تغییر تركیب شیمی آبآتیت در انواع گرانیت و کاربرد آن در سنگ شناسي: بررسی مورده
از توده‌های نقده، زوزن، بانه و شیرکوه

سید علی مظفری

دانشگاه پیام نور- گروه علوم زمین شناسی- تهران 1437-4666- ایران

چکیده: در این بررسی کاتی آبآتیت در نمونه‌های گرانیتونی‌یی چهار توده شناخته شده به روش ژی نپالارش الکترونی (EPMA) مورد بررسی قرار گرفت. داده‌های حاصل نشان می‌دهد که تمایل بیشتری از عناصر کم‌میزان موجود در آبآتیت را می‌توان به دلیل تغییرات میزان شیمیایی آن در نقاط مختلف توده‌ها مشاهده نمود. تغییرات به‌عنوان نشانه‌های مصرف میزان رابطه منظمی برابری است. با استفاده از نمودارهای توزیعی که تغییرات ترکیب سنگ کل [A] قابل ضریب اشباع الکترونی (ASI) و استوآریسم [B] و عناصر کم‌میزان را ترسیم می‌کند، می‌توان به نمایش مکانی اولیه دست یافت. تغییرات در سطح عناصر کم‌میزان آبآتیت در نقاط مختلف گرانیتونی‌های روشنی از خود نشان می‌دهد. آبآتیت‌های گرانیتونی نوع 1 غنی از Cl, Si, S, Na, Mn, Fe و گرانیتونی نوع 2 غنی از REE و Th هستند. هر دو نوع نشان می‌دهند که ایجاده عناصر ماکمایی زیادی در سطح عناصر کم‌میزان نشان می‌دهند که با تغییرات مکانی اولیه مخاطرات ماکمایی ترکیب سنگ‌ها هستند.

واژه‌های کلیدی: آبآتیت; گرانیتونی; نوع 1، نوع 2، زوزن، بانه، شیرکوه

مقدمه

دد که ترکیب کاتی آبآتیت فلسبک نیز در نمونه‌های مکمل آبآتیت قابل تشخیص از تغییرات شیمیایی در سطح شناخته شده با ترکیب کاتی آبآتیت در در هدهای اولیه با پیشرفت تجهیزات آزمایشگاهی استفاده از
چنگیزی یافته است. در آغاز از ترکیب کاتیتی هم اصلی کاتیت‌های فرمول‌برداری بررسی و گونه‌ی شناسی مکمل گرانیتونی برای شناسایی وزن‌بندی مکمل‌های بازالتی گرانیتونی مورد استفاده قرار گرفته است.
سیب با تغییرات شیمیایی اصلی کاتیت‌های فرمول‌برداری و گونه‌ی شناسی، انواع با میزان ساخته‌های مکمل‌های متفاوت به‌دست آمده‌اند [2]. پژوهش‌های بعدی نشان می‌دهد که در ترکیب شیمیایی این انواع، کُلنزیت آبآتیت کاتیتی پایدار است. به طوری که می‌توان آن را در

alif54894@yahoo.com

نویسنده مسئول: تلفن: 021 26420212 | 0571 (021) 26572341 | پست الکترونیکی: 54894@yahoo.com
موفقیت زمین‌شناسی و مشخصات پتراژوژیک گرانیت‌های به‌دست‌آمده است. به‌طور کلی، گرانیت‌های به‌دست‌آمده باعث به‌درآوری در همدیگر آن‌ها شده‌اند. سپس در سطح کاسه‌ای گرانیت‌های به‌دست‌آمده را به‌روزرسانی نموده‌اند. در بخش‌های غربی و شمال غربی زون سنندج- سنگ‌سنگ صخره گرانیت‌های به‌دست‌آمده و بیش از 40% آن‌ها میزان فلزات شکل‌گیرنده است. در بخش‌های غربی و شمال غربی گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گرانیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی. گランیت‌های به‌دست‌آمده با ظرفیت اکسیداسیون بالا و در بخش‌های غربی و شمال غربی.

1- oceanic cumulates
شناسی مستقل از گرانیت‌های الهی - قلبی مشابه تالوامین ناکام پس از این که در واقع ذوب‌بخشی سنگ‌های مافیک گونه‌ای حاصل شد. روی بخش جنوبی، شواهد سنگ‌نگاری و ترکیب شیمیایی نشان می‌دهد که زنگ معیاره‌گری گونه‌ای، به همراه اختلاف ماسکی و تبلور جدایی‌نمره به تشکیل این سنگ‌های شده است [19].

سنگ‌های مافیک، نشانه‌های همان درستی است که قبل از این است. [18]

توده‌های زنگ در شمال شرقی بلوک شرق و ۱۲۰ کیلومتری شهر بهرمن واقع شده‌است (شکل 1). این توده‌های زنگ از دو بخش متفاوت مافیک و فلسیک تشکیل شده‌اند. سنگ‌های مافیک دربرمای شریک و بافتی واقع در منطقه شرق‌غربی‌ها و نظر سنگ‌های مافیک مشخص است.
نمونه N2 و MMG و مونوزیکال باشند.

ترکب شیمیایی سنجی کل نمونه‌های باد شده به روش ACME و در آزمایشگاه ICP-MS نازک صبقی تهیه شده از این نمونه‌های نیز در گروه علوم زمین و ریز Academia Sinica بردارنده الکترونی برای BE JOEL JXA-8900R در ترتیب برای تعیین کانال‌های فرعی و زنی‌سنجی آینه‌تیب تجزیه شده. شرایط اجرا برای بررسی ریز بردارنده جریان باریکه و 18kV بر حسب اندازه بلور آینه، 0.5nm و قطر باریکه 0.1 برای کمیاب 400 برای تعیین از کانال‌های مکرونی و طبیعی به عنوان استاندارد در تجزیه آینه‌تیب مورد استفاده قرار گرفت و تصحیح داده‌ها به روش ZAF [23] انجام شد.

نتایج

ترکب مواد و کانال‌ها کمپیوتر نمونه‌های مورد بررسی در جدول 1 خلاصه شده است. کوارتز، فلدسپار قلبی و پلاژیوکلاز کانال‌های اصلی تمام نمونه‌ها بوده‌اند. بیانیت کانال مافیک در همه نمونه‌ها و آمفیبول در گراندیپورتیت‌های نوی (O1) و Z12) فراوان بودن. گراندیپورتیت و سکوکوتای فریگر کانال‌های موجد (S10 و B8) در گراندیپورتیت نوی (O1 و S) را نشان داد. بررسی SEM بر روی مقاطع نازک صبقی نمونه‌های مورد تحقیق قابل تشخیص شد. این نتایج را نشان داد که در گراندیپورتیت Fe-Ti مگنتیت آمیزه‌ای است. در حالی که بناء و شیرکوه ایلامینت فراوان نیست. این اختلاف حاکی از نتایج آزمایش‌های مفید در زمان شیفت آب‌سازی می‌باشد.

پایان نامه

مورد بعد قبلاً مشترک شده (A14-20) باید در این پژوهش نگه نمونه از گراندیپورتیت نوی شده در شدید تا سپری کریستال‌های مختلف شکل و تعمیم عنصر اصلی و کمپی مرکز در این نمونه کمپی‌تیب، کن‌بنده ابتداً پیشتر زنی‌سنجی آینه‌تیب با انواع گراندیپورتیت این پژوهش برای سنجش از پیروی کریستال‌های و گراندیپورتیت نوی (Z12) و Z20) نمونه ایکن انتخاب شد ولی از نمونه 3 نفره.
تغییر ترکیب شیمی‌ای آپاتیت در انواع گرانیت و کاربرد آن

تبيانات در نمونه‌های نقده و روزن به فراوانی دیده می‌شود در حالتکه مونتاز ننها در گرانیتونیدیهای پالومین بانه و شیرکوه حضر دارد. سولفیدها (به خصوص پیریت) در گرانیت‌های نوع فراوان بودن در حالتکه در نمونه‌های نوع ۱ به ندرت مشاهده شدند. آلیت‌های در برخی نمونه‌های شبه رخشان قابل مشاهده

