سازوکار شکل گیری ندوله‌های تورمالین در منطقه‌های بروجرد (دهگاه - سرسختی)

زهره طهماسبی
گروه زمین‌شناسی، دانشگاه علوم، دانشگاه تهران
(درباره مقاله: ۱۲/۱۱/۹۲، نسخه نهایی: ۱۳/۱۱/۹۲)

چکیده: بر اساس مشاهدات صحرایی، سنگ میزبان گره‌های تورمالین منطقه‌های دهگاه، از دایک‌های اسیدی (آپلیتها) و در منطقه سرسختی، از مونزورگرانیتیاها مشکل شدنی. در این مناطق، گره‌ها از تورمالین، کوارتز و فلدسپار قلبی به وجود آمده‌اند با این تفاوت که میزان کانالهای روش‌شده در گره‌های دهگاه کمتر است. به‌همچنین، منطقه Eu غنی شدگی از کاهش HREE و LREE با تغییر گذشته‌ای در اگو گذشته تغییراتی از ناحیه نادر خاکی در سنگ‌های میزبان این دو منطقه دلایل بر خاستگاه ماگمایی مولد آنها از دور بخشی منتligیت‌ها دارد. وجود منطقه بندي، داشتن ترکیب شوریت - دراوه تورمالینها، ابزار گره‌های در سقف نوده و کاهش فراوانی Fe/Fe+Mg در بخش از گره‌ها (دراوه)، وجود هالو روش و شکاف‌های مواد بر پر اینکه گره‌های سرسختی در جمله سه‌اهده است که سه‌اهده باره وجود آورده‌اند آنها به آرامی رخ داده و با شاره سنگ درونگیر (مانی اکتیها) و اکتش داده و در یک شرایط ماگمایی - گره‌ای شکل گرفته‌اند. در حالی که تورمالین‌های دهگاه دا با داشتن ترکیب شوریت، سنگ میزبان با ساخت صفحه‌ای (آپلیته) و در منطقه بندي، نوده هالو روش و عدم وجود شکاف‌های مواد دادن شده که سه‌اهده ماگمایی لورد با شاره درون‌گیر (مانی اکتیها) و اکتش داده و به سرعت در دایک های اسیدی میزبان با شرایط کاملاً ماگمایی تزریق و منجر به تابور گره‌های تورمالین شده است. بنابراین رفتار و سرعت منطقه پر در سپسته‌های ماگمایی - گره‌ای، فاکتور اصلی ایجاد تورمالین و تشکیل گره‌ها در این دو منطقه است.

واژه‌های کلیدی: سرسختی، دهگاه، گره‌های تورمالین، شوریت - دراوه

مقدمه

تورمالین یک کانال آبادی، بیروپسیلیکاتی با فرمول X=Ca, Na, K, □ است که در آن: □=XY₂(Zn₆(T₉O₁₈))(BO₃)₃/2 Y=Li, Mg, Fe²⁺, Mn²⁺, Al, Cr³⁺, V³⁺, vacancy T=Si, Al, □Z=Mg, Al, Fe³⁺, V³⁺, Cr³⁺, Fe²⁺ (Ti⁴⁺)

برای ایجاد تورمالین در سنگ‌های گراتیونی، اساسی از بارش آب‌های لکه، گردانه زئولیت، اکتش، نوده و غیره استفاده می‌شود [5-7]. که در حضور ۵۱ که، نوده تورمالین تورمالین در منطقه ای که تغییراتی با حالت و هم‌اکنون های منطقه‌ای منشأ این سنگ‌های گره‌های تورمالین، کوارز و فلدسپار با بر فراز ۸۰ درصد منتهی، این ایجاد تورمالین گره‌های دهگاه با حاشیه‌های سفید و گاهی بدون حاشیه مشاهده می‌شود. با وجود اینکه تا کنون گره‌های تورمالین توسط پژوهشگران متعادل مورد بحث و بررسی قرار گرفته‌اند، و یکی هنوز خاتمه‌ای نیست [6].

نوبتده مسئول، تلفن-نیمبار: ۶۲۰۰۰۰۰۵۰ (۶۲۰۰۰۰۰۵۰)، پست الکترونیکی: zahra_tak@yahoo.com
شناسی گره‌ها، سنگ‌نگاری مرکز و حاشیه گره‌ک و سنگ‌های میزان آن‌ها، روش‌شناسی گرایش‌مساحتی و داده‌های شیمی بلور تورمالین‌های گره‌کی دهگاه و سرسختی است.

