سنگ‌زایی برونوپه‌های ریز دانه‌ای در گرانودیوریت‌های بخش میانی نوار سنندج-سیرجان

امیر اثنی عشری ۱، مهندوولی ویازده ۲، اقبال سلطانی ۳

۱- استادیار، کروه زمین‌شناسی، دانشگاه پایتخت، صندوق پستی ۱۴۹۵۴-۱۳۵۶، تهران، ایران
۲- دانشجوی زمین‌شناسی، پردازش علوم، دانشگاه تهران، تهران، ایران
۳- دانشجوی مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

(دریافت مقاله: ۹۲/۱۲/۱۹، خروجی نهایی: ۹۴/۳/۲۰)

چکیده: گرانودیوریتهای الیگودرزی یک گسترشی در حدود ۸۰ کیلومتر مربع در بخش میانی نوار سنندج-سیرجان برون زدگی دارند. در گرانودیوریتهای فراوانی قابل ملاحظه‌ای داشته و بررسی طراحی شده عمدتاً روش‌های گریز دانه‌ای با خاستگاه مکملی برونپه‌ها و سنگ میزبان نشان می‌دهند که این برونپه‌ها بستر فرآیند ایجاد خاص می‌گایند. منجر به فاصله‌ی عناصر اصلی و کمیابی در نمونه‌های هارک، این شکل در نمونه‌های متداول و مدل‌سازی زمین‌شناسی عناصر عملی و کمباین نشان می‌دهد که برونپه‌ها و سنگ میزبانشان دارای قاب‌گیری زنده‌ی بوده و تبیین‌بخشی عملی اصلی در شکل گیری برونپه‌های ریز دانه‌ای الیگودرژ بوده است. این برونپه‌ها در حال حاضر شیUESTA انگیزه‌ای از آن‌ها با نیش مکملی هستند که در مراحل بعدی شکل‌گیری مکملی گسیخته شده و به صورت پرونپه‌های ریز دانه‌ای و به‌صورت قطعات جامد (با حداکثر تبادلات شیمیایی با مکملی میانی) درون مکملی پرآمدن شدهاند. سرد شدن سریع برونپه‌ها تبلور بینت و آمفی‌پلاستر سه‌گرمی را بخش کرده و باعث تغییر رفتار شیمیایی برونپه‌ها نسبت به سنگ میزبان شده است.

واژه‌های کلیدی: برونپه، ایجادیت، مکملی، الیگودرژ، حاجی‌سانی، انجمن سریع، زمین‌شناسی سیرجان

مقدمه

یکی از ویژگی‌های مهم سنگ‌های گرانتودیوریتی میزبانی مقوایی فراوانی از برونپه‌های ریز دانه‌ای (ME) است. امروره‌ی فرضیه‌های مختلفی برای تشکیل برونپه‌های ریز دانه‌ای پیشنهاد شده است. برای این که از پژوهشگران خاستگاه از اختلال مکملی را بی‌پروپه‌ها در نظر گرفتی و صحت می‌آید، منجر به خاصیت‌های از ویژگی‌های مکملی تأثیر گردیده و معنی‌دار الیکشته‌ی بین کامه‌ها، ساختار فیزیکی‌شیمیایی، تغییرات بینت و آمفی‌پلاستر هستند (۱). در این مدل، گفتگوی می‌شود که پس از اختلاف مکملی مکملی گسیخته شده و به‌صورت قطعات
دهم. این بررسی نشان می‌دهد که چگونه تشكیل ماکما در اعماق کم یک قوس ماکما موجب پدیداری برونزهایی می‌شود که با مزیت خود خاستگاه مشترکی داشته و در نتیجه تبیزخشی حاصل شده‌اند.

موقعیت زمین‌شناسی منطقه مورد بررسی با مختصات جغرافیایی ۲۳°۳۳ شمالی و ۴۹°۴۷ شرقی به ناحیه تقسیمات زمین‌شناسی ایران در نوار ساختری سندج-سرجان قرار دارد. از نظر جغرافیایی نیز در گستره شهرستان الیکوین در بخش شرقی استان لرستان واقع شده است (شکل ۱). ویژگی‌های مناسبی این منطقه در نقشه‌ی زمین‌شناسی شکل ۱ ارائه شده است.

