رخداد رونیت همازه با کلینوپروکسین در گابروهای تشنيتي کمبرن (البرز مرکزي)

رقيه دوروزي، فریبرزمسعودی، منصور قربانی

دانشگاه علوم زمین، دانشگاه شهید بهشتی، اوبن، تهران، ایران
(دریافت مقاله: 91/5/6/1111، نسخه نهایی: 91/5/6/1111)

چکیده: در دامنه شمالي البرز مرکزي و جنوب روستای کمبرن، توده نفوذی گابرو گلیایي برخورد دارد که در حوالی شمال تارییقیه ریزنه‌ها بوده و به سمت مرکزی به تشینیه‌ها درسته‌اند. بر تبلیغ می‌شود. در تشینیه‌ها مورد بررسی کاتا رونیت به همراه کلینوپروکسین دیوپسدی. ترکیب کاتا تشامی عرضه را می‌زایند. در این رخداد حضور یافته‌ای که در سطح‌های اروپتریال البرز مرکزي کارزار شده و به‌طور قطعی کاتا رونیت به (Ti، Al، Fe3+، Fe2+، Mn، Mg)5.99 (Na، Ca)1.97 (Si، IVAl)6.02 O22 شده‌است. سنگ‌هایی از آلیاس این کاتا با ویژگی‌های منشأ شده در نواحی الیافی با رونیت هم‌هناکی دارد. رونیت‌های مورد بررسی در این مقدار ومافیک Ca + IVAl و مافیک بالای Na + IVSi و مافیک بالای Ti + Al مشاهده شدند. این در حالت رونیت‌های کلینوپروکسین‌های همراه با کاتا رونیت نیز غنی شدگی قابل Al و وجود الیاف پایدار رونیت و کلینوپروکسین غنی از Si، Ti و Al مقدار بالایی را تهی شدگی از Si و Ti و Al مقدار بالایی از TiO2 و Al2O3 توجهی از سیلیس را نشان می‌دهند. فلز‌های ویژگی‌های کاتا تشامی و شیمیایی کاتا رونیت و کلینوپروکسین دیوپسدی قهر شده‌ی کاتا رونیت در تشینیه‌ها از یک مافیکی قلیایی تحت اشبع غنی در فشارهای سنگین‌یا می‌باشد. وجود الیاف کلینوپروکسین در جوهر کمبرن، به‌طور قطعی عامل تشکیل سیلیس‌یاب تأثیرگذار است.

واژه‌های کلیدی: رونیت، تشینیت، مافیک، تحت اشبع، البرز مرکزي

مقدمه

ماگماهاي گیلیایی درای دارای طیف متنوعی از نظر ترکیب و نحوه تشکیل می‌باشند که از این دسته‌ها کاتوا (کاتونیتس) که شامل گروه‌های روستایی و سفلی از کاتا سالم او گروه‌های ایزوتریک و اکسیدیک در این دسته نیز هستند. در ترکیب مغناطیسی این ماده‌ها، منجر به تشکیل ترکیب مغناطیسی مناسب‌تری می‌گردد. حضور کاتا تا گرده فلسفاتوندی شاخاص متفاوتی را می‌گذارد. حضور کاتا تا گرده فلسفاتوندی شاخاص متفاوتی را می‌گذارد. مانند می‌باشد. وجود الیاف کلینوپروکسین در جوهر کمبرن، به‌طور قطعی عامل تشکیل سیلیس‌یاب تأثیرگذار است.

روش‌های کلیدی: رونیت، تشینیت، مافیک تحت اشبع، البرز مرکزي

روش سلیکات زنجیره‌ای است و در سیستم سه میل‌می‌توانیم می‌باشد X2Y2Z2O8 است به طوری که Y = Ti، Al، Fe3+، Fe2+، Mn، Mg، X = Na، K، Ca دیوپسدی، خورسپت، اسپینال، الیافی، رسپت، لیست، آنالیم و الیاف‌گنگ‌های پهن و رونیت تشامی از گروه‌های عجیب شده‌ای که برنده برای این کاتا توانده در مقدار 0.5 باشد. بر اساس رونیت کاتا در مقدار Mg+Fe2+<0.5 هستند و می‌توانند تحت عنوان رونیت Mg+Fe2+<0.5
ماگماتیسم قلبیایی ساندنه فاز پلوتونیسم در البرز مرکزی را نیز بیشتر نشان می‌دهد.