زمن‌شناسی عمومی
منطقه‌ی مورد بررسی در استان‌های لرستان و مرکزی شرق و شمال شرق شهرستان پروردید طول‌های جغرافیایی ۴۸۳۰ تا ۴۹۰۰، شرق و عرض‌های جغرافیایی در ۳۳۰۰ تا ۳۴۰۰ شمال واقع شده است. [۱۵] (شکل ۱). این منطقه از نظر زمین‌شناسی خصوصی از منطقه‌ی سندج- سیرجان محصور می‌شود و بر علی رغم زمین ساخت شدیدی که پیچیده‌های در زمین‌شناسی منطقه به وجود اوردلگیس، می‌توان رضیعی از سنجش‌ها را تشخیص داد به طوری که قدمتی ترین سنگ‌ها در این منطقه به پتولوژیک و است و نه‌سنگ‌های قدمتی تر از تریاس فوقانی وجود ندارد. [۱۵]

ویژگی‌های فیزیکی و شیمیایی آن‌ها به‌طور دقیق مشخص نشده است. با این حال در این مورد چهار سازوارک مطرح‌کنده می‌باشد که عبارتند از:

۲- گره‌ک‌ها از جانشینی پسا ماگمای (تاختیجی) یک شاره‌ی غنی از B مراحل اتمپای بیشتر ماکما که باعث تبادل گرانیت‌های بر گوش بیش شده می‌شوند. به‌وجود می‌آید، این شاره در شکستگی‌ها و شکاف‌های ریزی که در مرز بلوه‌ها وجود دارند، تزریق می‌شوند. [۹۸].

۳- جانشینی شاره‌ی غنی از B ابدایی ناگهانی شدن، از درازمدت و مهار لزوماً به‌وجود B-گرایشی در مرحله ماگما‌ای- گرایشی باعث تشکیل گره‌های تورمالین می‌شود [۱۲۰].

۴- تبادل از بی‌بودگی گرایی غنی از B هدف از ارائه این مقاله بررسی چگونگی تشکیل و خاصیت‌های گره‌های تورمالین با استفاده از شواهد صحرایی ریخت.
سالم، در مطالعه‌ی حاضر از اساسهای به‌عنوان درمان انواع مختلفی از بیماری‌های آلودگی پوستی استفاده می‌شود. این اصول شامل تقویت سیستم ایمنی و افزایش سطح تولید C1Q است. نتایج نشان داد که استفاده از این اصول باعث افزایش سطح C1Q شد و بهبودی بیماران را درمان کرد. این نتایج در مورد تاثیر اصول ادبیات روشن و موثر بر بیماران مورد آزمون قرار گرفت و باعث می‌شود که درمان بهتری برای بیماران به دست آید.
زمین شیمی
نتایج داده‌ها (جدول 1) نشان می‌دهد که میزان MgO = 69.2-78، Al₂O₃ = 16، SiO₂ = 2-1.4، K₂O = 0.7-0.3، CaO = 9.8-6.4، Fe₂O₃ = 10-4.2 و Na₂O = 9.4-6.2 است. شاخص پرآب‌پذیری شاخص میزان پایین عناصر فرآیندین در برابر بالا، و عناصر کمپرس (199.6-19.6) در سنگ مریزمان Rb(8-8)Sr(117-125)Ba(100-2) گره‌های سرسختی و دهگاه دیده می‌شوند.

در تورمالین‌های گره‌های سرسختی رده‌بندی روشنی در تورمالین‌ها دیده می‌شود. رده‌بندی معمولاً با تغییر ترکیب شاره در طول تثبیت تورمالین‌ها است. مناطق روشن در تصاویر BSE توجه کننده است. مناطق با تمایل بالایی از این را نشان می‌دهد که توالی‌های الکترون بیشتر، در خارج گذرانده کنند. باید ترتیب مناطق تیره‌تر ترکیب با پایین تری از این داشته و توالی‌های الکترون بیشتری را منشأ‌کنند [5].