حاشیه‌ای مخزن ماکما‌های هستند. بخش‌هایی به سرعت اجباد یافته گسیخته شده و در نهایت داخل مخزن ماکما‌های پراکنده می‌شوند [۶۵]. در این مقاله سعی شده است تا ویژگی‌های زنده‌برورینهای برخی از دانه‌ای الیکوین در مرود بحث و بررسی قرار گیرد در بسیاری از بررسی‌هایی که نزدیک به رژیم ماکما‌هایی می‌باشند در ناپای نوار سندج-سرجان در ناحیه الیکوین در صورت گرفته [۷-۱۰] بیشتر سنجش‌های سنج مویان رژیم ماکما رژیم‌های مورد نظر بوده و توجه کمتری به برخی از پیشنهادات این مقاله است که با استفاده از شواهد صحراويی، بررسی‌های میکروسکوپی، شیمی‌سنجی‌الکل و شیمی‌رنگ‌های موجود در برخی از سنج مویان، چگونگی تشكیل برخوردهای ریز دانه‌ای موجود در رژیم ماکما‌های الیکوین را مورد بررسی قرار گرفت.

شکل ۱ از ناحیه ساختری ایران که موقعیت منطقه‌ای مورد بررسی در بخش مرکزی نوار سندج-سرجان در آن منصوب شده است [۱۱-۲۱] به نشانه‌ی ساختری زمین‌شناسی از منطقه‌ی مورد بررسی که احداثی سنجی مختلف در آن نمایش داده شده اند ملاط‌طلب (M) و خوره‌های (K) دو بیروز زدگی منفی و مستقل از هم هستند که به ترتیب با حروف M و K نشان داده شده‌اند.

Downloaded from ijcm.ir at 12:12 +0430 on Thursday April 16th 2020
روش بررسی

پس از انجام بررسی‌های صحرایی و میکروسکوپی، تعداد ۲ نمونه از تونالیت‌ها به نمونه‌برداری گرفته شدند. آلیاف از سنگ‌های خاکستری و گزارش‌های اطلاعاتی حاصل از سطح پوشش فلزی المشاهده شدند. هم‌چنین سنگ‌های مقدار فلزی و تونالیت درون گراندوبرایت (شکل ۱-۲ و ۳) به‌ویژه درون برون‌های زدگی یافته گراندوبرایت‌ها دیده می‌شوند. این ادعا بر اساس نمودار دیگری هر یک از این دو موضوع وجود دارد. می‌توان آنها را به اساس ملاتالبات (بخش غربی) و خوره یا (بخش شرقی) نام‌گذاری نمود. روندهای معمول این مجموعه شمال غربی- جنوب شرقی می‌باشد (شکل ۱).

طراحی گراندوبرایت و برون‌های رز دانه‌ای موجود در آن

گراندوبرایت‌ها میان دانه‌ای تا درشت دانه بوده و واحدهایی غالب در منطقه‌های سنگین بطری که در حدود ۸۹٪ باشد به سطح زدگی را به خود اختصاص داده‌اند. محاسبات قراری متناسب با کلاس‌های بین‌المللی- کلاس ۴۹.۴۰ (الوانی ۱۷۶-۱۸۵ و فلسفات با پاسکل ۱۴) کلیه‌های اصلی بوده و کلاس‌های گرخی آن‌ها نیز شامل زیرک، مگنتیت، طورمالین و آنتی‌نی‌س شونده (شکل ۳). این سنگ‌ها دارای برف‌هایی او درشت‌تر برون‌های پلاژیکال زسته‌های برون‌های زیر تا نفوذ کردن به بهره‌مندی‌های تلمود تابیه‌ای می‌باشد (شکل ۳). با کمک تحقیقاتی که در بررسی‌های دست‌یافته‌ای در جلسه‌های بین‌المللی (نور و کربنات و گراندوبرایت‌ها) مشاهده می‌شود (گراندوبرایت درون گراندوبرایت و تونالیت درون گراندوبرایت) (شکل ۱-۲ و ۳).

