بافت‌های و اکتشافی شخصی و برآورد دما در متابولیت‌های هاله‌ی مجاوری اسلام‌لو اشتونه.

آذربایجان غربی

منیر مجرد

1- گروه زمین شناسی، دانشکده علوم دانشگاه ارومیه
2- دانشکده علوم طبیعی، دانشگاه تبریز

چکیده: هاله‌ی مجاوری اسلام‌لو در شمال شهروند اشنونه، شالی‌زه و مرکزی هورنالس‌های رشته‌ای، در hội‌سیلیکات‌ها و مرمورهای کلسینی-دولومیتی است. متغیرهای در آن روند تجزیه‌ای کلریت‌های هورنالس،، گذراندن، کرریدینیت، اندولاژیت و باروره‌های ریز سیلیت‌آتیت و در برخی نمونه‌ها هرسی نایب و قرارگاه هستند. مهم‌ترین وبگی هاله‌ی مجاوری اسلام‌لو، وجود بافت‌های واکنشی شخصی و رانئی‌ها در هورنالس، رخ داده است. در هنگام استخاره‌های دیده‌بوده در هاله‌ی مجاوری اسلام‌لو، در این اثر پتروژئیک گرد (Overstepping) یا ترمیم تغییر باروری ترکیه‌ها، حاصل از بالا در پرده و در حال پیدا در حال تعادل (تعادل) می‌باشد. در این خصوص، می‌تواند از نظر جهانی، برای افراد گزارش‌های زون هاله‌ی مجاوری اسلام‌لو (رون-گارتن-کردریت-سیلیت‌آتیت) تحقیق کرده است.

واژه‌های کلیدی: هاله‌ی مجاوری، هورنالس‌های رشته‌ای، پس‌آت، واکنش‌های اجتماعی اشتونه.

مقدمه

سنگ‌های هاله‌ی مجاوری اسلام‌لو در شمال شهروند در کیلومتری‌های شهروند اشنونه و در شمال رشته‌ای اسلام‌لو (شکل 1) و در منطقه‌های سنندج-سیرجان (1 و خوی- مهاباد (2) واقع شده است. این هاله شامل هورنالس‌های رشته‌ای، اهمیت سیلیکات‌ها و مرکزه‌ها که به وسیله‌ی اکتشافی-گازو-دوتی تشکیل شده‌اند. سنین اکتشافی استخوان‌های پس‌آت‌های اشباع، به تغییر و مشخص شده‌اند (طی 3). در طول این اکتشاف‌های سنگ‌های هاله‌ی اکتشافی با استفاده‌ی روانی و بافت‌های کشی‌های روند بارور کشف شده‌اند. این روند بافت‌های سنگ‌های روند بارور، سیلیت‌آی و دربرمکوری‌های دکترین‌ها

m.modjarrad@urmia.ac.ir

نویسنده مسئول، تلفن: 044 27632727، 044 27632727، پست الکترونیکی: m.modjarrad@urmia.ac.ir

*
فرآیندهای رخ داده در متابلوهای اسلاسلوئست. از طرف دیگر THERMOCALC از نرم‌افزار [30] 3.33 و برای ترسیم واکنش‌های دگرگونی و برآورده شرایط ترمودینامیکی استفاده شده است.

زمن شناسی منطقه
روستای اسلامی در پایتخت کیلومتری شهرستان اشنویه در منطقه زیرزمینی قبیله‌ای از سنگ‌های بی‌رنگ و رسوبی دیده می‌شود. از جمله می‌توان به نفوذ این استوک به داخل سنگ‌های ساندوی رونده (پریمن) سبب دگرگونی مجاروتی آن شده است [23].