زمن شناسی صحرایی و مشاهدات ناحیه‌ای
گابروی قلبیایی کمربن در دامنه شمالی البرز، در درون ساندنه شمشک و در بخش جنوبی دهکده‌ای کمربن دیده می‌شود (شکل 1). این گابرو توبوپراتی مسطحی را در صحرای نشان می‌دهد (شکل 2 آلف و ب) و در برخی از قسمت‌های و سیه ساندنه شمشک پوشیده شده‌اند. نفوذ توده‌های کوه‌ک با در کمربنی متعدد در درون ساندنه شمشک در مجاور منطقه‌ای مورد بررسی در نقشه زمین شناسی [27] (۱۱/۱۱) جزئی از توده‌های کوچک مونولیتیک شده است. بنابراین سن این توده‌ها می‌توان حداکثر به طور نسبی میانی بررسی شده است.

شکل 1 نقشه زمین شناسی شده شده منطقه‌ای مورد بررسی، اقتباس با تغییر از [۲۷]
شکل ۲ (الف) نمایی از توده گابروپی کمربن در درون سازند شمشک (ب) نمایی از سنگهای گابروپی کمربن که توبوگرافی مسطحی را در صحرای نشان می‌دهد.

با پیمایش به سمت مرکز توده، در بخش‌هایی، بافت سنگهای گابروپی درشت‌تر دانه‌های هور (۲ تا ۵ میلی‌متر) و با رسیدن به مرکز توده گابروپی درشت‌تر دانه‌های دانه‌گری دانه‌ها به ۱ تا ۲ سانتی‌متر نیز می‌رسد. این گابروپی درشت‌تر دانه‌ای کانی‌های کلینوپروکسین، نفلین، گانلسیم، رونیت و پلاژیکلازند و ترکیب تشنه‌ای از خود نشان می‌دهند. کانی رونیت فقط در سنگهای درشت‌تر دانه تشنه‌ای مرکز توده دیده می‌شود. این کانی به علت جذب بالای نور تقریباً ویژگی‌های کانی‌های کدر را نشان می‌دهد (شکل ۳ الف و ب) و فقط در بخش‌هایی قسمت‌هایی در لبه‌های مقطع نازک میکروسکوپی که نازک شدگی داشته است، به رنگ تداخلی سرخ مایل به قهوه‌ای درده می‌شود (شکل ۳ ب). جنگل‌گی مشاهده شده در این کانی نیز از قهوه‌ای تا سبز تیره و سرخ تیره متفاوت است.

شکل ۳ (الف و ب) کانی رونیت در سنگ‌های تشنه‌ای که شاخص زیبایی و کانی کدر دارد، به ترتیب در xpl و ppl (ب) کانی رویت در لبه‌های مقطع نازک میکروسکوپی با نازک شدگی بیشتر، به رنگ تداخلی فرمز مایل به قهوه‌ای تیره.
روش کار
پس از نمونه‌برداری از بخش‌های مختلف توده گیاهی، ۲۵ مقطع نازک سنتی به شدت پایین گرفته و پس از بررسی سنگ‌شناسی و سنگ‌گزاری، ۲۲ نمونه نیز به روش از آزمایشگاه دانشکده علم زمین دانشگاه ایتالیا بررسی شدند. همچنین از مقطع میکروسکوپی سنگ‌هایی که نشستی درشت‌تر، دارای کانی روبیت، به وسیله یک رز پردارنده ی مدل Cameca-Camebax در دانشگاه علوم زمین پایداری ایتالیا آنالیز نقطه‌ای به عمل امده.

زئوئیت روبیت و کلینتوپروکس همراه
انالیز تریلیای کانی روبیت را در جدول ۱ درجه کرده‌ایم و محاسبات فرمول ساختاری این کانی برای ۱۲ کانی و ۲ اکسیژن صورت گرفت و میزان Fe۲+ و Fe۳+ به روش پیشنهادی دروب [۲۸] محاسبه شدند. میزان Fe۲+ این کانی بین ۳۵ تا ۴۰ متغیر است.

جدول ۱ نتایج تجزیه به روش پردارنده کانی روبیت در سنگ‌های گیاهی به نشان کیمی (محاسبات بر پایه ۱۲ کانی).
شکل ۴: فرآیندِ روند‌های سنگ‌های گافروپیتی به نشستن در نمودار رده‌بندی کانی‌های گافرو سافرین، زیر گروه رونیت [۲۲].

شکل ۵: فرآیندِ روند‌های سنگ‌های گافروپیتی به نشستن در نمودارهای کانی‌شناختی متفاوت، محدوده خاکستری رنگ مشخص شده نماینده ترکیب کانی‌پی رونیت در سنگ‌های آذرین می‌باشد [۱۴].
مقادیر بالای عناصری مانند Ti و Al بستگی داشته باشد که در نمونه‌های ردمبندی بیروکسی‌ها از آنها استفاده شده‌اند. [20] عدد میتریم در بیروکسی‌های سنگ‌های نشینی از 10 تا 40 نمودار ردمبندی از نوع دیوپسید است. در نمونه‌های این مورد دیوپسید قرار می‌گیرند همچنین در این نمونه، بیشتر کلینوبیروکسی‌های آنتلیز شده در گستره‌های بالای دیوپسید قرار دارند (شکل 6). این مدل به شکل 6 نشان داده شده‌اند. این کاتی در سنگ‌های طبیعی مورد بررسی از نوع دیوپسید است.