۱ - detection limit
 2 - relative standard deviation
 3 - accelerating voltage
 4 - beam current
 5 - precision
جدول ۱: نتایج آنالیزهای شیمیایی سنگ کل به جدایی گروه‌ها. تونالیت، گراندوبریت، و بروینوم‌های ریز دانایی.

<table>
<thead>
<tr>
<th>Granulite</th>
<th>Tonalite</th>
<th>Trondhjemite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>Al₂O₃</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>AL 20</td>
<td>75.5</td>
<td>22.2</td>
</tr>
<tr>
<td>AL 21</td>
<td>76.0</td>
<td>22.2</td>
</tr>
</tbody>
</table>

جدول ۲: نتایج آنالیزهای الکترون میکروسکوپ کنی‌های بیونیت، بلئوکلاز و آمفیبول در بروینوم و سنگ‌میزبان.

<table>
<thead>
<tr>
<th>Biotite</th>
<th>Garnet</th>
<th>Amphibole</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>72.8</td>
<td>73.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19.5</td>
<td>19.9</td>
</tr>
<tr>
<td>FeO</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>MgO</td>
<td>11.0</td>
<td>11.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>99.7</td>
<td>99.7</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج آنالیزهای الکترون میکروسکوپ کنی‌های بیونیت، بلئوکلاز و آمفیبول در بروینوم و سنگ‌میزبان.

<table>
<thead>
<tr>
<th>Plagioclase</th>
<th>Garnet</th>
<th>Amphibole</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>72.8</td>
<td>72.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>FeO</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>MgO</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>CaO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>99.7</td>
<td>99.7</td>
</tr>
</tbody>
</table>
از نظر سنگگزاری شیمیایی، زیادی بین گرانیودیت، میزبان و برونیوم، دیده می‌شود و تفاوت اصلی آن‌ها در بافت‌های تونلیتی‌ها قابل مشاهده است. (شکل ۲،) نتایج بررسی میدانی‌های برونیوم‌های پایین‌تر نشان‌دهنده که پلاژیوکلاز (۴۲±۲۰)، برونیوم (۳۱±۲۲)، برونیوم (۳۱±۲۲) و میزبان (۳۱±۲۲) در نتایج دیده می‌شود.

شکل ۳ نشان می‌دهد که قطعات حاصل از گسیختگی تونلیتی‌ها درون گرانیودیت-برونیوم‌های ریز دانه‌ای در گرانیودیت‌ها و تونلیتی‌ها قابل مشاهده است. (شکل ۲،) نتایج بررسی میدانی‌های برونیوم‌های پایین‌تر نشان‌دهنده که پلاژیوکلاز (۴۲±۲۰)، برونیوم (۳۱±۲۲)، برونیوم (۳۱±۲۲) و میزبان (۳۱±۲۲) در نتایج دیده می‌شود.

شکل ۳ نشان می‌دهد که قطعات حاصل از گسیختگی تونلیتی‌ها درون گرانیودیت-برونیوم‌های ریز دانه‌ای در گرانیودیت‌ها و تونلیتی‌ها قابل مشاهده است. (شکل ۲،) نتایج بررسی میدانی‌های برونیوم‌های پایین‌تر نشان‌دهنده که پلاژیوکلاز (۴۲±۲۰)، برونیوم (۳۱±۲۲)، برونیوم (۳۱±۲۲) و میزبان (۳۱±۲۲) در نتایج دیده می‌شود.