روش بررسی
در این پژوهش پس از پیشایه‌های صحرایی، بررسی منابع کتابخانه‌ای و نمونه‌برداری از منطقه‌های مورد بررسی، از سنگ‌های دگرگونی حدود 30 نقطه نازک تهیه و مورد بررسی قرار گرفتند. اساس این کار پژوهشی بررسی دقیق روابط‌های کاتالیز بایسته با استفاده از میکروسکوپ و برداشت درست واکنش‌ها و
بافت‌های واقعی شاخص و برآوردهای متال‌های هالیه...
صوت میانی بار در داخل کانال‌های کریدریت، گرانت و آندولزیت دیده می‌شود. هر سه نتایج در متابولیسم مذکور در تمام با کوارتزی دیده می‌شود. برای این حال، پیشنهادی از فرمول‌های Eماکلی در این مورد دارای اسپینل و دارای کوارتز به عنوان فاز اضافی (Excess) تقسیم شده‌اند (شکل ۲). برخی از کوارتز‌ها و از طرف دیگر مشاهده شده حاوی از جمله از توالی بالاتر در طرفی که کانال‌های با دمای بالای مانند کریدریت با کانال‌های با دمای بالای مانند کریدریت و نسل‌های دما بالای آندولزیت ارتباط دارند. همان‌طور که در صورت میانی بار در داخل کانال‌های کریدریت، گرانت و آندولزیت دیده می‌شود. هر سه نتایج در متابولیسم مذکور در تمام با کوارتزی دیده می‌شود. برای این حال، پیشنهادی از فرمول‌های Eماکلی در این مورد دارای اسپینل و دارای کوارتز به عنوان فاز اضافی (Excess) تقسیم شده‌اند (شکل ۲). برخی از کوارتز‌ها و از طرف دیگر مشاهده شده حاوی از جمله از توالی بالاتر در طرفی که کانال‌های با دمای بالای مانند کریدریت با کانال‌های با دمای بالای مانند کریدریت و نسل‌های دما بالای آندولزیت ارتباط دارند. همان‌طور که در

شکل ۲ روابط فازی و واقعی‌های دگرگونی در هورنفلدی‌ها رسمی هاله اسلالوم بر اساس سیستم KFMASH. فاصله‌های اندازه‌گیری در سمت راست نمودارها اوده شده‌اند. آلبانیا، کوارتز، اسپینل و کوارتز‌ها حاوی اسپینل-کوارتزی دارای اسپینل-کوارتز. سیهمینیت درباره بیشترین درجه دگرگونی است.
مشوک دانشگاهی مشاهده شده در این مرحله از درگوگونی شمار کالی کریتونیت
گرین و کلریتنیت به عنوان اولین کالی شاخ در درگوگونی از کانی‌های رنگ‌بندی
ریز بوده رده است. این رده از کانی‌های کلریتنیت، بیونیت، مسکونیت و کوارتز قرار
گرفته است. اساس روابط بافتی امکان وکشت زیر که با استفاده از نرم‌افزار نرم‌کاتک ۲۰۰۱
پیشنهاد شده، وجود داشته است:

وکشت زیر نسبت به توصیه بکر

\[
\text{Cl}_3 + 2\text{Qtz} = 2\text{Gr} + 5\text{H}_2\text{O} \\
\text{Cl}_3 + 6\text{Qtz} + 7\text{H}_2\text{O} \\
\text{Cl}_3 + 9\text{Qtz} + 4\text{H}_2\text{O} \\
\text{Cl}_3 + 3\text{Ms} + 5\text{Bt} + 9\text{Qtz} + 4\text{H}_2\text{O} \quad \text{(r-3)}
\]

در دو رده سیگنیا در دو رده دانشگاهی مشاهده شده است. این رده از کانی‌های کوکی
ور کلریتنیت بازی بین سیلیمیت (فیبرولوئید) و آندالوژیت (شکل ۳-۴) و همین طور
های خز می‌باشد. کمک کننده‌ای طبیعی است. دو رده پارتی‌داست ۲ ماهه می‌باشد و
And+Cld+Sil+Ms+Chl = 2Bt+12H_2O

روابط بافتی که از احتمال واکنش زیر نسبت به توصیه بکر، توسط وکشت زیر نسبت به توصیه بکر
وکشت زیر نسبت به توصیه بکر

\[
\text{Gr} + 2\text{Cld} + 2\text{H}_2\text{O} = 2\text{And} + \text{Chl} \\
\text{And} + \text{Sil} \\
\text{Crd} + \text{Gr} + \text{Bt}
\]

\[
\text{Prl} = \text{And} + 4\text{Qtz} + 2\text{H}_2\text{O} \\
\text{Kao} = \text{Qtz} + \text{And} + 12\text{H}_2\text{O} \quad \text{(r-4)}
\]

\[
\text{Kao} = \text{Qtz} + \text{And} + 3\text{Qtz} + 2\text{H}_2\text{O} \quad \text{(r-5)}
\]

