شیمی پیروکسن و زمین‌دما - فشار-سنجی سنگ‌های بازی، شمالشرق قروه (كردستان)

اشرف ترکبان، نفتیه صالحی
گروه زمین‌شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان
(دریافت مقاله: 139/1/92، نسخه نهایی: 9/7)

چکیده: آتش‌نشانی‌های پیروکسن-كوپریت در شمال شرق قروه (كردستان) در کرمانشاه انتشار یافته‌اند که به دو دسته تقسیم می‌گردد. در یکی از این دسته‌ها، سنگ‌های پیروکسن-پتولیت از جمله به پیروکسن-پتولیت مشغول شده‌اند در پی از پیروکسن-پتولیت دو جفت، در دو گروه مختلف آن‌ها حصروی یک نوع پیروکسن شده‌اند. در گروه دیگر دو جفت، در دو گروه مختلف آن‌ها حصروی یک نوع پیروکسن شده‌اند.

کلمات کلیدی: پیروکسن-پتولیت، فشار-سنجی، سنگ‌های بازی، شمالشرق قروه (كردستان)

مقدمه
مناطقه‌ی مورد بررسی در شمال شرقی قروه به سه بررسی گردیده‌ویا ۸۴/۱۸۰۰ شرقی و عرض‌های ژئوفیزیکی ۳۷/۳۵۰۰ شمیالی و عمق‌های تا ۴۲۰۰ متری است. فسیل‌های کونینگ‌سونه/کاپرس در GIS-شکل ۱ در این منطقه، چندین مرکز آتش‌نشانی وجود دارند که از جهان‌های اصلی آتش‌نشانی‌های کوپریتی به حساب می‌آیند. به انتقادات معنی‌زدایی در این منطقه در ماهام سینانی (۱) در آتشفشان‌های بازی از دست‌رسی آتش‌نشانی‌های پیروکسن-پتولیت است. در دهه اخیر مطالعاتی که کاملاً در سراسر جهان انجام شده‌اند، در مورد این موضوع با شکست کامل و ارزشمندی در نظر گرفته شده‌اند.

به نام‌هایی چون فرآیندهای النهایی، کوه‌های تپه‌های دوربین غربی، برج‌های سونه و قربانیان خونده‌ی می‌شنود. لازم به بیان این است که با اینکه در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند، در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند. در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند. در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند. در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند.

پیروکسن‌هایی که در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند، در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند. در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند. در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند. در پی‌های انحصاری آتش‌نشانی‌های پیروکسن-پتولیت کاملاً جایزه‌اند.

*نویسنده مسئول، تلفن-نمبر: 088/87381460 (87381460)، پست الکترونیکی: a-torkian@basu.ac.ir
شکل ۱ (الف) نقشه زمین‌شناسی ایران [۱۱] که در آن موقعیت منطقه‌های مورد بررسی در پهنه سنندج- سیرجان با بیشترین تثبیت داده شده است.

شکل ۱ (ب) نقشه شاده شدید منطقه‌های مورد بررسی (برگرفته از نقشه ۱۱۰۰۰۰۰/۱۰۰۰ و قروه [۱۲])

است. واحدهای آنتشناشی با ترکیب داسیتی و روداسیتی نیز مشاهده می‌شوند که جوانتر از بیزان‌هایی هستند.

روش بررسی

در راستای خاک‌ریزی زنده‌ی عناصر در ساختار کانی بروزکس در مراکز آنتشناشی مورد نظر ۲۵ نمونه از بروزکس‌های سخت‌فرو و مختلف مولکول‌ها انتخاب و مجموعاً ۱۶۵ نمونه با استفاده از دستگاه ریز‌برداری CAMECA تجزیه قطعات فرادی گرفته شدند. این دستگاه (مدل CAMECA SX50) با ولتاژ مشابه ۱۵ کیلووولت (۱۵ کیلووولت) و ۲۰۰ نانوای (۱۰۰ نانوای) با قطر بارکارکد برای ۲۰۰ نانوای (۲۰۰ نانوای) با تجزیه نموده و تجربه حاصل از آن آن‌ها را در جدول ۱ آراز شدند. فرمول ساختاری بروزکس بر اساس ۶ اکسید محاسبه و در بررسی و بردارش داده‌ها از نرم‌افزارهای زمین‌شناسی ۲.۱.۱ استفاده شده است. استفاده شده است.