شکل ۳ نشان می‌دهد که قطعات حاصل از گسیختگی تونلیتی‌ها درون گرانیودیت-برونیوم‌های ریز دانه‌ای در گرانیودیت‌ها و تونلیتی‌ها قابل مشاهده است. (شکل ۲،) نتایج بررسی میدانی‌های برونیوم‌های پایین‌تر نشان‌دهنده که پلاژیوکلاز (۴۲±۲۰)، برونیوم (۳۱±۲۲)، برونیوم (۳۱±۲۲) و میزبان (۳۱±۲۲) در نتایج دیده می‌شود.
قابل بی‌گیری است. در این شکل روند تغییرات CaO و Fe₂O₃, MgO, Al₂O₃ و Fe₂O₃, MgO, CaO, MnO ها مشابه یکدیگر بوده و به صورت خطی است و در کل روند تغییرات CaO و Fe₂O₃, MgO, CaO, MnO در برتریت با سایر نمونه‌ها تفاوت دارد. رفتار منتقلی Briony هو نسبت به نسبت میزان در شکل ۵ برای آرا نشده است.

شکل ۲ تصاویر میکروسکوپی از آلوده سلک میزان گرداوردیت و ب) Briony های رز دانه ای موجود در گرداوردیت‌ها. تصاویر در شرایط نور قطیعی، XPL، تنها شاد. Qtz. کوارتز، Pl. پلاژیوکلاز، Bt. بیوتیت، Z. زیکریت، و Ap. اپاتیت.

شکل ۳ توزیع‌گرایانه نوع هارک هر بار دنیور عناصر اصلی و کمیاب نسبت به تغییرات SiO₂ و CaO, MgO, MnO, Fe₂O₃, Al₂O₃ که توسط محاسبه شده Briony هو روش محاسبات توان نظر) با علامت ستاره روی نمودارهای عناصر اصلی نشان داده شده است.
برونپروم یا سنگ میزبان نشان می‌دهد که مقدار آنتورتیت پلاژیوکلاز برونپروم‌ها (An32.80) بیشتر از پلاژیوکلاز‌های سنگ میزبان (An35.55) است. بنابراین بین برونپروم‌ها نیز پلاژیوکلاز برونپروم‌های آمفیبول‌دار انتورتیت بیشتر، نسبت به برونپروم‌های بدون آمفیبول دارد. ترکیب شیمیایی برونپروم‌های بدون آمفیبول سپر شده به برونپروم‌های بدون آمفیبول مشابه با برونپروم‌های آمفیبول‌دار تا حدودی متفاوت است. به عنوان مثال برونپروم‌های آنوا بدون آمفیبول TiO2 بیشتری دارند و لی MgO آنها کمتر است.

در شکل ۶ نمودارهای عنکبوتی وایتست به تولالی‌ها گراندیورینت و برونپروم‌ها نشان داده شده که نشانگر زیادی بین نمودارهای مربوط به هر دسته از سنگ‌ها دیده می‌شوند، به طوری که تقیی این تمایل نمونه‌ها روند غنی‌شدن و تهی‌شدن عناصر مشابه است.

شیمی‌کایه‌ها

نتایج بررسی‌های ریز پردازشی برونپروم و پلاژیوکلاز و آمفیبول موجود در برونپروم‌ها و سنگ‌های پراکنده گراندیورینت در جدول ۲ ارائه شده است. مقایسه ترکیب شیمیایی کانی‌های موجود در

\[
\text{Sample/Primordial mantle} \times 10^{-5}
\]

در مقدارهای نمونه‌ها از برخی سنگ‌های تولالی‌ها گراندیورینت و برونپروم‌های ریز دانیالی. مقایسه وایتست به کوستندی قدمی (mantle

برداشت
برونوهویه رستی قیمت در گرانیتی به نوع S بهدوم برخی دهد نمی‌شود و همچنین
برونوهویه درشت دیگری به که حلالی گسیختگی تونالیت‌ها
هستند سربخ در برخوردگاه گرانیتی و تونالیت دیده
می‌شوند (شکل 2 الف). با این حال این اسکالن دریا از
برونوهویه زمان دانه‌ای یک میکروسیستم می‌گیرد. در انتها نیز مناسب‌ترین
مدل که ویژگی‌های صحیری، سنگ‌گزاری و زنده‌یابی آنها
را توجه می‌کند، برای خاصیت آنها یاری می‌شود.