\[
\text{Cld} + 2\text{Qtz} + 2\text{Gr} + 5\text{H}_2\text{O} \\
\text{Cl}_3 + 6\text{Qtz} + 7\text{H}_2\text{O} \\
\text{Cl}_3 + 9\text{Qtz} + 4\text{H}_2\text{O} \\
\text{Cl}_3 + 3\text{Ms} + 5\text{Bt} + 9\text{Qtz} + 4\text{H}_2\text{O} \quad \text{(r-3)}
\]

\[
\text{Cld} + 2\text{Qtz} + 2\text{Gr} + 5\text{H}_2\text{O} \\
\text{Cl}_3 + 6\text{Qtz} + 7\text{H}_2\text{O} \\
\text{Cl}_3 + 9\text{Qtz} + 4\text{H}_2\text{O} \\
\text{Cl}_3 + 3\text{Ms} + 5\text{Bt} + 9\text{Qtz} + 4\text{H}_2\text{O} \quad \text{(r-3)}
\]

\[
\text{Cld} + 2\text{Qtz} + 2\text{Gr} + 5\text{H}_2\text{O} \\
\text{Cl}_3 + 6\text{Qtz} + 7\text{H}_2\text{O} \\
\text{Cl}_3 + 9\text{Qtz} + 4\text{H}_2\text{O} \\
\text{Cl}_3 + 3\text{Ms} + 5\text{Bt} + 9\text{Qtz} + 4\text{H}_2\text{O} \quad \text{(r-3)}
\]

\[
\text{Cld} + 2\text{Qtz} + 2\text{Gr} + 5\text{H}_2\text{O} \\
\text{Cl}_3 + 6\text{Qtz} + 7\text{H}_2\text{O} \\
\text{Cl}_3 + 9\text{Qtz} + 4\text{H}_2\text{O} \\
\text{Cl}_3 + 3\text{Ms} + 5\text{Bt} + 9\text{Qtz} + 4\text{H}_2\text{O} \quad \text{(r-3)}
\]
شکل ۳: بلورهای کلرتونید در یک نمونه هورنفلس رسی، زمینه سنگ از کاتی های ریز کلرت، مسکویت، بیوتیت و کوارتز تشکیل شده است. بافت یخچالی بلورهای کلرتونید قابل مشاهده است. ب- کاتی های کلرتونید و کلرت در یک نمونه هورنفلس رسی، پ- کاتی های آنالازیت در زمینه سنگ از کاتی های کلرتی، مسکویت، بیوتیت و کوارتز در یک نمونه هورنفلس رسی، ت- پورفوروبلاست های کلرت در یک نمونه هورنفلس رسی، گاتی های تیره کدر هستند.
نمونه‌های طوری که به وسیله کانی‌های کنیه‌ی که ای را در بر گرفته‌اند (کرگریت، آندالوژیت و گارنت) از کانی‌های کوارتز موجود در زمینه‌ی سنگ جدا شده‌اند. این مجموعه واقعیت‌ها بعنوان فاز اضافی است. بونهایه‌ی کاری اسپسیت بر اینال‌ها آگاده‌ی کوارتز دیده‌ی شده است. به
- بیوتیت-کلریت - گارنتن - کرپریت - آندواتیت
- سیلیمانیت - کرپریت-سیلیمانیت-بیوتیت-گارنتن-کرپریت
- سیلیمانیت.

زون گارنتن-بیوتیت-کلریت
تشکل دوگانه سیگه‌های مشاهده شده در این سگه‌ها شامل کانی گارنتن دیده می‌شود و همیشه طور کلی کرپریت ارتباط پارازنتیکی آشکاری با کانی گارنتن نشان می‌دهد (شکل 5-B و

\[2\text{Chl}+\text{Ms}=2\text{Grt}+\text{Bt}+\text{Hc}+8\text{H}_2\text{O} \quad \text{(r-13)} \]
\[12\text{Cld}+5\text{Bt}+9\text{Qtz}=4\text{Grt}+3\text{Chl}+5\text{Ms} \quad \text{(r-14)} \]

شکل 5-الف: روابط پارازنتیکی کانی‌های گارنتن، کرپریت، بیوتیت و مسکویت در یک نمونه هورنفلس ریس. حالت PPL. ب- هورنفلس ریسی. روابط پارازنتیکی کانی‌های گارنتن، کرپریت و مسکویت قابل مشاهده‌اند. حالت PPL. ت- هورنفلس ریسی. بلوهره‌های هرسی نتاب به صورت میانی بار داخل کانی گارنتن قابل مشاهده‌اند. حالت PPL.
منطقهی کارنت-کردریت-آندالوژیت-سیلیمانیت

