بررسی تأثیر شیوه خشک سازی بر خواص ایتیکی فیلم‌های نازک نانو ساختاری

اسکسید نیکل

سیده ماندها حمزة ساروی، فرهد اسمنیقل قدیس

گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران

چکیده: فیلم‌های نازک نانو ساختاری اسکسید نیکل با روش غوطه وری سل- زل نهی شدن، از هم رشته شدن، از سه روش (تاشب فروسخ، آون و ماکروفور) برای خشک کردن فیلما استفاده شد. اثر روش خشکسازی روی خواص ایتیکی، مولکولی، الکتریکی، ساختاری و مورفولوژی فیلما به ترتیب در سطح نوری نمایش داد. فرابنفش، طیف‌سنج نگهداری و تیم‌سنج، اندازه‌گیری کربنات کنترلی فیلم‌ها و اندازه‌گیری نوری در سطح نوری اندازه‌گیری شد. کربنات کنترلی فیلم‌ها در روش‌های مختلف خشکسازی با تاشب فروسخ، فیلم‌های نازک نانو ساختاری ماکروفور به ترتیب 2.59 تا 3.27 بر روش کاز، 2.37 و 3.77 بودند. در این روش‌ها، تغییرات جسمانی نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ، اثر نسبتاً کمتری نسبت به روش‌های آهری و اجرایی داشتند. در این روش‌ها، تغییرات جسمانی نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ، اثر نسبتاً کمتری نسبت به روش‌های آهری و اجرایی داشتند.

واژه‌های کلیدی: سل- زل، اسکسید نیکل، خشکسازی، خواص ایتیکی

یافته‌ها

فیلم‌های نازک نانو ساختاری اسکسید نیکل به غلت محدوده دیپتیکی، میکروکوپوریک [8]، طبیعت عملکردی برای حسگر UV شیمیایی [9] و برابر نیز p [10] PMOS مورد بررسی قرار گرفت. این عوامل برای اولین بار در روش‌های مختلف خشکسازی در خلا [1]. کندویان [10] آنتیدیدن [11]، بهترین شیمیایی بخار [12]، فرابنفش ناهید اکسید کریکی [13]، ناهید لیزر بالی [14]، استری پاراپت [15]، فرابنشد سیل- زل [16] و سیمیسا (CBD) [2019] مورد بررسی قرار گرفت. با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تاشب فروسخ با توجه به نتایج آزمایشات، این روش‌ها به عنوان یک کاندیدای نیم‌سیالی اکسید نیکل، دی‌دی‌آکسید نانو- زنگ نازک اسکسید نیکل با تاشب فروسخ و Cu سه تغییرات ضعیف در این روش‌ها مورد بررسی قرار گرفت. نازک نانو ساختاری اسکسید نیکل با تashesFox اطلاعاتی افرادی را در حال کار در دیگر هستند.
روش پویش دهی [23-26] مانند [27] دمای پارامتری از 190 درجه سانتی‌گراد تا 330 درجه سانتی‌گراد در دمای 40 درجه سانتی‌گراد دستگاه FTIR Shimadzu 3600 استفاده شد. انتشار الاکسید نیکل بر روی روان در پلاستیک مدل CP به کمک روش (SPM) ساخته شد.

جستجوی و نتایج

شکل 1 نتایج پرداخته‌ای (XRD) X-فیلترهای اکسید نیکل

شکل سازی شده در قریب 10 نانومتر در IR و مایکروسکوپ را به دست آورد. دمای 40 درجه سانتی‌گراد به دست آمد به‌دنبال یک سیستم X-فیلترهای استفاده از اکسید نیکل را

با تغییر در روش خشک‌سازی نشان می‌دهد. انتظار داریم به‌طور مشابه گزارش [28] استفاده از فرومول دیا- فورمول محاسبه شد.

\[
D = \frac{0.9}{2 \beta \cos \theta}
\]

در این رابطه \(D\) انتظاره‌ای، \(\beta\) عرض فله در نمای نیم-بیشتره، \(\theta\) طول موج پرتو در nm است که به فرمول X است قرار داده شده است.

1- Van Der Pauw
طرح پراش پرتو X برابر فیلدهای انتزاعی اکسید نیکل که در فر X، مایکروفر (MW) و زیر ناش (IR)، با استفاده از نشاندهده شده‌اند.

ساختار اکسید نیکل را با پرتو قطعی (111) و (200) به خوبی نشان داده است. این نتایج با دو دیگر نشان دهنده که حاکی از گروه ترکیبی است. نتایج نشان داده که اندازه پراش میکروفر (MW) با پرتو X برابر فیلدهای انتزاعی اکسید نیکل که در فر X، مایکروفر (MW) و زیر ناش (IR)، با استفاده از نشاندهده شده‌اند.