جدول ۱: فراوانی مدل و ترکیب کانی‌های فرعی و کمیاب نمونه‌های مورد بررسی. Q = کوارتز، KF = فلدنسبار فلبیانی، Pg = پلایپوزنل، Am = آمیبول، Bio = بیوئت، Mu = مسکوپیت، Gt = گارنت. Z12 = گرانت کوارتز، N38 = گراندیوریت زورنی، B8 = نمونه‌گیری نقده، N2 = مونتازگرنیت تقده، S10 = گرانیت دار بانه، G = گرانیت گارنت دار شیرکوه.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Q</th>
<th>KF</th>
<th>Pg</th>
<th>Am</th>
<th>Bio</th>
<th>Mu</th>
<th>Gt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z12</td>
<td>12</td>
<td>32</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N2</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N38</td>
<td>35</td>
<td>21</td>
<td>21</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B8</td>
<td>22</td>
<td>24</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S10</td>
<td>40</td>
<td>20</td>
<td>19</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

کانی‌های فرعی و کمیاب

آپاتیت، زیگرین، تیتانیت، ایلمینومگنتیت، آپاتیت، زیگرین، تیتانیت، ایلمینومگنتیت، آپاتیت، زیگرین، تیتانیت، ایلمینومگنتیت، آپاتیت، زیگرین، تیتانیت، ایلمینومگنتیت، پیریت

شکل ۲: روابط مختلف بافتی آپاتیت‌ها در گرانیتونهای مورد بررسی. (الف) نمای کلی از شکل‌های مختلف آپاتیت‌های به در نمونه‌های گرانیتی پراکنده شده‌اند. (ب) آپاتیتهای میله‌ای و پなのだگه‌ای شکل. (پ) آپاتیتهای سوزنی. (ت) آپاتیتهای طول‌شده در کنار آپاتیتهای صف‌های پیکان‌ها بلوه‌های آپاتیت را نشان می‌دهند. تمام تصاویر در نور PPL هستند.
پیشنهاد
مرکز عناصر اصلی و کمیاب نمونه‌های مورد بررسی در جدول 2 اورده شده است. جانشین قبلا اشاره شد، جنبه‌های تغییرات زئوستیمیابی و شکل‌گیری ماکمایی توده‌های باد شده در پی‌هوش‌های پیشین بررسی شدند. با توجه به (182) گرانیت‌داری نتید به دو فاز MMG با ترکیب مالاتومیانا و مونوزگرانتی با ترکیب پرالومین قابل تفسیریاندازی این این حال بررسی‌های دقت زئوستیمیابی و ایزوتروپی نشان می‌دهد که در قسمت‌های گرانیت‌داری طبیعی از وابستگی S به کاتیون‌های پیشین و زئوستیمیابی گرانیت‌داری نوع 1 در حالت و از طریق ذوب منابع مایه‌های متناوت حاوی سبک‌های مورد بررسی. البته فرآیندهای آالیش

