک‌های زیمی‌شیمیایی نقش مهمی در تولید خاک دارند و خواص و ویژگی‌های هر نوع خاک، به ترکیب شیمیایی و اجزای تشکیل دهنده خاک وابسته است. ترکیب شیمیایی

shanbeh1974@yahoo.com

نوبنده مسئول، تلفن: ۰۹۶۴۰۹۵۲۱۶، پست الکترونیکی
گچساران و زیر سازند آغاجاری قرار گرفته است. [۶] مرسوی آن ناگهانی و مرز بالایی این نتایج است. مارن‌ها سازند میشان در مناطقی از استان بوشهر و عامل تولید آجر مورد بررسی قرار گرفته است. بین مناطق مردمی بررسی در دو استان، مارن مناطق دالکی و چشم‌مرد از استان بوشهر و سه منطقه کنار تخته، کازرون و قصر خاص به دلیل نزدیکی بودن درصد عنصر تشکیل‌دهنده به حد استاندارد شرایط مناسبی به عنوان مواد اولیه برای تولید آجر دارند. [۷] مقایسه‌ی بررسی‌های انجام شده در این پژوهش و بافت‌های این پژوهش‌گزارشی نشان می‌دهد شرایط کیفی مارن‌های میشان برای پخت آجر در فارس و در شمال شرق احواز مشابه است و یکدیگر را نابridged می‌کنند.

هدف از این پژوهش بررسی خصوصیات کانی‌شناسی و شیمیایی مارن‌های سازند میشان در منطقه‌ای از شمال شرق اهواز برای استفاده در صنعت آجر است. این تحقیق از طريق آزمون‌ها آزمایشگاهی کانی‌شناسی، شیمیایی و مکانیکی انجام شده است.

با توجه به گستره سازندهای مارن‌دار در سراسر کشور (شکل ۱)، و پیش‌رفت علوم و فناوری و تیز پیشرفت صنایع به سمت صنایع غیر فلزی و افزایش روزافزون ساخت و ساز در کشور و نیاز استان‌ها به تأمین مواد اولیه، تولید مصالح ساختاری از جمله آجر، توجه به مارن‌ها امری ضروری است. استان خوزستان نیز از این قاعده مستثنی نیست. از سازند‌های مارن‌دار در این استان که از پراکندگی خوبی برخوردار است، سازند میشان را می‌توان ذکر کرد. نام این سازند از دهکده میشان واقع در ۵۰ کیلومتری جنوب شرقی گچساران گرفته شده و در حوضه رسوی زاگرس واقع است که برای اولین بار توسط کیمی و وایند [۸] سال ۱۳۶۵ معرفی شد. در بخش الگو (بیان فنی گچساران) سازند میشان شامل ۴۱۰ متر مربع خاکسته و آهک‌های رسی سرشار از پوسته و صد سنگواره‌ها است. [۴] بر اساس ناحیه‌ی ناحیه‌ی آهکی، سن سازند میشان را دو مانند اشکوب میونس می‌باشد (سراوالین) تعیین کردند. [۵] این سازند در مقطع نوع خود، روى سازند.
موقعیت جغرافیایی و زمین‌شناسی منطقه
میان‌های مورت بررسی در شمال استان خوزستان و در فاصله
۱۰۰ کیلومتری شهرستان اهواز قرار دارد. این منطقه با
مختصات جغرافیایی ۴۲ و ۳۵ عرض شمالی و ۴۹ و ۸ طول
شرقی، در نزدیکی روستای بطنون از توابع شهرستان مسجد
سلیمان واقع شده است. میان‌های مورت نظر جزیی از سازند
میان است. این منطقه حاوی میان‌های خاکستری و قرمز
است و علاوه بر میان‌های نازکی از زیبی به صورت میان‌های
دیده می‌شوند. در شکل ۲ نقشه‌ی زمین‌شناسی منطقه‌ی مورد
بررسی نشان داده شده است.

روش بررسی
برای بررسی کانون‌شناختی میان‌های منطقه، تعداد ۱۲
نمونه به صورت سیستماتیک نمونه برداری شدند. پس از بررسی
گروه‌های نمونه و گزارش‌دهنده از النقش ۵۰ برای آنالیز برای
پترو ایکس (XRD) به آزمایشگاه کانسپتان پیچلود ارسال
گردید. ۶ نمونه نیز برای تعیین مقدار کانی‌های مورد آنالیز کمی
XRD قرار گرفتند. خطوط آزمون بین ۵ تا ۲۰ درصد پوده
است. به منظور تعیین تركیب شیمیایی میان‌های منطقه، روی
تومه نمونه‌ها آنالیز فلورسنسی برتو ایکس انجام گرفت. برای
درک بهتر تلفات کانی‌های در مرحله پیشین، نمونه‌های
۲۰۱۰ میلی‌متر تهیه شده و برای آنالیز کانی‌شناسی نمونه‌های
پیشه انجام گرفت. برای بررسی