تشکیل دوگانهٔ سنگهای مشاهده شده شامل واکنش‌های پارازنت‌کی، آندالوژیت و سیلیمانیت وجود دارد (شکل 6-الف و 6-ب). در این سنگ‌های کمیتی آندالوژیت و کردریت به درون کلی مصرف کارنت و فرو رفته‌اند که نشانگر کارنت اولین مصرف کانی انجام است (شکل 6-ب). لذا واکنش‌های

شکل 6-الف - هورنفلس رسی. روابط پارازنت‌کی بین کانی‌های کردریت، آندالوژیت و سیلیمانیت، سایر کانی‌های موجود در سنگ کدر استند.

ب - هورنفلس رسی. ارتباط پارازنت‌کی کانی‌های آندالوژیت، سیلیمانیت و گرنت فرو رفته‌کانی‌های آندالوژیت به داخل کانی کارنت حاکی از مصرف کانی اولی است. حالت PPL.

ب - هورنفلس رسی. بلوهای هرستیت و بیتونیت در متن کانی آندالوژیت قابل مشاهده‌اند. حالت PPL.

ت - روابط پارازنت‌کی کانی‌های کردریت، سیلیمانیت، بیتونیت، گلریت و هرستیت ناپذیر در یک نمونه هورنفلس رسی. حالت PPL.
همانطور که در شکل ۶-ت دیده می‌شود، ارتباط پارازنتیکی آشکار بین سیلیمانیت و کردریت نیز وجود دارد که احتمالاً واکنش‌های زیر باعث تشکیل سیلیمانیت شده است:

\[2\text{Crd} + 1\text{Qtz} + 8\text{Sil} = 5\text{Crd} + 8\text{H}_2\text{O}\]
\[4\text{Crd} + 7\text{Hc} + 5\text{Ms} = 20\text{Sil} + 5\text{Bt}\]
(r-21)

منطقهٔ گارنت-کردریت-سیلیمانیت

تشکیل دوگانه در این سنگ‌ها شامل Sp + Hc + Chl + And سیلیمانیت به‌صورت حاشیه‌ای و واکنش‌های طبیعی در اطراف بلورهای گارنت دیده می‌شود (شکل ۶-ب). کانی‌های آندالوزیت نیز در این سنگ‌ها دیده می‌شود که یک سیلیمانیت در ارتباط پارازنتیکی هستند. لذا احتمال واکنش‌های زیب وجود داشته است:

\[4\text{And} + \text{Bt} = 3\text{Hc} + \text{Ms} + 4\text{Qtz}\]
(r-17)

\[25\text{Ms} + 8\text{Grt} + 5\text{Chl} = 24\text{Hc} + 14\text{And} + 25\text{Bt} + 20\text{H}_2\text{O}\]
(r-18)

بر اساس روابط پارازنتیکی آشکار بین کانی‌های گارنت، کردریت و آندالوزیت (شکل ۶-ب) احتمال واکنش‌های زیب وجود داشته است:

\[2\text{Grt} + 4\text{And} + 5\text{Qtz} = 3\text{Crd}\]
(r-19)

زون کردریت-سیلیمانیت-پیتونت

پارازنت مشاهده شده در این سنگ‌ها شامل Crd + Sil + Hc + Bt + Chl + Ms هرسیت نیست و پیتونت به‌صورت میانی یا در این سنگ‌ها داخل کانی کردریت احتمال وقوع واکنش زیب را نشان می‌دهد (شکل ۶-ب):

\[5\text{Chl} + 5\text{Ms} = 3\text{Crd} + 4\text{Hc} + 5\text{Bt} + 20\text{H}_2\text{O}\]
(r-20)
کریبرت-سیلیمانیت بلورهای سیلیمانیت مشوری در داخل
کانی آندالوزیت دیده می‌شود، محل تقطیع باکثری (10-t)
و (25-t) اوج درگویی را در هاله مجاری اسلاملو مشخص
می‌کند، به طوری که کمترین دمای که این هاله تحمل کرده
است حدود 700 درجه سانتی گراد در فشار جدید 2 کیلو بار
براورد شده است (شکل 9-الف).
در برخی از نمونه‌ها ارتباط شاملیه یکی کریبرت-سیلیمانیت
ارتباط با زون سیلیمانیت، کانی سیلیمانیت
ارتباط با این نکاتی‌که با کانی آندالوزیت نشان می‌دهد. کانی اخبر
در این زون در میدان پایداری سیلیمانیت قرار دارد که علت آن
خروج از حالیت تعادل بالا (Overstepping) است [23-24 الذین]
بدین صورت که به علت افزایش تاکه لیکی دما و یا وجود مواد
هنده بندی (در اینجا هسته بندی کانی سیلیمانیت) کانی
آندالوزیت حفظ شده و در نتیجه در میدان پایداری سیلیمانیت
قرار گرفته است. این مسئله در تشکیل دوگانه سنگهای
مشاهده شده در زون کریبرت-آندالوزیت نیز رخ
داده است. در این زون کانی کریبرت با کانی‌های کریبرت,
آندالوزیت و سیلیمانیت، تشکیل دوگانه سنگها به‌ندرد که
علت آن نیز خروج از حالیت تعادل بالاست، در نتیجه
کریبرت تا دماهای بالاتر حفظ شده است.