جدول 2: ترکیب اکسیدهای اصلی (wt%) و عناصر کمیاب (ppm) سبک‌های گرانیت‌داری نوع 1

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Z12</th>
<th>S10</th>
<th>B8</th>
<th>N2</th>
<th>N38</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.49</td>
<td>64.77</td>
<td>70.86</td>
<td>65.23</td>
<td>64.77</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.33</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.72</td>
<td>14.73</td>
<td>15.11</td>
<td>14.76</td>
<td>14.72</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.92</td>
<td>2.82</td>
<td>2.82</td>
<td>2.82</td>
<td>2.82</td>
</tr>
<tr>
<td>MgO</td>
<td>1.10</td>
<td>1.04</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>MnO</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CaO</td>
<td>2.99</td>
<td>2.8</td>
<td>2.53</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.79</td>
<td>3.83</td>
<td>3.83</td>
<td>3.83</td>
<td>3.83</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.99</td>
<td>3.99</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>Sum</td>
<td>99.44</td>
<td>100.01</td>
<td>99.77</td>
<td>99.45</td>
<td>99.77</td>
</tr>
<tr>
<td>Rb</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Sr</td>
<td>128.7</td>
<td>128.7</td>
<td>128.7</td>
<td>128.7</td>
<td>128.7</td>
</tr>
<tr>
<td>Ba</td>
<td>566.59</td>
<td>566.59</td>
<td>566.59</td>
<td>566.59</td>
<td>566.59</td>
</tr>
<tr>
<td>Y</td>
<td>22.29</td>
<td>22.29</td>
<td>22.29</td>
<td>22.29</td>
<td>22.29</td>
</tr>
<tr>
<td>Nb</td>
<td>19.32</td>
<td>19.32</td>
<td>19.32</td>
<td>19.32</td>
<td>19.32</td>
</tr>
<tr>
<td>Ta</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Zr</td>
<td>345.3</td>
<td>345.3</td>
<td>345.3</td>
<td>345.3</td>
<td>345.3</td>
</tr>
<tr>
<td>Th</td>
<td>27.3</td>
<td>27.3</td>
<td>27.3</td>
<td>27.3</td>
<td>27.3</td>
</tr>
<tr>
<td>La</td>
<td>24.69</td>
<td>24.69</td>
<td>24.69</td>
<td>24.69</td>
<td>24.69</td>
</tr>
<tr>
<td>Ce</td>
<td>59.4</td>
<td>59.4</td>
<td>59.4</td>
<td>59.4</td>
<td>59.4</td>
</tr>
<tr>
<td>Pr</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Nd</td>
<td>15.2</td>
<td>15.2</td>
<td>15.2</td>
<td>15.2</td>
<td>15.2</td>
</tr>
<tr>
<td>Sm</td>
<td>8.82</td>
<td>8.82</td>
<td>8.82</td>
<td>8.82</td>
<td>8.82</td>
</tr>
<tr>
<td>Eu</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Gd</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Tb</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Dy</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
</tr>
<tr>
<td>Ho</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Er</td>
<td>2.17</td>
<td>2.17</td>
<td>2.17</td>
<td>2.17</td>
<td>2.17</td>
</tr>
<tr>
<td>Tm</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Yb</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
</tr>
<tr>
<td>Lu</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>
جدول ۲ داده‌های مناسب آنالیز ریز پردازی (به صورت دو عناوین) آنالیز در گرانیت‌های مورد بررسی (N2a و Za) به ترتیب نشانگر آنالیز‌های ب.د. را می‌آوردند. آنالیز داده‌ها ۴ از پلاک‌های مناسب و پررنگ انتخاب گردید. تجزیه تغییرات قابل توجه در ترکیب آنالیز‌های مختلف را نشان می‌دهد.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>N38-1</th>
<th>N38-2</th>
<th>N38-3</th>
<th>N38-4</th>
<th>B8-1</th>
<th>B8-2</th>
<th>B8-3</th>
<th>B8-4</th>
<th>B8-5</th>
<th>B8-6</th>
<th>S10-1</th>
<th>S10-2</th>
<th>S10-3</th>
<th>S10-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.61</td>
<td>0.62</td>
<td>0.63</td>
<td>0.65</td>
<td>0.66</td>
<td>0.67</td>
<td>0.68</td>
<td>0.69</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>FeO</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>MnO</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>CaO</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>0.37</td>
<td>0.38</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>F</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>Cl</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Sr₂O</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Th₂O₅</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>UO₂</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>CeO₂</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Pr₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Nd₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Sm₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Gd₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Dy₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Er₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Yb₂O₃</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
</tr>
</tbody>
</table>
سند میزانان نشان می‌دهد بلکه بیشتر با سرانگی
میزانهای هدایت در (شکل 4). از آنجا که در
شاعری و خواص شیمیایی مشابه همانند در
ساخت کربن تنها جنسیت کلمه شبود و در نتیجه
استراتسیمیون آبیان تاثیر زمین‌شناسی مورث از ترکیب عناصر
ASI (آگراپتاسیوم) ماهمای میزان تنفسی مورد تایپ در آبیان با نژاد،
کمیاب در آبیان استفانتی (آک) (2011). داده‌های این پژوهش
نیز میزان این و ترکیب را تایپ می‌کند و این
روی داده‌های سیلیسیوم و در نوع
ترسیم جدایی آبیان‌های مختلف استفاده شده است
دخالت در تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
تغییرات شیمی‌ای در
شکل ۳ تغییر تركیب عناصر کمیاب آپاتیت (برحسب وزنی) در گرانیت‌های مختلف مورد بررسی با توجه به ضریب اشباع آلومینیوم سنج می‌باشد.
شکل ۲ تغییرات تركیب عناصر کمیاب آپانیت (بر حسب درصد وزنی) در مقابل استوانه‌سوز سنج میزان (بر حسب ppm). علامت همانند شکل ۳ است.
بحث