شکل 6 نمودار رده‌بندی پروکسی‌ها و قرار گیری پروکسی‌های سنگ‌های نشینی گابریلی فلبیای در گستره دیوپسید [20].

جدول ۲ نتایج تجزیه ریز پردازش کاتی کلینوبیروکسی در سنگ‌های نشینی (محاسبات بر پایه‌ی 6 آکسید و 4 کاتون).

<table>
<thead>
<tr>
<th>عنصر</th>
<th>core</th>
<th>middle</th>
<th>rim</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>24.12</td>
<td>24.94</td>
<td>24.12</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.10</td>
<td>2.75</td>
<td>3.22</td>
</tr>
<tr>
<td>FeO</td>
<td>11.87</td>
<td>11.74</td>
<td>11.87</td>
</tr>
<tr>
<td>MnO</td>
<td>0.33</td>
<td>0.23</td>
<td>0.33</td>
</tr>
<tr>
<td>MgO</td>
<td>10.47</td>
<td>10.34</td>
<td>10.47</td>
</tr>
<tr>
<td>CaO</td>
<td>4.48</td>
<td>4.47</td>
<td>4.48</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.36</td>
<td>1.35</td>
<td>1.36</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Total</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
</tr>
<tr>
<td>Si</td>
<td>1.81</td>
<td>1.81</td>
<td>1.81</td>
</tr>
<tr>
<td>Ti</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Al</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Mg</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Ca</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Na</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Total</td>
<td>3.04</td>
<td>3.04</td>
<td>3.04</td>
</tr>
<tr>
<td>CaTs</td>
<td>8.22</td>
<td>8.22</td>
<td>8.22</td>
</tr>
<tr>
<td>Wo</td>
<td>3.42</td>
<td>3.42</td>
<td>3.42</td>
</tr>
<tr>
<td>En</td>
<td>2.43</td>
<td>2.43</td>
<td>2.43</td>
</tr>
<tr>
<td>Fs</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
</tr>
</tbody>
</table>

دانشگاه‌های کلیپسیک در جدول ۲ نشان داده شدند. این بستگی از آنها استفاده‌شده از 10 تا 40.
بحث و بررسی
زنن کاتیونی و کلینوپروکسین همراه
رونیت بیشتر در برابر اینها و بازالتیا قلیایی گزارش شده‌است [24-26]. در این مورد خاص در گلیپوپروکسین قلیایی گزارش شده است [5] از این رو به بروز و نادر بودن حضور این کاتیون در سنگه‌های درونی، در این پژوهش علاوه بر بروز و نادر بودن، مورد پژوهش کاتیون کربناتی بر اساس ویژگی‌های شیمیایی با دقت بیشتری صورت گرفت. این کاتیون از سنگه‌های کاروپروکسین تسهیل مورد بررسی در این تحقیق توسط مراحل تکسیم (Si، Al، Fe، Mg، Fe2+، Fe3+) کالیشناسی است. این تکسیم مشابه آنالیزهای متعدد شده در متابولیسم از کاتیون رونیت است [3] با توجه به بافت قرارگیری کاتیون کالی، مورد بررسی نمونه‌برداری کاتیون‌های گروه سافیرین، زیر گروه Mg(Mg + Fe2+) و گروه آلاو ۲) (2) ۴۳. نتایج نشان داد که کاتیون با استفاده از تردید کرستینوسین در سنگها رونیت به صورت لولی و با ترکیب مارابوس با ترکیب مکامی کلینوپروکسین گینی می‌گردد (جدول ۳). بررسی‌های مختلف کاتیون‌های همراه با رونیت، بیانگر وجدو بارانتز پایدار رونیت در کلینوپروکسین گینی می‌گردد. میزان میزان نسبت ترکیب‌های فراوانی داشته باشد و همیشه با این ترکیب کاتیونی همراه نباشد. همراه با رونیت تتر بر در کلینوپروکسین گینی همراه شیمیایی به سمت غنی شدن از Ti و Al چشمگیر است و بلورهایی که در انتهای بوجود آمدن‌های از Ti غنی‌ترند.