\begin{align*}
\text{Grt} + \text{Ms} &= 2\text{Sil} + \text{Bt} + \text{Qtz} \\
\text{And} &= \text{Sil} \\
\text{Grt} + 2\text{Sil} + 7\text{Qtz} &= 3\text{Crd} + 2\text{Ms} \\
2\text{Grt} + 4\text{Sil} + 5\text{Qtz} &= 3\text{Crd}
\end{align*}

(23) (24) (25)

در برخی از نمونه‌ها کانی هرسنت با صورت میان بار داخل
کانی‌های کریبرت و گرانت دیده می‌شوند (شکل 7-ب) لذا
امکان واکنش‌های زیبای نیز وجود داشته است:

\begin{align*}
8\text{Sil} + 2\text{Bt} + 7\text{Qtz} &= 3\text{Crd} + 2\text{Ms} \\
2\text{Grt} + 4\text{Sil} + 5\text{Qtz} &= 3\text{Crd}
\end{align*}

(26) (27)

در برخی از نمونه‌ها کانی سیلیمانیت ارتباط با این کانی‌ها
اشکاری با کانی‌های گرانت، کریبرت و کریبرت-سنگهای
در اینجا (7-ب) لذا واکنش زیر برای تشکیل این کانی‌ها بیشتر

\begin{align*}
\text{Grt} + \text{Ms} + 7\text{Hc} + 11\text{Qtz} + 4\text{H}_2\text{O} &= \text{Crd} + 6\text{Sil} + \\
&\text{Chl} + \text{Bt}
\end{align*}

(28)

برای درد
منحنی‌های تئودالی واکنش‌های مانده در هاله‌های اسلاملو بر
اساس داده‌ها ترم آفریموکالکی ترسیم شده است (شکل 9).
بر اساس این سنگ‌رایانگی شد، و با توجه به اینکه در زون گرانت-

شکل 8 هورنفیس رسی، حالت PPL. روابط پارازنتیک بین کانی‌های گرانت، کریبرت و سیلیمانیت.
برداشت

در هالهی مجاوری اصلاحات کانه‌های بروتیت، مسکویت، آندالوزیت، کلریت‌ونید کارنیت، کریستنگویو سیلیمانیت دیده شده‌اند. واکنش‌های دخیل در تشکیل دوگاه‌های سنگ‌های با استفاده از واکنش‌های واکنش‌شناسی پیشنهاد شده‌اند. کانی‌های کلریت‌ونید و آندالوزیت محصول شکست کانی‌های نخزاب کلریت و کانی‌های رساهوده‌اند. کانی‌های گرنت و کانی‌های کارنیت تکثیف شده‌اند. کانی سیلیمانیت از کانی‌های کلریت و آندالوزیت تشکیل شده و کانی‌های رساهوده محصول شکست کانی‌های گرنت و آندالوزیت بوده است. بر اساس محل بروزده‌گاه منحنی‌های تعادلی واکنش‌های تشکیل آندالوزیت از سیلیمانیت (وکنش 10) و تشکیل کریستنگویو سیلیمانیت و گرنت (وکنش 25) دمای اوج ده‌گونه حدود 700 درجه سانتی‌گراد در فشار حداکثر 2 کیلو بار بروارد می‌شود. با توجه به ترکیب گروه – دوربینی‌ای‌های نفوذی دور و دمای بالای جنین ماذکره‌ای، احتمال انتقال دمای حدود 200 درجه سانتی‌گراد از نوار به سنگ‌های دیواره منطقی به نظر می‌رسد.

مراجع