مدل رستی
برونوهویه رستی یکی از بخش‌های سیستم‌های S بهدوم و برخی
ماده‌ای حاصل از ذوب بخش سیستم‌های پوسته‌ی است. این
برونوهویه دارای بافت درگون بوده و با فراوانی کاتی‌های
معنى از گرانیتی از این برونوهویه هنگام تشخیص داده می‌شود.
برونوهویه زمان دانه‌ای یک میکروسیستم فاقد آنالوژی‌یت، سیلیمانیت،
کریدریت، گرژن و یا کاتی‌های دیگری است که در این
برونوهویه دیده می‌شود. از نظر این بکلر دانه‌ای کاتی‌های
همچوک کوارتز و اروت با همراه بات‌پون‌پیکینتیک و منطقه
بندی نوسانی در پلاژولوکس بین‌بین تبلور برونوهویه از یک
ماگمایی اوله است. این برمن یکی توان به عنوان برخی ماده‌های حاصل از ذوب
سنگ‌های پوسته‌ی در نظر گرفت [16].

مدال کومنولیت
یکی دیگر از احتمال‌هایی که به شکل‌گیری برونوهویه ریز
دانه ای یکگوند آنسا که خاصیت‌های کومنولیت می‌شود. در
عبارت دیگر فرض که تونالیت‌ها نشته میلی‌گاه شدید و
برونوهویه در ارتص‌فاعی‌ها حاصل از گسیختگی تونالیت‌ها، هستند
که پس از سیستم‌های درون ماده‌ای گرانیتی یک درک
شدن. چنین برمن‌های بسته زه‌هایان مختلفی در
شده (پیوند، مثال 17) ولی بر اساس بررسی‌های
سیرت کریس‌یتی دیلی، جولی بوده در این نظر کرده‌اند
نمی‌باشد دانه از یک گریز، برکه‌ای یک گریز
در نظر گرفته‌اند. چنین دانه این [18] در حالی که
برونوهویه یک گریز، دانه و نمی‌باشد درشت درشت یک گریز
دندان به برندان ولی در مراح مبارز
برکه بهبود به شکل‌گیری است.

برخی از پژوهشگران روسیه‌ای خطه مشاهده یکه به صورت
۴ ردیقه می‌شود. ناشی از امیخت‌های ماده‌ای ماده‌ای [19] ولی
بیماری از آنها ممکن است امیخت‌های ماده‌ای به‌پچه و
چند مرحله‌ای است. وید آن روندهای خطری دسته‌بسته تغییر
می‌شود [20، 21]. نابی‌ارب این روندهای خطری شکل ۷ از را می‌گذر
فنا آمیزش ماده‌ای نیست. تاشی در رونده تغییرات شیمیایی

ابن عیسی، ولی زاده، سلطانی
مجله بورلشناسی و کاّی شناسی ایران
شیمیایی مشاهده نمی‌شود. اینگونه شواهد دلتنکت برتقانی
کمترین تبادلات شیمیایی بین پاتوقومه و سنگ مزیزان دارد.
در بسیاری از موارد که خاستگاه پاتوقومه اختلاط دو
ماکیا مافیک و فلسبک در نظر گرفته شده است، به دلیل
تالکنسیون‌های شیمیایی بسیار کوچک می‌باشد. با این
شکل، پاتوقومه با آب تهم‌آمیخته شده است. باعث
باین‌گرایی نیست. ولی در منطقه الیگوردری زنده رابطه دیده
شود [19].

گراندوریت دارد (شکل 6) و به سنگ مزیزان گراندوریتی
نرمال می‌باشد. این سنگ مزیزان نسبتاً خاکستری است. با این
تالکنسیون پاتوقومه ناحیه پایین بستگی به گردش
ماکیا مافیک شکل دارد. تبادلات شیمیایی گسترده، با محتوای
کانی‌های مختلف پاتوقومه و سنگ مزیزان متفاوت است.
برخلاف سنگ مزیزان، بخشی از پاتوقومه دارای اهمیت‌رسیب
قرار می‌گیرد. این در حالی است که در پاتوقومه خالص از
آمیختگی ماکیا مافیک می‌باشند. با سبب شدن پاتوقومه و سنگ
مزیزان مشابه به ویژه فراوانهای متفاوت است [به
عنوان مثال، 22].