شکل ۷: روندهای مشاهده شده در کلینوپروکسین گینی نشان‌دهنده تکمیل شیمیایی کلینوپروکسین گینی همراه با Ti و Al همراه با Ti و Al

شکل ۸: روندهای مشاهده شده در کلینوپروکسین گینی نشان‌دهنده تکمیل شیمیایی کلینوپروکسین گینی همراه با Ti و Al همراه با Ti و Al
در شکل 8 نگرانی عنصر Al نسبت به Ti در کلیتروپرکس ها به تصویر کشیده شده است [۲۲]. میزان کلیتروپرکس در کلیتروپرکس های اصلی قابلیت در ارتباط با Ti/Al مقدار فیزیکی در این محل اغازه می‌باشد. به‌ته‌بینه که این مقدار با افزایش میزان فیزیکی کاهش می‌یابد [۲۳]. نسبت‌های بالایی Ti/Al (۵ < Ti/Al) نشان‌دهنده تولید ماهی در فیزیکی می‌باشد. این در حالی است که نسبت‌های بین ۰.۵۰ تا ۱۲۵، می‌تواند نشانگر تولید در فیزیکی نسبت یاًپایین‌تر باشد [۲۴]. با توجه به مقدار Ti/Al که حدود (۰.۳۰-۰.۵۰) است، می‌توان اظهار داشت که این کلیتروپرکس‌ها در فیزیکی نسبت یاًپایین از ماهی قابلیت متیلوور شده‌اند.

از آنجا که این سنگ‌های شدیداً تحت اشعة از سایر‌هسته‌سنگ‌های کلیتروپرکس‌های کلیتروپرکس‌های گازور شده هرماه با کلی رونت در سنگ‌های قابلیت بالایی بین ۰.۵ تا ۱۸ متری است [۲۵]. میزان چگری کلیتروپرکس‌های گازورهای قابلیت بالایی هسته مورد بررسی نیز بین ۲۵-۷۵ تا ۱۸۵ متری است (جدول ۲). [۲۶] معتقد است که کلیتروپرکس‌های گازورهای ارتفاعی گزینش کمک کرده‌اند.

ماده‌ای مکانیکی وجود آورده کاپی رونت و کلیتروپرکس‌های هرماه جنگله‌ای اشاره شد. خرد رونتی در توده‌های قابلیتی در سنگ‌های گازورهای قابلیتی اسید و در گازورهای ترالیتی حاشیه‌های‌کلیتروپرکس‌ها [۲۷].

![نمودار](image.png)
جدول ۳ نتایج تجزیه XRF سنگهای گیلبرتی به تشخیص

<table>
<thead>
<tr>
<th>عنصر</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>P₂O₅</th>
<th>Nb</th>
<th>Rb</th>
<th>Sr</th>
<th>Ba</th>
<th>Th</th>
<th>V</th>
<th>Y</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۴۴.۲۶</td>
<td>۳.۲۲</td>
<td>۱۸.۶۴</td>
<td>۱۰۷.۴۲</td>
<td>۶۴.۰۹</td>
<td>۲۱.۳۲</td>
<td>۱۸.۷۳</td>
<td>۱۷.۳۵</td>
<td>۸۴.۲۸</td>
<td>۱۸.۵۶</td>
<td>۹۹.۷۵</td>
<td>۹۸.۵۷</td>
<td>۸۸.۵۷</td>
<td>۷۵.۹۷</td>
<td>۱۹۶.۴۵</td>
<td>۱۹۶.۴۵</td>
<td>۱۹۶.۴۵</td>
<td>۱۹۶.۴۵</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج تجزیه XRF سنگهای گیلبرتی تراکمی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>P₂O₅</th>
<th>Nb</th>
<th>Rb</th>
<th>Sr</th>
<th>Ba</th>
<th>Th</th>
<th>V</th>
<th>Y</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۵۰.۴۵</td>
<td>۳۲.۹۲</td>
<td>۱۲۵.۴۲</td>
<td>۹۲.۵۳</td>
<td>۸۲.۵۳</td>
<td></td>
</tr>
</tbody>
</table>

روش همراه با کلیوپروکس در گیلبرتی تراکمی

رخداد روند همراه با کلیوپروکس در گیلبرتی تراکمی

۱۷۲۳ تابستان

۲۴۵
برداشت
رونتی بیشتر در سنگ‌های آتش‌نشان دیده شده و بسیار کمتر در سنگ‌های نفوذی گزارش شد. این پژوهش بین‌گر حضور کانی روئین در نفوذی‌های از نوع تشییب در جنوب روستای کمین در البرز مرکزی است. رشد روئین در سنگ‌ها بین‌گر وجود ماگما‌های خاس‌گاه اشباع شده است. سیلیسی است. مقادیر باالی 

دانلشfeld، سنگ- 

الکانین (2002) 

نروتن در ماگما‌های اشباع است. بررسی‌های مختلف
کاکاپی مریا به بالوت، بین‌گر وجود بیشک‌گانه سنگ-


Francaise de Mineralogie et de Crystallographie 32 (1909) 325–331.


Francaise de Mineralogie et de Crystallographie 32 (1909) 325–331.


[36] Grapes R., Keller J., "Fe2+-dominant rhonite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, upper Rhine graben,