ژئوتوشیمی تورمالین‌های موجود در دایک‌های یگماپنی‌تی و آلبیتی مجموعه پلوتونیک الوند و سنگ‌های دگرگون منطقه همدان

علی اصغر سیاهی‌گو، صدیقه سلمانی، مینا تبیریزی
گروه زمین‌شناسی، دانشگاه علمی-پژوهشی بوعلی سینا
(دریافت مقاله: ۱۵/۶/۱۳۸۹، نسخه نهایی: ۱۳/۶/۱۳۹۰)
چکیده: دایک‌های یگماپنی‌تی و آلبیتی موجود در مجمعاً پلوتونیک الوند و سنگ‌های دگرگون جزئی در این منطقه است. در فاصله دورتر از توده الوند نیز، دایک‌های یگماپنی‌تی-آلبیتی به دو صورت: گردنکه گردنکه (جنس‌های نامناسب) نفوذ کرده‌اند. تورمالین‌های موجود در دایک‌های الوند، به صورت گردنکه گردنکه کروی می‌شود. ودیده‌های گرافیکی تورمالین-فلدسپار و تورمالین-کوارتز و تورمالین-های خورشیدی (لوکسپات) نیز، در این منطقه دیده می‌شود. اما در پلاک‌های مختلف زمان‌آباد-منگاوز اغلب به صورت تورمالین‌های بی‌هدنگ یگماپنی‌تی می‌شود. تورمالین‌های موجود در این دایک‌ها در گروه تورمالین‌های قلیبلی قرار گرفته و از لحاظ ترکیبی دارای ترکیب خاصی دارای هستند. نتایج بندی روشن‌های مشاهده شده در نمونه‌ها، واکنش‌های جانشینی انجام گرفته‌اند این تورمالین‌ها شامل F و Fe (Fe/Mg) ترکیب‌های دیگری از این نوع نبوده‌است. بر اساس ویژگی‌های تورمالین‌های این تورمالین‌ها، مثل متغیر بودن نسبت AlNa3Mg، نمونه‌ها در حد فاصل بین دو بردار نیمه قلبی از روند و یک نیمه می‌باشد. قرار گرفتن تعدادی از نمونه‌ها در خارج از این دو بردار و طیف F که در الوند تورمالین‌های بی‌هدنگ و در ترکیب این تورمالین‌ها غلظت بیشتری دارد تجویز می‌گردد. در ترکیب این تورمالین‌ها، با استفاده از روان‌شناسی تاریخی به‌کمک تکنیک آمیاب و آلبیتی‌ها استفاده شده است.

واژه‌های کلیدی: ژئوتوشیمی، تورمالین، مگماپنی‌تی، آلبیتی، الوند، همدان

مقدمه
تورمالین سلیکات های نیترید جیپسید A و B دارای ترکیب شیمیایی قطعه‌پذیر و منفی‌بندی است. فرمول عمومی Na(Mg, Fe, Mn, Li)، AlFe3(SiO3)3(OH, F) در تورمالین‌های رابطه Na(Mg, Fe, Mn, Li)، AlFe3(SiO3)3(OH, F) در دیگر مکانیزم‌های تورمالین‌ریت، AlFe3(SiO3)3(OH, F) در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی هادی و در به‌کمک اسپلیت‌کننده B در ساختار آتیکی HAD

Sedigheh.Salami91@gmail.com

*نویسنده مسئول: تلفن: ۰۳۱۳۸۰۸۱۷۷۹۲، تلفن نمایشگاه: ۰۲۱/۸۱۴۱۴۶۰، پست الکترونیکی: Sedigheh.Salami91@gmail.com
شکل ۱: موقعیت منطقه مورد بررسی در زون سندج سیرجان، B نشان‌دهنده زمین‌شناسی ساده شده مجموعه پلتونیک الوند (نقشه ژئوشناسی و زمین‌شناسی ایران، ۱۳۵۰).
روش کار
الانیزها 18 نقطه نمونه و مورد بررسی قرار گرفتند (جدول 1). تعداد 20 نمونه ترموالین واقعی به منطقه زمان گردشی نمونه در سازمان زمین شناسی و اکتشافات معدنی XRF نیز به روش بررسی شد. مقادیر Bتعیین شد. محاسبه فرمول ساختاری کانی ترموالین با استفاده از انجام شده است.

\[(\text{O}, \text{OH}) \]

<table>
<thead>
<tr>
<th>Sample</th>
<th>4MT6</th>
<th>5MT6</th>
<th>6MT6</th>
<th>9T5</th>
<th>10T5</th>
<th>11T5</th>
<th>8Ar4</th>
<th>9Ar4</th>
<th>10Ar4</th>
<th>11Ar4</th>
<th>12Ar4</th>
<th>13Ar4</th>
<th>14Ar4</th>
<th>15Ar4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SiO}_2)</td>
<td>9.43</td>
<td>7.44</td>
<td>6.67</td>
<td>5.16</td>
<td>4.69</td>
<td>4.34</td>
<td>4.06</td>
<td>3.96</td>
<td>3.87</td>
<td>3.81</td>
<td>3.80</td>
<td>3.79</td>
<td>3.78</td>
<td>3.77</td>
</tr>
<tr>
<td>(\text{TiO}_2)</td>
<td>7.12</td>
<td>5.72</td>
<td>4.77</td>
<td>4.22</td>
<td>3.69</td>
<td>3.32</td>
<td>3.02</td>
<td>2.91</td>
<td>2.82</td>
<td>2.81</td>
<td>2.80</td>
<td>2.80</td>
<td>2.79</td>
<td>2.79</td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>1.55</td>
<td>1.19</td>
<td>1.26</td>
<td>1.20</td>
<td>1.15</td>
<td>1.12</td>
<td>1.10</td>
<td>1.09</td>
<td>1.08</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>(\text{FeO})</td>
<td>2.44</td>
<td>2.67</td>
<td>3.12</td>
<td>4.36</td>
<td>5.39</td>
<td>6.94</td>
<td>8.83</td>
<td>9.57</td>
<td>10.12</td>
<td>10.96</td>
<td>11.37</td>
<td>11.57</td>
<td>11.42</td>
<td>11.33</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>1.15</td>
<td>1.04</td>
<td>1.00</td>
<td>0.94</td>
<td>0.88</td>
<td>0.82</td>
<td>0.76</td>
<td>0.70</td>
<td>0.64</td>
<td>0.58</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>(\text{CaO})</td>
<td>13.00</td>
</tr>
<tr>
<td>(\text{K}_2\text{O})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{F})</td>
<td>2.74</td>
<td>2.94</td>
<td>2.94</td>
<td>2.74</td>
<td>2.94</td>
</tr>
<tr>
<td>(\text{OH})</td>
<td>1.80</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{Si})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{K})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{Na})</td>
<td>0.00</td>
</tr>
<tr>
<td>(\text{F})</td>
<td>0.00</td>
</tr>
</tbody>
</table>

جدول 1: نتایج بررسی ریز پردازشی نمونه‌های ترموالین‌های توده‌ی اولن و محاسبه مقدار کانیون‌ها در ساختار آن‌ها

۱۰۱۲ سال ۱۳۸۷، تبریز
توصیف صحراها و سنگ‌سناتوری‌های تورمالین‌ها
تورمالین به صورت‌های مختلفی در سنگ‌های منطقه‌ای بافت شد که تنها دو نوع اصلی از می‌باشد که به جزیره‌ای تأثیر می‌گذاشته: ۱- گره‌های تورمالین‌های کُری در این گره‌های کُری به طور کلی، به قطعات دیگر و کوچک‌تری در جریان پیشین نسبت به تورمالین‌ها به صورت نوارهای قهوه‌ای با چند رنگ سبز تا قهوه‌ای دیده میشود (شکل ۳ ب). در مقاطع نازک این تورمالین‌ها به صورت نوارهای قهوه‌ای با چند رنگ سبز تا قهوه‌ای دیده میشود (شکل ۳ ت). دیگر کانی‌های همراه با تورمالین در این مناطق عبارتند از گوارترز، مسکویت و پتاسیم-فلدسرای پرتینی.

۲- تورمالین‌های خورشیدی (لوكسولراتیون): تورمالین‌های مورد نظر بیشتر در سطح سنگ‌های گراندورپوریتی منطقه‌ای چشم‌گیر ترندند (شکل ۳ ب). رشد تورمالین‌های خورشیدی در این سنگ‌ها به صورت سطحی است و در درون نمونه‌ها آثاری از رشد تورمالین موجود ندارد، که باعکس از تشكیل این تورمالین‌ها به صورت تاخيری در سطح شکستگی‌ها یا سنگ‌های منطقه باشد.