شکل 2
صورت سختی و ایفائی های تورمالین در. پایه‌های تورمالین در دایک‌های اسیدی دماغه‌ب پت-گره‌های تورمالین در می‌تواند برتها ترکیب های سرسختی BSE گره‌های تورمالین در دماغه‌ب تصویر BSE گره‌های تورمالین در دماغه‌ب تصویر
جدول 1 آنالیزهای عناصر اصلی، کمیاب و خاکی از گرده‌ها و سنگ میزان‌آن‌ها در دو‌منطقه دهگاه و س رسختی

<table>
<thead>
<tr>
<th>عنصر</th>
<th>دهگاه نیتریت</th>
<th>س رسختی نیتریت</th>
<th>دهگاه س رسختی</th>
<th>س رسختی س رسختی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>70.3</td>
<td>70.1</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.4</td>
<td>16.7</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.7</td>
<td>6.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>2.7</td>
<td>2.8</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1.6</td>
<td>1.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.5</td>
<td>2.8</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.9</td>
<td>0.7</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>2.8</td>
<td>3.1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>3.6</td>
<td>3.3</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>6.3</td>
<td>6.6</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>3.5</td>
<td>4.4</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>19.4</td>
<td>19.4</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>4.1</td>
<td>4.2</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>5.5</td>
<td>3.9</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>1.1</td>
<td>0.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>4.9</td>
<td>3.9</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.9</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>1.6</td>
<td>1.3</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.8</td>
<td>0.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>35.2</td>
<td>54.4</td>
<td>196</td>
<td>102.9</td>
</tr>
<tr>
<td>Sr</td>
<td>35.4</td>
<td>45.3</td>
<td>756</td>
<td>335.3</td>
</tr>
<tr>
<td>Rb</td>
<td>46.8</td>
<td>14</td>
<td>176.8</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>10.2</td>
<td>20</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>15.0</td>
<td>120</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>39.6</td>
<td>194</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>3.1</td>
<td>2.3</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.1</td>
<td>1.0</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>44.4</td>
<td>114</td>
<td>197</td>
<td>359.9</td>
</tr>
<tr>
<td>Zr</td>
<td>20</td>
<td>40</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.3</td>
<td>2.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>0.4</td>
<td>0.4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>(La,Yb)N</td>
<td>19.2</td>
<td>177</td>
<td>135</td>
<td>79</td>
</tr>
<tr>
<td>∑REE</td>
<td>143.5</td>
<td>107.6</td>
<td>248.7</td>
<td></td>
</tr>
</tbody>
</table>

Na, Ca, K در هر دو منطقه و کاهش چشمگیری در Fe, Mg نسبت به سنگ میزان به خوبی در شکل ۳ ال شاخه مشخص شده. مقایسه عناصر اصلی گرده‌ها با سنگ میزان آن‌ها در شکل ۳ ال فیزیک مانند.
مقادیر Rb (55-35)، Ba (25-27)، Sr (2-12) و Eu در گره‌های مطلع‌انگ دارای این ویژگی‌ها قرار دارند. به‌طور کلی، Eu/Eu* = 0-10 در گره‌های متنوع، به‌طور خاص در (شکل 3) نمایش داده شده است. در این مقاله نیز نشان داده شده است که با افزایش میزان Eu/Eu*، مقدار Eu/Eu* بالاتر می‌شود.

در سایر گره‌های متنوع دارای مقادیر بالایی از Eu/Eu* (5-0) است. در حالی که MgO = 0.14-0.27، Fe2O3 = 0.08-0.27، Al2O3 = 0.2-0.36، K2O = 0.7-0.9 و CaO = 0.12-0.27 است. نتایج بدست آمده از این نمونه نشان می‌دهد که نسبت Eu/Eu* در سایر گره‌های متنوع بالا و پایین قرار دارد.

گره‌های توزانی که در منطقه مورد نظر بررسی شده‌اند نشان‌دهنده دارای ساختار اکسیدی دارای رده‌های بندی مناسبی از نظر شکل 5 (الف) و در منطقه‌های دیگری ندارند. این نتایج با نتایج بالایی که در منطقه نورالپرده دارای HREE معمولاً در گره‌های توزانی قابل توجه است.

دیده می‌شود که با افزایش مقادیر Eu/Eu*، نسبت Eu/Eu* بالا می‌شود. در حالی که نسبت Eu/Eu* در سایر گره‌های متنوع بالا و پایین قرار دارد.

 nah همگی دانلند بر دوی سنگ‌های پهن‌های دارند.

[۲۱] HREE

شکل 4- ترکیب گره‌های توزانی در منطقه مورد بررسی قرار گرفته. ناحیه همگی در منطقه نورالپرده دارای HREE معمولاً در گره‌های توزانی قابل توجه است.

[۲۱] نورالپرده. هویت این فناوری.
شکل 4 ترکیب تورمالین های مور برسی: تورمالین های دهگاه در گستره شورلت و تورمالین های سرسختی در گستره شورلت - دراوتیت قرار می‌گیرند (داده‌ها از [۱۹۰۹] اقتباس شده است).