ترکیب شیمیایی و کانی‌شناسی مواد خام (میان
کانی‌های اصلی میان‌های خاکستری (شکل ۲) از کلسیت,
کوارتز، دیوپیت و آلیت تشکیل شده‌اند. کانی‌های فرعی این
میان‌های غاربند از ارچکالیت، کانیت، موکسیت که در همه‌ی
نمونه‌های برداشت شده و وجود دارند، زیبی و ایلیت نیز به
عنوان کانی فرعی در میان‌های خاکستری شناسایی شده‌اند.

شکل ۲ نقشه‌ی زمین‌شناسی منطقه‌ی مورد بررسی.

شکل ۲ نمایی دور (الف) و نزدیک (ب) از میان‌های خاکستری سازند میان (دیده به سمت شمال).
کانی‌های اصلی مارنهای قرمز (شکل ۴) در تمام نمونه‌های برداشت شده عبارتند از: کوارتز، کلریت و دلومیت. آلیت نیز در بعضی از نمونه‌ها جزء کانی‌های اصلی است. ارتکاز، کلریت، موسکویت در بیشتر نمونه‌ها و همچنین مونتلوربولیت نشان می‌دهد.

شکل ۴ نمایی دور (الف) و نزدیک (ب) از مارنهای قرمز سازند میشان (دید به سمت شمال).

در شکل ۵ پراش نگاشته‌های پتروایکس (XRD) نمونه‌های برداشت شده از سازند میشان.
1- Squatting Temperature
جدول 1 نتایج آنالیز پراش پرتو ایکس (XRD) (کیفی 12 نمونه برداشت شده از سازند میشان)

<table>
<thead>
<tr>
<th>کانی‌های فرمی</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>موسکویت-کلریت</td>
<td>MH-1</td>
</tr>
<tr>
<td>موسکویت-کلریت</td>
<td>MH-2</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MH-3</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MH-4</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MH-5</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MH-6</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MH-7</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MH-8</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MV-1</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MV-2</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MV-3</td>
</tr>
<tr>
<td>کلریت-کلریت</td>
<td>MV-4</td>
</tr>
</tbody>
</table>

جدول 2 نتایج آنالیز پراش پرتو ایکس (XRD) (کیفی 6 نمونه برداشت شده از سازند میشان)

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کسر%</th>
<th>کلریت%</th>
<th>موسکویت%</th>
<th>اینفغیت%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH-1</td>
<td>55</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-2</td>
<td>54</td>
<td>46</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-3</td>
<td>53</td>
<td>47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-4</td>
<td>52</td>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-5</td>
<td>51</td>
<td>49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-6</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-7</td>
<td>49</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MH-8</td>
<td>48</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MV-1</td>
<td>47</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MV-2</td>
<td>46</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MV-3</td>
<td>45</td>
<td>55</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MV-4</td>
<td>44</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

تمام نمونه‌ها برای تعیین اکسیدهای اصلی نیز با روش مایع‌سوزی پرتو ایکس (XRF) در آزمایشگاه کاناسارای بینالود تجزیه شدند. نتایج آنالیزاتوری برای اکسیدهای اصلی حاصل 12 درصد است. حاصل از XRF مشاهده شده سازگاری دارد (جدول 3)، بر اساس آلیهای کم، نمونه‌های کسی‌ها به ترتیب قرار و درجه تشکیل دهنده نمونه مانند که از تجزیه شده. حاصل از آزمایشات اکسید می‌شود. نتایج آزمایش‌ها نشان می‌دهد که سیلیس نمونه‌ها بین 24 تا 46 درصد کوده و کمی از حداکثر 8% گذری به دست آمده که با وجود استاندارد آزمایشگاه 0.4 درصد مقدار آنها K2O به همراه Al2O3، CaO و MgO به ترتیب کم ترین روش اصلی نیز با شده‌است. حاصل آنها مولیبدن و Al2O3 به مقدار پرومویت در نمونه‌ها ربط داشت. استاندارد شماره 1164 ایران حد حساس برای اکسید فربک را بین 3 و 12 درصد معین کرد است.

جدول 3 نتایج حاصل از آنالیز XRF نمونه‌های برداشت شده از سازند میشان به دست وزنی (%)

<table>
<thead>
<tr>
<th>نمونه</th>
<th>ترکیب شیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH-1</td>
<td>SiO2 7.44</td>
</tr>
<tr>
<td>MH-2</td>
<td>Al2O3 0.01</td>
</tr>
<tr>
<td>MH-3</td>
<td>Fe2O3 0.03</td>
</tr>
<tr>
<td>MH-4</td>
<td>CaO 0.05</td>
</tr>
<tr>
<td>MH-5</td>
<td>Na2O 0.07</td>
</tr>
<tr>
<td>MH-6</td>
<td>K2O 0.09</td>
</tr>
<tr>
<td>MH-7</td>
<td>MgO 0.11</td>
</tr>
<tr>
<td>MH-8</td>
<td>TiO2 0.13</td>
</tr>
<tr>
<td>MV-1</td>
<td>MnO 0.15</td>
</tr>
<tr>
<td>MV-2</td>
<td>P2O5 0.17</td>
</tr>
<tr>
<td>MV-3</td>
<td>SO3 0.19</td>
</tr>
<tr>
<td>MV-4</td>
<td>LOI 1.21</td>
</tr>
<tr>
<td>شماره</td>
<td>سم</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>0.4</td>
<td>SO₃</td>
</tr>
<tr>
<td>0.7</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>1.6</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>2.0</td>
<td>K₂O</td>
</tr>
<tr>
<td>2.6</td>
<td>MgO</td>
</tr>
<tr>
<td>3.0</td>
<td>SO₂</td>
</tr>
<tr>
<td>3.5</td>
<td>LOI</td>
</tr>
</tbody>
</table>
پاورپوینت: ساختار و فیزیک ماده مزدک

در دمای خاصی و در مخلوطی از طبیعت پرونده آجر شیشه‌ای شده باشد، موجب محبوبیت اجرا کننده شده و هسته‌های مرکزی آجر سایه شود. در موارد تشدید تولید این گاز کل این انبساط می‌پیدا و از این رو آجر می‌شود و حتی منفجر شود، یک دیده‌بان که به تورم موسوم است. حتماً اگر این مرحله نرسید، باقی انسانی ناشی از این قرار و در اغلب به کاهش استحکام آجر می‌انجامد.[9]

کاتیون شناسی نمونه پیشه‌شهر

رسه‌های صنعتی ترکیب کاتیون شناسی برخی‌ها دارند که بررسی فازهای کاتیونی را که در موارد خام تشکیل می‌شوند و یا از می‌روند، است. در طول یک پلی‌پیلیکسیاها و کاتیون‌های هم‌زمان مثل کوارتز، فلز نیز، کلسیت، دولومیت و همانندی‌ها، یک روش تحلیل رخ دهد که ویژگی‌های نهایی محصولات سرامیکی را تعیین می‌کند.[15] در طول قرار دادن سرامیکی، ساختارهای بلومن متجاوز از محدوده

زاویه: خطاها پیش‌بینی ساختار ساخته بر اساس طولین به طور عمده باقی مانده است.

خط‌های طولانی: شکل‌های تجزیه‌شده، فازهای پیش‌بینی وجود دارند.

خط‌های طولانی: شکل‌های تجزیه‌شده، فازهای پیش‌بینی وجود دارند.

خط نقطه‌ای: شکل‌های کاتیون‌های جدید.
می‌گیرد. با توجه به موقعیت قرارگیری نمونه در سیستم‌های 3 تایی، می‌توان چنین پیش‌بینی کرد که کانی‌های تشکیل‌دهنده شامل کوارتز- واتستریت- آنتوریت و مولیت باشد. از مطالعه کانی‌شناسی (جدول 5) و ترکیب شیمیایی (جدول 6) و شکل (11) نمونه‌ی بخشه کانی‌هایی که تشخیص داده شده عبارتند از کوارتز- زلنیت (Ca₂MgSi₃O₉) (Ca₂Al₂Si₃O₉) که کانی‌های اصلی هستند. لارزینت (Ca₃SiO₇) و ازتولار فارعی این نمونه را شامل می‌شوند.

با استفاده از داده‌های تجزیه‌های زئولیت‌ای و سیستم‌های SiO₂- Al₂O₃, SiO₂- Al₂O₃, K₂O, SiO₂- CaO- Al₂O₃, MgO- CaO- SiO₂- Al₂O₃ کرده‌ایم. همان‌طور که در نمونه‌های شکل‌های (8، 9 و 10) می‌توان ترکیب کانی‌شناسی آجر تولیدی را پیش‌بینی کرد. این نمونه نشان‌دهنده اثرات قرار می- SiO₂- CaO- Al₂O₃, داخل مثلث کوارتز- آنتوریت- واتستریت قرار می- MgO- Al₂O₃, داخل مثلث سیستم- هستند. نشان‌دهنده این موقعیت کوارتز- واتستریت- آنتوریت- غیرشکل‌آمیز و در سیستم SiO₂- MgO- Al₂O₃, داخل مثلث سیستم- گردیده. در سیستم SiO₂- Al₂O₃- MgO نمونه، نشان‌دهنده این موقعیت کوارتز- واتستریت- آنتوریت- در سیستم SiO₂- MgO- Al₂O₃, داخل مثلث سیستم- مولیت قرار گرفت.