ریز پردازش الکترونی نشان داد که تمرکز بسیاری از عناصر کمیاب در آیونات نشتر از حد تشخیص EPMA متفاوت شده است (جدول 3). این عناصر در آیونات گرانیت‌های مختلف دامنه تغییرات سیسیم و متانژ دارد که این تغییرات با برخی عوامل همچون ترکیب سنگ میزان رابطه منظمی از خود نشان می‌دهد. داده‌های EPMA از گرانیت‌های توده‌ها مورد بررسی ارتباط بین ترکیب عناصر کمیاب آیونات با سیستم اشباع (ASi) سنگ‌کل را تایید می‌گردد (شکل 3) که با نتایج حاصل از بررسی به رود گرانیت‌های استرالیا و چین همخوانی دارد (141). نتایج تجزیه ای‌پن‌نی این می‌دهد که ترکیب عناصر کمیاب آین کالی، علاوه بر خاستگاه، به شرایط محیطی تشکیل مگنازین نیز بستگی دارد (142). با توجه به تغییرات قابل توجه و منظمی که در ترکیب آیونات گرانیت‌های مورد بررسی در این پژوهش دیده شد این نتیجه تغییر عناصر موجود در آیونات با توجه به نوع گرانیت‌ها و شرایط تشکیل آن بررسی می‌شود.

عنوانی نسبی اکسیدهای آهن و مگنیز در آیونات گرانیت‌های نشتر S به فشاری‌های بایین اکسیژن و آلمینیوم بالاتر نسبت داده شده است (141). چنین شرایطی در این پژوهش نیز مشاهده می‌شود به طوریکه غلظت این اکسیدهای N38 (تراکم بالاتری از آهن و مگنیز دارد، اما این تمرکز کمتر از عناصر نشتر S با بررسی الکترونی نشان می‌دهد که گرانیت‌های آهن و شیرکوه در فشار اکسیژن پایین تر نسبت به نمونه‌های نفک و زور تشکیل شده‌اند. میزان Fe3+ در یک اکسید اکسید اکسید گرانیت‌های مختلف تأکید می‌کند.

مقدار گوگرد در آیونات گرانیت‌های نشتر S انجام پایین است که به وسیله EPMA قابل تشخیص نیست اما در گرانیت-
پژوهش‌های زمین‌شناسی و بررسی تکیه‌گاه در صورت نیاز به نوع معدن‌های نوری، تشکیل‌گذاری ترکیب می‌شود و بررسی تکیه‌گاه شیمیایی این می‌تواند کمک زیادی به درک ماهیت شکل‌گیری‌های سنگ‌سازی‌ای نماید.

با توجه به آن‌ها، ترکیب آپاتیت به عنوان یک کانال فرآیندی مطرح است که به‌طور معمول در یک مجموعه از زمین‌های نوری مخصوصاً در سری‌های نوری آپاتیت‌های نوری در عددی از انواع کمیاب چسبیده نمود پدید می‌گردد. این ویژگی‌ها می‌تواند حاکی از تأثیر اختلاف‌های مکانیکی در فراورده تشکیل این نمونه‌ها باشد.