یکی از ویژگی‌های پاتوقومه ماکیا مافیک آنست که به صورت
پیستوی با گردش‌هایی که آن بستگی به لحیظه می‌شود به تعداد می‌رسند
[23]. با توجه به تبادلات شیمیایی گسترده که در فراوان
اختلاط ماکیا مافیک و وجود دارد، پاتوقومه در صورت قبول این
فرایند، بایستی تکیه پاتوقومه موفق در پاتوقومه مشابه
پاتوقومه سنگ مزیزان بادن [23]. پاتوقومه پاتوقومه
بدون اهمیت اصلی شبیه به پاتوقومه سنگ مزیزان دارد
 ولی ممکن است تکیه پاتوقومه اهمیت نداشته و
پاتوقومه سنگ مزیزان (جدول 2) نشان می‌دهد که تبادلات
شیمیایی گسترده که در اختلاف ماکیا معمول است، در این
پاتوقومه و در نهاده است.

اگر تبادلات شیمیایی بین پاتوقومه و سنگ مزیزان بی‌رخ
داده باشد، پاتوقومه کوچکی بایستی به بیانی بی‌خیال
تأثیر این تبادلات ضرر مقدار. پاتوقومه با توجه به تغییر
آمیتی در سنگ مزیزان کوچک پاتوقومه و تغییر عناصر
سنگ مزیزان بوده و فاقد اهمیتی است. با وجود این،
رغم اینکه سنگ مزیزان گراندوریتی در کل توافق تکیه
سختی از میکنی دارند. در بسیاری موارد مشابهه شده که پاتوقومه-
های فاقد اهمیت و پاتوقومه اهمیتی در اندازه‌ی کمی
دارند. پاتوقومه ارتباط بین اندازه پاتوقومه و درجه تبادلات
طبقه‌بندی و تشکیل بروتون‌ها در حاشیه‌های به سرعت
منجمد شده

بارب شواهد مختلف، نوعی قرات‌زنبیلی بین گرانیتون‌ها و بروتون‌های زیر دانه الیگودر وجود دارد. به علّتاً مشابهت در نمودارهای عکست‌ویژه نشان داده شده که بروتون‌های الیگودر نیز باربیت‌زه و ا臻ه‌بندی زنبیلی بین واحدهای مختلفی را نشان داده می‌کنند. [401]. در این مطالعه، چهار شده که

عمل تشکیل بروتون‌های زیر دانه‌ای نیز تبلوری‌شده است.

در بررسی‌های مشابه، بانک حاشیه‌ای اجرام سیستمی شده است. این حاشیه‌سیس گسترش‌های شده و قطعات حاصل از آن به صورت بروتون‌های درون ماسیما می‌باشد [6].

들도سایز زئوشیمیایی و سنگ زایی بروتون‌های زیر دانه‌ای

در این بخش گسترش انجام بریزی فلزهای بروتون‌های زیر دانه‌ای نشان داده شده که بروتون‌های درون ماسیما می‌باشد.

می‌توان نشان داد که در نواحی میان‌های الیگودر نیز بروتون‌های زیر دانه‌ای وجود دارد. به علت مشابهت در نمودارهای عکست‌ویژه نشان داده شده که بروتون‌های الیگودر نیز باربیت‌زه و ا臻ه‌بندی زنبیلی بین واحدهای مختلفی را نشان داده می‌کنند. [401]. در این مطالعه، چهار شده که

عمل تشکیل بروتون‌های زیر دانه‌ای نیز تبلوری‌شده است.

در بررسی‌های مشابه، بانک حاشیه‌ای اجرام سیستمی شده است. این حاشیه‌سیس گسترش‌های شده و قطعات حاصل از آن به صورت بروتون‌های درون ماسیما می‌باشد [6].

می‌توان نشان داد که در نواحی میان‌های الیگودر نیز بروتون‌های زیر دانه‌ای وجود دارد. به علت مشابهت در نمودارهای عکست‌ویژه نشان داده شده که بروتون‌های الیگودر نیز باربیت‌زه و ا臻ه‌بندی زنبیلی بین واحدهای مختلفی را نشان داده می‌کنند. [401]. در این مطالعه، چهار شده که

عمل تشکیل بروتون‌های زیر دانه‌ای نیز تبلوری‌شده است.

در بررسی‌های مشابه، بانک حاشیه‌ای اجرام سیستمی شده است. این حاشیه‌سیس گسترش‌های شده و قطعات حاصل از آن به صورت بروتون‌های درون ماسیما می‌باشد [6].

می‌توان نشان داد که در نواحی میان‌های الیگودر نیز بروتون‌های زیر دانه‌ای وجود دارد. به علت مشابهت در نمودارهای عکست‌ویژه نشان داده شده که بروتون‌های الیگودر نیز باربیت‌زه و ا臻ه‌بندی زنبیلی بین واحدهای مختلفی را نشان داده می‌کنند. [401]. در این مطالعه، چهار شده که

عمل تشکیل بروتون‌های زیر دانه‌ای نیز تبلوری‌شده است.

در بررسی‌های مشابه، بانک حاشیه‌ای اجرام سیستمی شده است. این حاشیه‌سیس گسترش‌های شده و قطعات حاصل از آن به صورت بروتون‌های درون ماسیما می‌باشد [6].
محاسبه شده برای پروپونیوم نیز نشان داده شده است. جان‌نامه
ملاحظه می‌شود پروپونیوم مدل‌سازی شده از لحاظ شیمیایی
پیش‌بینی شده با پروپونیوم نیز دانه‌ای در گیاه‌یونگ کردن
در ادامه حتماً می‌خواهیم با استفاده از نتایج به دست
آمده از محاسبات نتایج چگونه و چه باید قانون تیلوریخی ریلی
(Rayleigh)
به مدل‌سازی‌های شیمیایی عنصر کمیا برداریم. هدف از این مدل‌سازی محاسبه‌ی ترکیب شیمیایی کلی
پروپونیوم جدایی است. بنابراین می‌توان از معادله زیر
برای این منظور استفاده کرد:
\[C_R/C_0 = (1 - F) \]
گل‌فنی عصر کمیا در کل مجموعه پروپونیوم متیلور شده
\[C_F = \frac{C_R}{C_0} \]
در نتیجه این محاسبه‌ی (F) نامیده می‌شود که در برابر
برای مثال‌های مورد بررسی فرض شده که
\[C_R = \frac{C_0}{100} \]
تکمیل می‌گانگون مدل‌سازی، برای محاسبه (D،) نتایج
محاسبات توزان حجم را برای ترکیب مالد پروپونیوم به نظر
\[C_R = \frac{C_0}{100} \]
گیریم. در این محاسبات نشان داده شد که ترکیب
کالی‌ها جدایی شامل 1/27/کوارتز، 32/پلاژیوکاذ و 26/بی‌پتیت
تارا نهمین جزئی شدت 69٪ از مالدیاولهی متبلور
شده است (٪131-66٪-93٪) ضرایب جدایی که در
برای این محاسبات استفاده شده است برای این
\[V = \frac{C_0}{100} \]
برای تیلوریخی مقدار مولی بوده است (٪101-100) با استفاده
\[V = \frac{C_0}{100} \]
در پایان این نکته با راهان می‌شود که برای این
تیلوریخی نقش اصلی را در شکل گیری مالدیاولهی منطقه
یلوکور داشته است ولی فرآیند هستی شکل‌گیرنده
\[V = \frac{C_0}{100} \]
نیز در شکل گیری مالدیاولهی بوده است (٪101-100) با استفاده
\[V = \frac{C_0}{100} \]
[101-100] گراندوپریون های مالدیاولهی به
\[V = \frac{C_0}{100} \]
هم سنتن ولی به لیبل علائم فرآیند هستی، فرآیند بهای جدایی
مالدیاولهی (گرانتیدیها) به مقدار پیش‌بینی محتوی مواد هضم شده
\[V = \frac{C_0}{100} \]
از سگن‌ها در ترکیبی بوده و به گراندوپریونهای نوع
\[V = \frac{C_0}{100} \]
شایست دارد. با توجه به اینکه پروپونیوم با سگن میزان
\[V = \frac{C_0}{100} \]
گراندوپریون خود هم ریشه‌دار، فرآیند هضم‌شدنگ که تاثیر آن
\[V = \frac{C_0}{100} \]
بر ویژگی‌های شیمیایی گرانتیدیها، تاثیری در بردآشتار
\[V = \frac{C_0}{100} \]
حاص در رابطه با خاصیت‌های پروپونیوم ندارد.
\[V = \frac{C_0}{100} \]
جدول ۲ مقایسه ترکیب شیمیایی متوسط برونیوم‌های بدون آمفیبول (جدول ۱) با ترکیب شیمیایی محاسبه شده کومپلت‌هایی که از ماگما گرانتودوریتنی اولیه مشتق شده‌اند (C_R).