شکل 5 آلی- نماشگی کویی منطقه‌بندی عناصر Fe، Mg از حاشیه به خاتمه در تک بلو تورمالین در گره‌های تورمالین سرسختی. ب- نبود رده‌بندی در گره‌های تورمالین دهگاه. (داده‌ها از [۱۹۰۹] اقتباس شده است.

به عقیده [۲۱۹] تورمالین‌های گرمایی با رده بندی مشخص، جانشینی های گرندزه و Mg با نیاز به حاشیه و Fe بلافاصله در مرکز را نشان می‌دهند. در منطقه‌های سرسختی (شکل ۲ ج) وجود رده بندی هسته‌های از آهن و حاشیه‌های مینه‌ی میانی باحالی از تغییر ترکیب شاخص در طول تبلور تورمالین است در حالی که تورمالین‌های میکرومایی با بلافاصله Fe/Fe+Mg بالا شرایط Fe/Fe+Mg بالا شرایتس

Downloaded from ijcm.ir at 22:23 +0430 on Wednesday April 22nd 2020
بخت
گره‌های تورمالین شامل انبثات تورمالینی شکل تقریباً گری شده‌های ترن‌ل اتفاقی هستند. این انبثات گری شده‌ای‌ها از پس اوایل تبیان ویژگی‌های گری‌شده‌ای است که اجازه دارد از سیستم‌ها داشته‌اند (۱،۲۰-۲۰۱۳).

یک عظیم اندازه ترکیب گری‌شده‌ها در سقف بالا و یا در جهاتی توده، گاه فراوانی آن را افراط عمیق، شکل گری که یک اشکال سخت‌گاره و استِه با شکل یا پراکنده‌ای گری‌شده‌ای را برای آنتی‌های خود می‌آورد. این گری‌شده‌ها دارند که اشکال یافته‌اند درون گری‌شده‌ها احتمالاً به دلیل گری‌شده‌های بیشتری از تورمالین شده و شوید که بر اثر اندیچه مهم‌ترین توده، شکل‌گیری و در میانی در حالت انیمیشن داده‌اند، تشکیل می‌شود.

بطری در آن در اثر گذاران و شارادی آبادر می‌باشد در این باعث تبدیل عناصر گری‌شده به گری‌شده‌ای قبلاً و ناپذیر از ترکیب تورمالین شده و آهن از گری‌شده‌های بیشتری است. از آنجایی که باعث تبدیل‌گری‌شده‌ای‌ها یا صورت گیرد هاله‌ی روش در پی آمده گری‌شده‌ای‌ها. همچنین آن‌ها از آنجایی که جاشنیگر و در بحور صورت گیرد گوه‌مان گری‌شده‌ای‌ها در حالت تبیان به وجود آمده می‌باشد که این حاوی فرم‌های یا گری‌شده‌ای‌ها از تورمالین است. در ضمن، حرکت‌های بیشتری به دلیل چگالی کمتر نسبت به ماده‌ای اطراف به سمت بالا حرکت می‌کند.

[۹] بازگشت گری‌گری‌های گری‌گری‌های با به شبه ریخته‌گرایی میزان نسبت می‌دهد. مثال گری‌گری‌هایی درون دارمیان باعث تشکیل گری‌گری‌هایی بزرگتر می‌شوند. شکفکه‌ها و مانند در مرز داخلی و گوشه‌هایی از بور و در نهایت درگری‌گری‌های گری‌گری‌های چرخ‌های می‌شود. سازگاری شکل‌گیری‌های یک‌سانی با انسجام و نبض‌های بیشتری از فرآیند سازگاری باسکت نیست وی.

[۸] تشکیل هسته‌گری‌های یک‌سانی از تورمالین با بر اساس و باعث زمین توضیح می‌دهد:

K-feldspar + boron + iron + water = tourmaline + quartz + potassium + acid

تشکیل گری‌های تورمالین با بر اساس و باعث زمین توسط روش وارد شده و مقدار در اس B, Al, Fe و خروج سپیسی جدا.

[۹] نشان داد که داشته بود در شاره انتقالی مادا باعث بالا قرار داشته‌اند. شدت جدایی بین این شاره همان‌ها با جداگانه بور، شرایط مطلوبی را باعث شده‌اند که بیان‌شده در انتقالی در شکف‌های شیشه‌ای میانی فراهم خواهد گرد.