ساختار اکسید نیکل را با پرتو قطعی (111) و (200) به خوبی نشان داده است. این نتایج با دو دیگر نشان دهنده که حاکی از گروه ترکیبی است. نتایج نشان داده که اندازه پراش میکروفر (MW) با پرتو X برابر فیلدهای انتزاعی اکسید نیکل که در فر X، مایکروفر (MW) و زیر ناش (IR)، با استفاده از نشاندهده شده‌اند.

ساختار اکسید نیکل را با پرتو قطعی (111) و (200) به خوبی نشان داده است. این نتایج با دو دیگر نشان دهنده که حاکی از گروه ترکیبی است. نتایج نشان داده که اندازه پراش میکروفر (MW) با پرتو X برابر فیلدهای انتزاعی اکسید نیکل که در فر X، مایکروفر (MW) و زیر ناش (IR)، با استفاده از نشاندهده شده‌اند.

ساختار اکسید نیکل را با پرتو قطعی (111) و (200) به خوبی نشان داده است. این نتایج با دو دیگر نشان دهنده که حاکی از گروه ترکیبی است. نتایج نشان داده که اندازه پراش میکروفر (MW) با پرتو X برابر فیلدهای انتزاعی اکسید نیکل که در فر X، مایکروفر (MW) و زیر ناش (IR)، با استفاده از نشاندهده شده‌اند.

ساختار اکسید نیکل را با پرتو قطعی (111) و (200) به خوبی نشان داده است. این نتایج با دو دیگر نشان دهنده که حاکی از گروه ترکیبی است. نتایج نشان داده که اندازه پراش میکروفر (MW) با پرتو X برابر فیلدهای انتزاعی اکسید نیکل که در فر X، مایکروفر (MW) و زیر ناش (IR)، با استفاده از نشاندهده شده‌اند.
روی این نمونه‌ها طیف تراکسیل نمونه‌ها اندازه‌گیری شد. با استفاده از طیف تراکسیل و با رهایت کمیته سازی نامیده قسطی‌گی، نقصه‌گری، ضرب شکست، تایت خاموشی و ضخامت فیلم‌های تراکسیل نازک تعبیه شدند. اساس کلی این روش بر این پایه است که یک تایت‌های ایتیکی n، d و k وجود دارد. برای هر طول موج خاص، یک جواب خاص با استفاده از معادله

\[
T = \frac{Ax}{B - Cx + Dx}^n
\]

به دست می‌آید. در اینجا A، بارانترهای هستند که به ضرب شکست فیلم و بستر، تایت خاموشی بستر در هر طول موج بستگی دارد. x نیز در آزمون‌گر فیلم است که نامی است از آن بر اساس و ضخامت فیلم در نظر گرفته می‌گردد. سپس مجموعه جواب‌هایی که به‌زیر آن‌ها قرار می‌گیرند

\[
\sum |T_{\text{exp}}(n, k, d, \lambda) - T_{\text{theo}}(n, k, d, \lambda)|^2
\]

کمترین مقدار داشته باشد. انتخاب می‌شود. برای انتخاب مقدار ترجیحی تراکسیل مربوط به طول موج وابسته است.

"بند FTIR فیلم‌های خشک سازی شده با استفاده از ماکروفر (OV) و فرورسیج (MW). نمونه‌های تهیه شده و بررسی تأثیر شیوه خشک کردن"

\[\text{شاک ۲ نمونه در اتصالات مورد فیلم‌های آمیزه (OV)، فیلم‌های آمیزه (MW) و فیلم‌های آمیزه (IR) برای استخراج‌های خشک کردن.}\]
شکل ۳ طیف تراکسیل فیلم‌های خشک شده با استفاده از ماکروفور (MW) در امکان‌های مناسب، داده‌های امکان‌پذیر می‌باشد. این امر نشان می‌دهد که با استفاده از این روش می‌توان به‌طور کلی اطلاعات به‌روش کمیته‌های سازمان‌های ناحیه گرایش. (०)
جدول 1 مقایسه نتایج به دست آمده برای شوتهای مختلف خشک سازی

<table>
<thead>
<tr>
<th>شوتهای مختلف</th>
<th>خشک سازی (nm)</th>
<th>ضخامت (nm)</th>
<th>ضرب شکست</th>
<th>اندازه منظور (SEM)</th>
<th>فاز نوار (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماکروفر</td>
<td>18</td>
<td>0.05</td>
<td>64</td>
<td>243</td>
<td>0.15</td>
</tr>
</tbody>
</table>

شکل 4 (آلف) ضرب شکست، (ب) ضرب خاموشی فیلم‌های خشک شده با استفاده از ماکروفر (PWMA (IR) (Modelling (IR)) محاسبه شده با روش کمیته‌سازی نامیده نمایه گرا، برای شده با مدل کوتی (PUMA)، (OV) و ماکروفر (MW)، گروه دهی در فر و فروسرخ (IR).

\[
(\alpha h\nu)^n = A(\alpha h\nu - E_g)
\]
شکل ۵. تصاویر SEM فیلم‌های نازک اکسید نیکل را نشنال می‌دهد که به روش‌های مختلف خشک شده‌اند. این تصاویر از فیلم‌های ۲۰۰۰ نانومتر با تغییر از این تصاویر پیداست. اندکی نازک‌ترین ماده در هر سه شیوه خشک‌سازی در حذف نانومتری متر است. ولی با تغییر شیوه خشک کردن، اندکی تغییر در اندکی دانه به وجود می‌آید. جنگلهایی از SEM تصاویر پیداست، اندکی نازک‌ترین دانه در فیلم خشک شده با فوسفورخ، فر و میکرو‌موج به ترتیب در اعداد ۲۵۹۵ و ۴۰۰ نانومتر بدست‌آمده از مقایسه‌ی تصاویر مشاهده می‌شود که در خشک کردن با فودون نازک‌ترین فیلم‌های دانه به هم موضوع‌دارند.

برای به دست آوردن مقاومت و خواص الکتریکی لایه‌ها از روش اندوزه‌گیری اثر هلال استفاده شد. در این روش نخست بخشی از نمونهٔ مورد نظر را در اندوزه‌گیری در ۱۸۰ برخ داده و سپس با چسب نهایی و سیستمی به تنها نمونه وصل کردیم. سپس نمونهٔ تهیه شده را در میدان مغناطیسی قرار دادیم. مقاومت سطحی، مقاومت و بزرگ تراکم حامل، و تحرک بدنی نمونه‌ها در جدول ۲ ارائه شدند. نتایج حاصل از ازمایش‌های نیز نشان داد که نانو فیلم‌های نازک اکسید نیکل، نیم‌مردانه از آن است و این در با تمامی‌گزارش‌های ارائه شده در مقالات متعدد به اکسید نیکل هم‌شیوه دارند [۱۷]. هر چه مقاومت سطحی و مقاومت ویژه، این فیلم‌ها بالاتر، ولی نتایج نشان دادند که فیلم‌های نازک اکسید نیکل که در ماکروفر خشک شده، مقاومت سطحی و مقاومت ویژه کمتر و نیز تحرک بدنی و تراکم حاصل‌یابی پیش‌تر نسبت به فیلم‌های خشک شده با روش‌های دیگر دارند.
بردشت آنالیز آنتئ مکبی هستند. تصاویر SEM جمله بلورشناسی و کانی شناسی ایران

جدول ۲ نتایج آزمایش هال برای فیلم‌های نازک اکسید نیکل خشک شده با روش‌های مختلف خشک سازی

<table>
<thead>
<tr>
<th>هال برای Fehl</th>
<th>مقاومت سطحی</th>
<th>مقاومت ویژه</th>
<th>تراکم حامل ها</th>
<th>تحرک پدیده</th>
</tr>
</thead>
<tbody>
<tr>
<td>فر</td>
<td>۲۵۸</td>
<td>۱.۰۱</td>
<td>۲.۰۱</td>
<td>۹.۰۴</td>
</tr>
<tr>
<td>ماپکرور</td>
<td>۲۵۴</td>
<td>۴.۰۱</td>
<td>۴.۰۱</td>
<td>۲.۰۱</td>
</tr>
</tbody>
</table>

دادن که فیلم‌های خشک شده با فن و ماپکرور درای اندازه دانه‌ها نسبتاً کوچکتری نسبت به فیلم‌های خشک شده با فین وزیر سبز. آنالیز FTIR فیلم‌های اکسید نیکل نیکات دانند که کاهش فاصله‌ای بد شده در فیلم‌های خشک شده با ماپکرور، نشان داده هوی أن که فیلم تهیه شده به روش خشک با ماپکرور، گروه‌های آمیلی و کلیک کمتری در ساختار خود دارند و در نتیجه می‌توان گفت که فیلم اکسید نیکل با خلوص بالاتر تهیه شده است. آزمایش هال نشان داد که فیلم‌های نازک اکسید نیکل که با ماپکرور خشک شده، مقاومت سطحی و مقاومت ویژه کمتر و نیز تحرک پدیده و

...