![شکل 8 سیستم 3 تایی SiO₂- Al₂O₃ و ترکیب نمونه 6-MH-6](image1)

SiO₂ = 54.02 CaO = 35.12 Al₂O₃ = 10.8

![شکل 9 سیستم 3 تایی SiO₂- MgO- Al₂O₃ و موقعیت نمونه 6-MH-6](image2)

SiO₂ = 76.24 MgO = 5.50 Al₂O₃ = 14.36
جدول ۵ نتایج حاصل از پردازش اکسیدهای مولکولی (XRD) نمونه آجر تولیدی

<table>
<thead>
<tr>
<th>کاهی‌های فرعی کاهی‌های اصلی</th>
<th>نمونه</th>
<th>کوارتز-زاولت - آرگیمایت</th>
<th>لاژنیت - اروکلاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂- K₂O- Al₂O₃</td>
<td>MH-6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سیستم ۳ تابی SiO₂- K₂O- Al₂O₃

[۱۴]

سیستم ۳ تابی SiO₂- K₂O- Al₂O₃

[۱۴]
آکرماینت و زنیت از کانی‌های گروه مسیله‌ای و سوروسیله‌ای‌ها هستند. شرایط تشکیل این کانی‌ها در
سیستم‌های CA(SiO4)2 با نسبت Ca/Si در میان بررسی شده، دور
بنابراین حضور این کانی‌ها در نمونه‌های آزمایشگاهی
از اندازه نیست. زنیت زمین تشکیل می‌شود که با
Si و CaO و رس واکنش می‌دهد.۱۸،۱۹ این فاز نیمه‌پایدار با
Al2O3 آکرماینت داده و آنالتی تشکیل می‌دهد و
لرزشی کانی سیلیکات کلیسی است که همراه با
کلیسیت در مداوم بالای C ۹۰ درجه سانتی‌گردا و با
تکنیک پیش‌نهیافته فاز نمودارها مذکور نشان می‌دهد
سازگاری بین این دو وجود ندارد. عدم تشکیل وسایطی را به
این‌جا می‌توان توجه کرد که در مداوم بالا لازم است
ناباید مشاهده و باعث لازم تشکیل لرزشی است.۲۰

علت حضور زنیت و عدم تشکیل کانی آکرماینت را می‌توان
به نسبت بالای کانی‌های سیلیکات نسبت داد. انستیتیت
(MgFe)SiO3 در سیستم‌های میکروکیتی‌ها حذف یافته است (۵۵
معمولاً در دمای ۱۰۰۰ درجه سانتی‌گردا سبلسیوس با
تکنیک کلیسیت در نمونه‌ای یک‌پوش شده و
مقدار کلیسیت در نمونه‌ای یک‌نیک شده در
مداخله خاص آزمایشگاهی است. بنابراین
استیتیت وارد ساختار آکرماینت شده است. حضور اندک کانی-
های رسی علی‌رغم تشکیل مولث و دیگر کانی‌های آلمینیوم‌دار
در این می‌شود.

در این تفسیر ذکر شده می‌توان چنین نتیجه‌گیری کرد که
در قرنیه‌ای‌ها زمین لازم برای انجام واکنش‌ها کافی نیست و
بعضی از فازهای مورد اندازه‌گیری فرض تشکیل نشدند و واکنش‌ها
نافذ انجام نمی‌شود. بنابراین باید می‌تواند در دمای
۱۰۰۰ درجه سانتی‌گردا (۱۰۰۰ درجه سانتی‌گردا) باشد،
پس‌بندی کانی‌های مسیله‌ای مارن‌سی تشکیل می‌شود که
با تکنیک پیش‌نهیافته فاز نمودارها مذکور نشان می‌دهد
سازگاری بین این دو وجود ندارد. عدم تشکیل وسایطی را به
این‌جا می‌توان توجه کرد که در مداوم بالا لازم است
ناباید مشاهده و باعث لازم تشکیل لرزشی است.۲۰

برداشت

ترکیب کانی‌های آلمینیوم‌دار این نتیجه‌گیری آنها نتایج گزارش و کاربرد آنها را برای

۲•Larnite