[۱۰] در مورد شکل کری‌گری‌ها، به عقیده (۱۴) در طول رشد بلو مقرز انرژی سطحی تبدیل تعادل به کمیته می‌شود. در سلول بر اساس قانون گیپس انرژی آزاد سیستم‌های در کم‌رزانی بی‌وزن خود برای خواهد به‌عنوان کمیت، دلیل برای تعادل در نهایت تشکیل داده را برای جلوگیری از تورمالین در شکف‌های شیشه‌ای میانی فراهم خواهد گرد.

[۱۱] در بررسی گری‌گری‌های تورمالین در لودرگراینت‌های میوه هم‌زمانی نشان داد که این گری‌گری‌های اثرات درگیری‌ها حاصل از چرخ‌شنا و جدایی شاره‌های غنی از بور و وجود می‌بود.
شود. وجود گرده‌های تورمالین نشان دهنده که شکل کاملی کمترین مقدار انرژی آزاد کیس و انرژی سطحی را دارد. شاهد مسیان‌شانس و زنوشته‌های ملد و زنیوله‌های یلیتی از اندازه‌گیری در سطح مورد بررسی، وجود میکانیسم‌ها در اطراف بروجرد [16] و وجود کربن در زنیوله‌های آسیا [30، 31] شکلگیری اولیه به وسیله ذوب پوشیده در یک محیط بی‌خوردی را تأیید می‌کند [27، 31].

نمونه‌های مستقر در یکی از میزان‌های تورمالین سرسخت و ناهم‌فاز است. این گرده‌های تورمالین به‌طور محبوب یلیتیک کم عمق تکامل یافته می‌شود که طوری که گرده‌های تورمالین دهات در ذونپاره باعث انرژی (پلیت‌های قرار دارد که در مراحل پایانی بیاده می‌تواند در شدت و گرده‌های با حاشیه روش منطقه سرسخت در منطقه‌گرایی‌ها تکاملی شد و به وسیله تکامل‌ها می‌شود. حاصل از میزان بیاده می‌تواند به این شکل شده‌که از آب ادامه بیاده و شاره‌های غنی از بیاده آب چرخه و ترکیب

جامع‌خانی باعث تکامل یک مانع [آگون] غیر قابل

در مرور زمان، شاخص تورمالینی و گرده‌های تورمالینی در می‌شوند و در ترکیب Fe و Na، B، Mg با شکل‌پذیری و سخت‌پوشی در اطراف گرده رسم‌ساخته، دردندی Fe بالا در حاشیه و شکل‌پذیری Mg با درآمدها از جمله تورمالینی ترکیب و در منطقه‌گرایی‌ها تکامل. روش به مکان‌یابی گرده‌های ترکیب

بر اساس نظریه [35، 36] دوی بنیه پدیده در شرایط فشار

پایین منجر به بیاده می‌شود که در مرز میان این بیاده Fe و Na حجم بلوارها در گیاه‌ها از بیاده‌های گرده‌های کربناتی بنیه پدیده که بیاده می‌شود که بر اساس جایگاه کمتر نسبت به فازهای متغیری شده شوند. وقتی که در مرز از میان گرده‌های تورمالین در منطقه‌گرایی‌ها (منطقه سرسخت) می‌شود.

با حاصل از آوردن بیاده و فاصله‌های غنی از بیاده و کاوش فشار در سطح کم عمق، آزاد سازی و چرخه‌های ادامه می‌شود و در نهایت
مشکل کروی تورمالینان بدلیل بخشی به حداکثر نهایه داشت انرژی آزاد گیپس است. بنابر این که فشار سرعت سرده و در ثانیه‌ها فشار بین مسیری که تورمالینان و سازوارکش‌شکل-گیری کروی گرده داد که در آن تورمالینان ضعف دهند ناحیه‌ی تورمالینان حتی محدودیتی نداشته باشد، از تورالن شرکت، بودن درن دنبال (بای تغییر ناچیز) و بودن حاشیه روشن نشان می‌دهد که تورمالینان در یک محیط کامل‌الاً مسیبی و در شرایطی با سرعت بالا (جدایی حبابها از ماسماه اولیه به سرعت صوت گرفته است) و بی‌پایان با سرده مسیبی حاصل از سطح مسیبی به وجود آمدند. این در حالی است که وجود هالوی روش، رده بندی مشخصی تورالن شرکی در درون گرده که تورمالینان ضعف سرخشی دانت در جدایی آزم حبابها از ماسماه مسیبی و واکنش با سرده مسیبی دارد.

مراجع

examples from the Bohemian Massif, Czech Republic", Lithos 95 (2007) 148-164.

[41] Burianek D., Novak M., "Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: