بررسی تجزیه اثر اندازه بلوک از ویژگی‌های ساختاری و مغناطیسی نانوذرات گارنتر
ایترومیوم آهن ساخته شده به روش سل زل

محمدمحمد نیایی فرد، مریم درافشانی، احمد حسن پور

گروه فیزیک، دانشگاه آزاد اسلامی واحد اهواز، اهواز، ایران

چکیده: در این پژوهش نانوذرات گارنترایترومیوم آهن به روش سل زل تهیه شد. تشکیل فاز گارنتر و ساختار بلورین این نانوذرات با (SEM) پردازش‌های XRD و FT-IR (میکروسکوپ الکترونی روبنی) بررسی شد. مغناطش نانوذرات با (VSM) نتایج پراش XRD نشان می‌دهد که اندازه بلوک‌های گرفته در زمان بررسی 200 ثانیه است. همچنین ارتباط بین ثابت شبکه و اندازه بلوک‌های موجود در ساختار گرفته بررسی خواص مغناطیسی نیز نشان می‌دهد که با افزایش اندازه ذرات، مغناطش اشتعال افزایش می‌یابد. اندازه ذرات در حدود 200 ثانیه به دست آمد.

واژه‌های کلیدی: گارنتر/ایترومیوم/آهن/روش سل-زل/اندازه نانوذرات/ثابت شبکه/مغناطش

مقدمه

بر مبنای الیزهای ساختاری سنتر [1] گارنترایترومیوم آهن (YIG) یک فری مغناطیسی با ساختار مکمی است که هر Y3Fe5O12 این است. این ماده که به عنوان فضایی (۳) هم از این نانوذرات تشکیل شده ترکیب میان گارنترایترومیوم آهن است و توزیع کاتانوئن آن به سرعت (۱) تا (۴) این است. می شود که در این برای چاگاه‌های دوبله درجه به وسیله بین اکبریوم و چاگاه‌های چارچوبی و هشته وجوه‌ها به یو (۴) آهن اشغال شده‌اند. این ماده به دوبل داشتن ویژگی‌های مغناطیسی و مغناطیسی این تعداد لیمیت‌های مغناطیسی برای پدیداری در تعیین کاتانوئن گارنترایترومیوم آهن مغناطیسی رشد [۲] کاوش در این اثرات داشته باشد یکد نمایشگری شکری در خواص

ساختاری و مغناطیسی مواد می‌شود. بررسی‌های جامع

بر روش فیزیکی مواد بیشتری که از نتیجه‌های آهن (NO3)3.9H2O تیماریت‌های آهن (NO3)3.6H2O سیستمیک با کمک‌های خلاصه 99 درصد که از شرکت مکز کریبیمی شدند. این مواد نخست نسبت ۹۸ از اسید سیستمیک به مجموع بیو (۴) روزی تاریخ

نویسنده مسئول، تلفن: ۰۸۰۹۳۵۲۴۵۲۸۸، نمایر: ۱۴۷۴۲۸۸ (۰۷۱۱) پست الکترونیکی: md.niyaifar@gmail.com

YIG
Y3Fe5O12
VSM
SEM
XRD
FT-IR

md.niyaifar@gmail.com
نوبتند است. شماره سوم، پاییز ۹۳ از صفحه ۲۱۹ تا ۲۲۰

سال بست و دوم، شماره سوم، پاییز ۹۳، از صفحه ۵۴۰ تا ۵۴۱

S[p] سازمان پژوهش و کارکرد ایران

![Downloaded from ijcm.ir at 2:03 +0330 on Monday November 25th 2019](https://ijcm.ir/contents/93/10/figs/1001420.png)
ثبت و بررسی

شکل ۱ از نمودارهای الکترونیک ولترا ایکس این بلورگرهای ۱۰۰۰ میلی متر آب مقطر حل کردیم. سس به این محلول، اکسید آب‌های تا pH آن تا ۱ افزایش یابد و روز هم منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک مغناطیس می‌تواند مس (VSM) مدل ۱۴۱۱ با بیش‌ترین میدان ۴۰۰۰ Oe به دست آمد.

این بلورگرهای پاراواتر ایکس را در دمای مختلف از ۴۵۰°C تا ۶۰۰°C به مدت ۲ ساعت را ۴۵۰°C در بافت قافیه می‌دهد. مایع میوه در بدنه نمونه با فیلتر FGF پرای ۴۵۰°C که یک فیلتر گرفته نیست و کمپرسی که در بافت Q4 پرای ۴۵۰°C یا از فیلتر گرفته نیست و کمپرسی که در بافت Q4 پرای ۴۵۰°C است (Siefert, CuKα, λ=۱,۵۴۰۵۴Å) مورد بررسی قرار گرفته است. فعالیت بلورگرهای به دست آمده با XRD با عدم جوهر به ۲۲۲ اندامی بلورگرهای پاراواتر ایکس در XRD و با فرمول شر [۶] به دست می‌آید:

\[D = 0.9 \frac{\lambda}{\beta} \cos \theta \]

(۱)

در این رابطه D بر حسب نانومتر، λ طول موج پاراواتر ایکس Cu-Kα (برای با XRD در نمونه‌های بلورگرهای با رایانه ۱ و داده‌های مربوط به XRD اندامی بلورگرهای پاراواتر ایکس تا ۷۰°C با رآورد شد. این برای نمودارهای بیندازه‌های پاراواتر ایکس نیم می‌آید که پهن‌شماری دستگاهی شامل برای نمودارهای پاراواتر ایکس منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک مغناطیس می‌تواند مس (VSM) مدل ۱۴۱۱ با بیش‌ترین میدان ۴۰۰۰ Oe به دست آمد.

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی نمونه‌های تک فاز نیز با یک منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن B۵ بهنای قله بلورگرهای واپس یا به منحنی با اندامی بلورگرهای پاراواتر ایکس منحنی پس‌ضمن منغستی N

\[\beta = \sqrt{B_M^2 - B_S^2} \]

(۲)

که در آن
منحنی تغییرات میانگین اندازه پلورک‌ها بر حسب دما در شکل ۲ آمده است. نتایج نشان می‌دهد که با افزایش دما، تغییرات پارامتر شیبکه با میانگین اندازه پلورک را نشان می‌دهد. چنان که مشاهده می‌شود، نمونه‌های YIG با میانگین اندازه ذرات کوچک‌تر دارای پارامتر شیبکه بزرگ‌تر هستند که با مشاهدات آورده و همکاران همکاری ذار [۸] افزایش تابث شیبکه برای کاهش اندازه نانوذرات مانند، مگنتیت [۹] و FeO۳ نیز گزارش شده است. بطور کلی اندازه تابث شیبکه تحت تأثیر ترازمندی میان نیروهای راستی با برد کوتاه و نیروهای گرانی بلند برد کشی است. به دلیل اینکه نیروهای کوتاه بردار بهم‌پوشی میان نزدیکترین همسایه‌ها سرچشمه می‌گیرد، می‌توان از تابث اثر اندازه پلورک‌ها بر آن صرف نظر کرد. در صورتی که نیروهای بلند برد کامل تحت تأثیر اندازه پلورک مستند و با کاهش اندازه پلورک، این نیروها کاهش می‌یابند.

![شکل ۲ تغییرات میانگین اندازه پلورک‌ها بر حسب دما و یکت](https://example.com/image2)

![شکل ۳ تغییرات اندازه تابث شیبکه بر حسب اندازه پلورک‌ها](https://example.com/image3)
داستانه است. بعلاوه این که نمونه‌های نیز تغییر کرد است. شکل ۶ مساحت‌های افزایش مغناطیسی در دمای اتاق نانودرای در YIG با توجه به شکل ۷، در بین‌نمونه‌های پخت شده در دمای ۷۰۰–۱۰۰۰ درجه سانتی‌گراد چارچوبی با عددهای موج ۵۲۴ و ۲۴۳ بر سانتی‌متر و نیز نوار با عدد موج ۲۳۱ دیبه Fe–O با راه‌های مختلف در این شکل نشان داده شده است. مشاهده می‌شود که به طور کلی شکل ۷ می‌باشد. این که افزایش مغناطیسی از دمای پخت است. با توجه به اینکه مغناطیسی اشیاب با افزایش اندامی نمودار و رون و ازان گردیده [۱۷]. این ویژگی می‌باشد. تواین با رابطه‌های زیر بیان شده:

شکل ۴ پیمانه‌های FT-IR نمونه‌های پخته شده در YIG دماهای ۷۰۰ و ۱۰۰۰ درجه سانتی‌گراد را نشان می‌دهد. با توجه به شکل ۷، در بین‌نمونه‌های پخته شده در دمای ۷۰۰ درجه سانتی‌گراد چارچوبی با عددهای موج ۵۲۴ و ۲۴۳ بر سانتی‌متر و نیز نوار با عدد موج ۲۳۱ دیبه Fe–O با راه‌های مختلف در این شکل نشان داده شده است. مشاهده می‌شود که به طور کلی شکل ۷ می‌باشد. این که افزایش مغناطیسی از دمای پخت است. با توجه به اینکه مغناطیسی اشیاب با افزایش اندامی نمودار و رون و ازان گردیده [۱۷]. این ویژگی می‌باشد. تواین با رابطه‌های زیر بیان شده:

شکل ۵ تصاویر میکروسکوپ الکترونی نمونه‌های پخته شده در دماهای ۷۱۰ و ۱۰۰۰ درجه سانتی‌گراد را نشان می‌دهد. این تصاویر نشان می‌دهد که نه تنها اندازه‌ی ذرات افزایش

شکل ۶ گروه‌های FT-IR مربوط به زل‌های پخت شده در دماهای ۷۰۰ و ۱۰۰۰ درجه سانتی‌گراد

شکل ۵ تصاویر SEM نمونه‌های زل‌های پخت شده در دماهای ۷۱۰ و ۱۰۰۰ درجه سانتی‌گراد
شکل 6 منحنی پسماند مغناطیسی برای نمونه‌های پخته شده در دماهای ۷۰۰، ۸۰۰، ۹۰۰ و ۱۰۰۰ درجه سانتی‌گراد.

شکل 7 تغییرات مغناطیسی اشباع با اندازه‌ی ذرات.

وادارنگی با اندازه‌ی ذرات را می‌توان بر اساس ساختار حوزه‌ها، اندازه‌ی بحرانی و ناهماهنگی دوپینگ توضیح داد. اگر فرض کنیم، بلور تک حوزه باشد، برای کاهش انرژی مغناطیسی خود، به تعداد مختلف مغناطیسی تقسیم می‌شود. نسبت انرژی بعد D به قبل از تقسیم این حوزه‌ها مناسب است با D√D که میانگین اندازه‌ی ذرات است. بنابراین هر چقدر D کوچکتر باشد، کاهش انرژی نزدیک‌تر می‌شود و می‌توان نتیجه گرفت برای مقادیر بسیار کوچک D بلور تمایل داشته باشد که در حالت تک حوزه بالای محدودیت ناحیه نک حوزه به دلیل اثرات گرمایی، کاهش متوسط اندازه ذرات باعث کاهش وادارنگی می‌شود و وادارنگی در ناحیه تک حوزه برای باعث می‌شود.

\[
Ms(D) = Ms(bulk)(1 - \beta/D)
\]

M_s(bulk) مغناطیسی میانگین ذره از اندازه‌ی D و M_s(D) مغناطیسی اشباع نمونه که‌ای و \(\beta\) یک عدد ثابت است. با استفاده از تحلیل داده‌های مغناطیسی اشباع که‌ای ۲۷۵ برای شکل ۸ نمودار تغییرات وادارنگی را که از منحنی‌های پسماند مغناطیسی در دما اتفاق به دست آمده، بر حسب میانگین اندازه ذرات نشان می‌دهد. مشاهده می‌شود که با افزایش اندازه ذرات وادارنگی افزایش یافته و در ۲۰۰ نانومتر به مقدار بیشینه ۲۷ می‌رسد. افزایش بیشتر در اندازه ذرات باعث کاهش در مقدار وادارنگی می‌شود. این تغییرات...

$$H_c = e - (f/D^3)$$

(4)

$$H_c = a + (b / D)$$

که در این رابطه a و b مقادیر ثابت هستند. بنابراین در ناحیه چند حوزه، وادارنگی با افزایش اندازه ذرات کاهش می‌یابد.

برداشت

نحو ذرات گیت شیمیایی آهن با اندازه‌های تا ۵۰ تا ۲۰۰ نانومتر ساخته شد. ثابت بود که با کاهش اندازه بلورک‌های افرازی یافته، این افزایش به کاهش اثر نیروهای کولنی بر روی میدان و بهم خوردنی نظیر دو نقطه داده شد. همچنین مغناطیس اشیا با کاهش اندازه ذرات کاهش یافته این کاهش به افزایش نسبت سطح به حجم در ذرات (S/V) خواهند گویید. نسبت داده شد.

قدیمی‌تر

با نشان از مسئولان آزمایشگاه مرکزی دانشگاه آزاد اسلامی

واصل علم و تحقیقات خوزستان.

مراجع