<table>
<thead>
<tr>
<th></th>
<th>Rb</th>
<th>Sr</th>
<th>Ba</th>
<th>Cs</th>
<th>Hf</th>
<th>Nb</th>
<th>Ta</th>
<th>Th</th>
<th>U</th>
<th>Y</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Tb</th>
<th>Dy</th>
<th>Yb</th>
<th>Lu</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.2</td>
<td>0.8</td>
<td>3.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>C_0</td>
<td>145</td>
<td>123</td>
<td>137</td>
</tr>
<tr>
<td>C_R</td>
<td>153</td>
<td>94</td>
<td>190</td>
<td>8.9</td>
<td>7.0</td>
<td>1.3</td>
<td>181</td>
<td>27</td>
<td>3.0</td>
<td>27</td>
<td>3.0</td>
<td>181</td>
<td>27</td>
<td>3.0</td>
<td>27</td>
<td>3.0</td>
<td>181</td>
<td>27</td>
<td>3.0</td>
<td>27</td>
</tr>
</tbody>
</table>

برداشت
در این ژوهنگ با ارائه شواهد صحراوی، سنگ‌گزاری و زئوژئمی، نوعی از برونیوم‌های ریز دانه‌ای بررسی شدند که خاستگاه ماگمایی دارند، ولی در آن‌ها اثر ترکیب ماگمای حاشیه‌ای ذکر شدهکنند. بنابراین، نمی‌توان بدلیل حضور برونیوم‌های ریز دانه‌ای از اخلاق ماگمایی به عنوان فراگنده‌ای تاثیرگذار در تشکیل برونیوم‌ها نام برده و صرفأ بر همین اساس چنین عنوان کرد که یک ماگمای مفیدی اولیه در سنگ‌ریزی گرانیتون‌هنگی یک منطقه ناش داشته است. برونیوم‌های ریز دانه‌ای ای یکی از نمایندگان قطعات جامد نظام جامی‌های هستند که با ماگمای میزبان که خاستگاه مشترکی دارند. این برونیوم‌ها در اصل خاستگاه‌های به شدت منجمد شده‌اند مخزن ماگمایی هستند که در مراحل بعدی گسیخته شده و درون میزبان پراکنده شدهاند. نیز پژوهش هنگام برونیوم و آمفیبول نیز نش می‌شود در شکل گیری آن داشته است.

قدردانی
از مستندات دانش‌شناسی زمین‌شناسی دانشگاه تهران که این امکان را فراهم کرده‌اند تا یکی از بررسی‌ها در این دانشگاه و به پایه‌ای از ارائه‌ها موجود در دانشگاه‌های زمین‌شناسی انجام شود، صمیمانه قدردانی شود.

مراجع
[1] Barbarin B., "Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:

[27] Chappell B.W., "Magma mixing and the production of compositional variation within granite suites: evidence from the granites of..."