2 چاپ ۲. تاخيه تورمالين: شکل تشكيل تورمالين به صورت گره‌های کري در ديکره‌هاي آپليتي (ب) هم رشد ديگر فلدسرای تورمالين در نمونه‌هاي صحراهاي متنوعه‌هاي خاکي، به تورمالين‌های خورشیدی در گراندورپوریت‌های جسمه قصابانی (ت) تورمالین‌های درشت‌تر بلوار در پگماتيت‌های زمین‌اش.
شکل ۳: تصاویر میکروسکوپی و ریز پردازشی تورمالین‌های (الف) و (ب) تشكیل تورمالین به صورت خود شکل، (ب) تشكیل تورمالین به صورت رگه‌های کوچکی در فضای بين کانال‌هاي کوارتز و فلدسپار، (ت) هم رشدي بين تورمالین و پناسم فلدسپار، (ت) تشویق رژ پردازشي از تورمالین‌های آناليز شده. (Tu: تورمالین، Kf: پناسم فلدسپار، Qtz: کوارتز، Bt: بیوتیت.)

شناسایی نوع تورمالین بر اساس تركيب شيميايی آن

فرمول عمومي تورمالین را به صورت XY_2Z_3T_4W نشان مي‌دهند. (۱۴) كه در اين ساختار عنصر مختلفی در موقعیت‌های موجود جانشين مي‌شوند از جمله: X = Ca, Na, K, [vacancy], Y = Li, Mg, Fe_2+, Mn_2+, Al, Cr_3+, V_3+, Fe_3+, (Ti_4+), Z = Mg, Al, Fe_3+, V_3+, Cr_3+, T = Si, Al, (B), B = B, [vacancy], V = OH, O, (F), W = OH, F, O.

۴- تورمالين‌های پگماتیتي: در فاصله‌های دورتر از توده پلوتوپیک‌های‌یونان، در مناطق منگوئی و زمان‌آباد، دایك‌های پگماتیتی غیر تبدیل به پگماتیتی عريض به ضخامت چند متر دیده می‌شوند. در این دایك‌های پگماتیتی تورمالین‌های درشت بلور و بی‌پودرال به صورت عمود بر ديواره رشد کرده‌اند (شکل ۲، ت). سنت نیزیان این دایك‌های پگماتیتی، شیست است. گاهی در این شیست‌ها، در مزرع دایک‌های پگماتیتی تورمالین‌زایی صورت گرفته است. به طوری که می‌توان از این تورمالین شیست نام‌گذاری کرد.

(جدول ۲)
تورامالین‌های قلیایی بیشتر در شرایط غلیظ و دمای بالایی تشکیل می‌شوند [1, 17]. برای بررسی تغییرات ترکیب در
نسبت‌های Caو Mg به Fe و نسبت‌های Na+/K به Ca (Na/Ca) و
Mg/(Mg+Fe) نسبت به X-vac/(X-vac+Na) نمودار

Sample	M1-1	M1-5	M1-6	M1-7	M2-4	M2-7	M2-9	M2-10	M2-11	M3-1	M3-4	M3-8	M4-2	M4-3	M4-5	M4-6	M4-8	M4-9	M4-10	M4-11	M5-5	
Si	0.68	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	
Ti	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
Al	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	
Fe	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	
Mg	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	
Mn	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Ca	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
K	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	
Na	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
P	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
MgMgFe	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
Na-K	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
CaNaK	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
FeFeMg	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65

با توجه به جانشینی‌های اختلافی در موضع X تورامالین‌ها را
بر اساس مقادیر X-site vacancy) X
قلایی و اواکس که موفقیت X آن‌ها خالی است، دیده نموده
کرده‌اند (شکل 4). بر اساس این رویداد تورامالین‌های مورد
بررسی بیشتر در گسترده قلیایی و تعادلی نیز در گسترده
انواعی موفقیت X آن‌ها خالی است قرار گیرند، که این
Mغ در جایگاه K و Na موجود در جایگاه X
مسله نشانگر بالون مقادیر Ca و Mg مقادیر Ca و Mg مقادیر
حتماً تغییر مقادیر کمی در جایگاه X از ۰ تا ۲۷ درصد
دهندگی تفاوت چشم‌گیر در مقادیر کمیمود در جایگاه X
در حالت که طیف‌گری در Ca از ۰ تا ۲۷ درصد
Ca است (شکل ۴).
دهندگی جانشینی‌های با مشارکت
XRF و محاسبه مقادیر کاتائوی در ساختار آن‌ها

جدول ۲ نتایج بررسی تورامالین‌های منطقه زمین آباد - سنگ‌بویه به روش
شکل 4: نمودار مثلثی (Ca+(X-site vacancy)-Na+(K)) و موقعیت نمونه‌های مورد بررسی روی آن.

\[\text{X-site vacancy} = \frac{1}{2} \text{Fe}(\text{Fe+Mg)} \]

و نسبت به \(\text{Na}(\text{Na+Ca}) \) توسط نمودار Na/(Ca+Na+K)

شکل 5: موقعیت تورمالین‌های مورد بررسی الکت (ب) روی نمودار

\[\text{Mg}/(\text{Mg+Fe)} \text{ vak}/(\text{X-vac+Na}) \]

و نسبت به \(\text{Fe}/(\text{Fe+Mg)} \) در موقعیت Mg/(Mg+Fe)

واکنش‌های جانشینی در ترکیب تورمالین

واکنش‌های جانشینی در ساختار تورمالین می‌تواند به صورت تعداد بیشتر یا کمتر از نقطه جداگانه (مانند جانشینی به‌کمیت \(\text{Fe}^{2+} \)) می‌باشد. در موقعیت \(\text{Na} \) جانشینی به‌کمیت \(\text{Na} \) با دو موقعیت \(\text{X} \) و \(\text{X} \) به‌کمیت \(\text{X} \) مانند جانشینی به‌کمیت \(\text{Na} \) به‌کمیت \(\text{Ca} \) در موارد مشابه گرفته شده که نشان دهنده تاثیر ناپایداری می‌باشد.

\[\text{Fe}^{2+} \text{vak}/(\text{X-vac+Na}) \]

\[\text{Mg}/(\text{Mg+Fe)} \]

شکل 6: موقعیت تورمالین‌های مورد بررسی الکت (ب) روی نمودار

\[\text{Y} \text{vak}/(\text{X-vac+Na}) \]

و نسبت به \(\text{Fe}/(\text{Fe+Mg)} \) در موقعیت Mg/(Mg+Fe)

\[\text{Mg}/(\text{Mg+Fe)} \]

\[\text{Na}/(\text{Na+Ca}) \]

ناپایداری احتمالی می‌تواند با توجه به زمینه مشابه مشاهده شده در شکل 4 تورمالین‌های مورد بررسی پیش‌تر باکنش کمبودیایی با فرمول \(\text{Mg} \text{Fe}^{2+} \text{Na} \text{Al} \text{Si}_3 \text{O}_8 \text{H}_2 \text{O} \) در نمونه‌های تورمالین‌های استفاده‌شده در مورد برازند
گستره‌ای است، پس در تشکیل این تورمالین‌ها مولفه‌ی Na به‌منظور بررسی غنی شدگی نسبی برخی از نمونه‌ها از X-射线 ثابت کرده‌اند که بیانگر تشکیل فضاهای خالی در مولفه‌ی AlNa1.5Mg1.5 است [23]. در تعداد انگیزی از نمونه‌ها نیز مولفه‌ی Ca0.5Na0.5، 1.5 است. نتیجه‌ی شکل ۹ است که به شکل ۹ نشان داده شده است [22] (شکل ۹). بیشتر نمونه‌های مورد بررسی دارای Ca کمتر از ۰.۱ هستند، ولی نسبت به مقدار Na در این نمونه‌ها دارای گستره‌ی تغییرات [19].

![X-site vacancy](image_url)

[۱۹] X-site vacancy

![مولفه‌ی تورمالین‌های مورد بررسی روی نمودار AlNa1.5Mg1.5 نسبت به Ca0.5Na0.5، 1.5 است.]

![مولفه‌ی تورمالین‌های مورد بررسی روی نمودار R3+Al1.33Ti، R2+Fe+Mg+Mn، R1+Ca+Na نسبت به R1+R2+R3 thrive برابری جدآ شده از ترکیب بی‌ام اولر-درویت نشان دهنده جانشینی‌های پرتوتیپ (بردار بالایی) و جانشینی‌های تورمالین‌های ناقص از لحاظ قلبی و پرتوتیپی (بردارهای پایینی) هستند.]

![مولفه‌ی تورمالین‌های مورد بررسی روی نمودار Fe نسبت به Mg]

[۳۱] Mg
بحث

تولرالین‌های ماکمی نسبت به تولرالین‌های گرمابی دارای Fe(Fe+Mg) مقدار نسبت بیشتری (بیش از ۰.۵ درصد) هستند [۱۷۱-۱۷۴]. بنابراین، با اساس شکل ۵ نتایگاه‌های تولرالین‌های ماکمی خصوصاً در نیترول کربناتی نوع S که پرآومینان و دارای مقدار B اولیه بیشتری هستند، در شرایط اسیدی تشكل می‌شوند، در تولرالین‌های اولیه معمولاً منطقه‌نی‌ی ماهیت نمی‌شود. مقدار Fe(Fe+Mg) از تولرالین‌های گرمابی نسبت به تولرالین‌های ماکمی کمتر است [۱۳۱] و مقدار Ca نسبت به Fe(Fe+Mg) در تولرالین‌های گرمابی کمتر است [۱۲۴] (شکل ۶). تولرالین‌های گرمابی زمانته که گرمابی‌های نیز از بور هستند و با سبک دیواره واکنش می‌دهند، تشكل می‌شود. بنابراین شرایط مورد نیاز برای تشكل تولرالین‌های اولیه از ماکمای مادر فراهم بوده است. طیف گسترده پراکندگی نمونه‌های مورد بررسی در نمودارهای ۷-۶ نشان دهنده آن است که در تشكل این تولرالین‌های عوامل ماکمی و گرمابی هر دو مؤثر بوده‌اند. در اساس بررسی‌های [۱۷۱] تولرالین‌های گرمابی در نمودار ۷-۶ را در راستا و این برداره‌های تهی شده از قلبی‌ها و برون‌های زدایی قرار می‌گیرند، ولی ترکیب تولرالین‌های گرمابی به سمت خارجی این بردارها تمایل دارد. جانکه در شکل ۷-۶ مشاهده می‌شود. برخی نمونه‌ها در حد فاصل به دو بردار تهی شده از قلبی‌ها و برون‌های زدایی قرار می‌گیرند، اما برخی از نمونه‌ها در خارج از این دو بردار قرار می‌گیرند که نشان دهنده تاپیون دو فرایند ماکمی و گرمابی در تشكل این تولرالین‌های هستند. [۲۲] Ca نسبت به Na نشان می‌دهد:}

شکل ۹ موفقیت تولرالین‌های مورد بررسی روز نمودار

[۲۲] Ca نسبت به Na نشان می‌دهد:
12. نمودارهای ارائه شده در شکل 12 نشان دهنده تغییرات Ca و Al در مقدار نسبتاً آبی در خاک تولمینی است. قرار گیری Mg و Fe نمونه در بالای خط شور-دراویست نشان دهنده مقدار ناچیز Fe (13) که سنگ خاکستر تولمینی را مشخص می‌نماید. نمونه‌های مورد بررسی در هر دو تولمینی در گروهی که اندام Fe-FeO از Li برای داخل و گروهی از Li با اندام MgO این نمونه‌ها نیز در مقدار Ca-Mg تولمینی کوارتر نشان می‌دهند. با توجه به تغییرات Fe و Mg در نمونه‌های گروهی در گروهی سنگ‌های Ca-Mg تولمینی قرار در نمونه‌های مورد بررسی در داخل و گروهی می‌باشد. یافته‌های این نام‌گذاری از نمونه‌های محلولی هستند که در داخل قابلیت نشان دهنده به توجه به قرار گرفتن تولمینی‌ها در منطقه زمین‌آباد-منگاوی انتخاب‌گر نشده این نمونه‌ها در این مقدار نشان دهنده با توجه به خاکستری آبی فرآیندهای سیستم طبیعی مورد بررسی می‌باشد. در نمونه‌های که نشان می‌دهد که Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان دهنده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان D4d-1335T+Si-12 همراه با توجه به قرار گرفتن تولمینی‌ها در منطقه زمین‌آباد-منگاوی انتخاب‌گر نشده این نمونه‌ها در این مقدار FeO به مقدار به مقدار Ca-Mg-MgO در آبی نشان D4d-1335T+Si-12 همراه با توجه به قرار گرفتن T
زئوشاپینی تورمالین‌های موجود در دایک‌های پگماتنی و آلبیتی...