جدول ۱: تجزیه قطعات و محاسبه فرمول ساختاری بروزکس (به حسب ۶ اکسید کامپوزیت)

<table>
<thead>
<tr>
<th>مول بردایش</th>
<th>Ghezelche Kand</th>
<th>Kuh–e–Ghalae parian</th>
<th>Hanlu</th>
<th>Ghareh</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره نمونه</td>
<td>۴۰-۵</td>
<td>۴۲-۵</td>
<td>۵۵-۴.۱.۲</td>
<td>۵۵-۴.۱.۲</td>
</tr>
<tr>
<td>میلایگی روشنی</td>
<td>۱۵۲</td>
<td>۱۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>SiO۲</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>K۲O</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Total</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Si</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Ti</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Al</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Fe</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Ca</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Na</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>K</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Cr</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Mg</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Mn</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Fe</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Na</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>K</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>SiO۲</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>K۲O</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Total</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Si</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Ti</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Al</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Fe</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Ca</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Na</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>K</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
</tbody>
</table>
سنگنگاری

ترکیب بیشتر گذاره‌های مشاهده شده بازالت تا اولوپین بازالت است. این سنگ‌های دارای ساختار خورشیدی (پیروکسنس) هستند. های تشکیل دهنده آنها عبارتند از پیروکسنس، اولوپین و به مقدار کمتر آمفیبول، بونیت و اکسیده های آن -تیتان. بافت این سنگ‌ها از ترکیب بیشتری پیروکسنس و میکروپیتی است. در هر موارد، نسبت جسم‌های بیشتری به سایر سنگ‌های مشابه دارد. ترکیب این سنگ‌ها از جمله کنترایک‌های کلیدی و مهمی است که از جمله گونه‌هایی است که در ساختار ماگماتیک (101) و شایان دیده شده‌اند. در این سنگ‌ها، پیروکسنس از حالت معیاری کمتر است. 

شیمی پیروکسنس

این سنگ‌ها از جمله کنترایک‌های کلیدی و مهمی است که نسبت جسم‌های بیشتری به سایر سنگ‌های مشابه دارد. 

شیمی پیروکسنس

این سنگ‌ها از جمله کنترایک‌های کلیدی و مهمی است که نسبت جسم‌های بیشتری به سایر سنگ‌های مشابه دارد.

این سنگ‌ها از جمله کنترایک‌های کلیدی و مهمی است که نسبت جسم‌های بیشتری به سایر سنگ‌های مشابه دارد.
پیروکسنهای موجود در بزالت‌های مناطق قرملای، کوه گله‌پریان و والانتز تا ۸۸ هستند. در حالی که پیروکسنهای سنگ‌های بزرگی منطقه قرملای با Fس ۹۹۹۹ و En ۹۹۹۹ و Wo ۹۹۹۹ و عدد منیزیم حداکثر ۸۶۴۴ درصد که مشابه با نمونه‌های منطقه فوق است. با پیمایش و حركت از بزالت‌های قرملای به سوی بزالت- های سابر مارک انتیششیا، تحت‌الaccent اصلی پیروکسنهای دستخوش تغییر شده است. به طوری که کلیپپیروکسنهای موجود در سنگ‌های قرملای در مقابل با کلیپپیروکسنهای منطقه قرملای کنن، کوه گله‌پریان و والانتز به موارد کاهش Na۲O و Fس و Al۲O۳ و غنی‌تر، و از CaO و SiO۲ تا حداکثر کنن (تصاویر ب وت به ترتیب در شکل ۲ و B) تصاویر کیتروتموگرافی- خمیرهای با خصوصیت شیشه‌ای در سنگ‌های بزالتی قرملای کنن (تصاویر ب به ترتیب در حالت PPL و XPL رنگ‌شده، ب وت) تصاویری از انباشت‌های پیروکسنهای در کنار بور‌های ریزی بایوپیکولارهای پیروکسنهای و مقادیر کافی توجهی اکسیدهای آهن- تینان در بزالت‌های منطقه‌ای مورد بررسی (تصاوير ب وت به ترتیب در حالت PPL و XPL رنگ‌شده، ب وت) تصاویر نشان داد که این سنگ‌ها از کلیپپیروکسنهای با ساختار سه‌بعدی مشابه به سیستم چهار گروه (Ca-Mg-Fe، SiO۲ این کلی در بزالت‌های پیروکسنهای و Na-Ca، B، Mg، Al، Ti، Fe، Mg، Fe، Sc، Ti، Ta، و کاتیون‌های مانند Fe۲+، Zr۲+، Mg۲+، Ti۴+، V۳+، Cr۳+ جایگزین می‌شوند. با این‌حال، منظره‌پرورشی از ترکیب پیروکسنهای موجود در سینگ- های بزرگی شمال شرقی قره، برای دستیابی به زمین دما فشار سنگ‌های حامل، نخست به رده‌بندی آن‌ها پرداخته و سپس فرمول ساختاری دقیق آن‌ها بررسی می‌شود. (۱۵)

نمودار نسبت‌بندی Ti نشان می‌دهد که کلیه‌ی نمونه‌ها در نمودار Ca-Mg-Fe (Quad) در فرمول‌های پیروکسنسی (Mg-Fe-Ca) قرار می‌گیرند. (J = 2Na و Q = Ca + Mg + Fe²⁺)

ال: شکل ۳ (کار) همه پیروکسنسی شرق فروه در نمودار J (Quad) Mg - Fe- Ca قرار می‌نگردند. (J = 2Na و Q = Ca + Mg + Fe²⁺) گیرنده (۱۵) در گسترهٔ دیوپسید قرار دارند.

تعیین سربی ماکمایی

لپاس [۱۴] برای اولین بار میزان اهمیت و ارتباط ترکیب شیمیایی پیروکسنسی و حالت شکل‌پذیری مگنیتی شیمیایی را تعریف کرد. به علاوه توزیع Al و Si در پیروکسنسی های مورد بررسی به دلیل اختلاف در الماسیون نمونه‌ها در نمودار Si و Al می‌تواند منجر به ایجاد نتایج مختلف در شیمیایی پیروکسنسی کرده تا به‌طور کلی، منحنی توزیع، در جریان مکانیکال مغناطیسی نمایند.

این موضوع معرفی کرده که در پیروکسنسی‌های مورد نظر لحظاتی پس از آلودگی بر اثر Al-Si نظر موقت‌ی تاریخی ساختار کانی آلودگی بر قرار می‌گیرد (شکل ۵-الف).

شکل ۴ (الف) ترکیب شیمیایی پیروکسنسی‌های منطقه‌ی شمال شرق قروه روی نمودار تغییرات Ti-AlIV. (ب) ترکیب شیمیایی پیروکسنسی‌های منطقه‌ی شمال شرق قروه روی نمودار Al-Si.
برای دسترسی به مقاله کامل، کلیه مطلب موجود در این صفحه را دانلده و چاپ کنید.

مرجع: "شیمی پیروکسنب و زمین دما-فشارسنجی سنگهای..." جلد 22، شماره 4، زمستان 1392

۶۶۵

شکل ۵ (الف) موقعیت نمونه پیروکسنب‌های مورد بررسی در پازالت‌های شمال شرق رود کیانگ ماهیت قلبای (Alkaline) می‌باشد. (Subalkaline) است.

براورد برای‌مترهای شدید (دما و فشار)

ترکیب شیمیایی پیروکسنب را می‌توان در راستای تنها دما و فشار سنگ‌های حامل آن بکار برد. بگیرنده دما بر اثر اثرات آن در درستی تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور می‌شود. تا امکان فراهم شدن ارتباط تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور کانی‌ها و به بی‌پرو ران دان نسکه مورد قرار گیرد.

۱۹۷

برای دسترسی به مقاله کامل، کلیه مطلب موجود در این صفحه را دانلده و چاپ کنید.

مرجع: "شیمی پیروکسنب و زمین دما-فشارسنجی سنگهای..." جلد 22، شماره 4، زمستان 1392

۶۶۵

شکل ۵ (الف) موقعیت نمونه پیروکسنب‌های مورد بررسی در پازالت‌های شمال شرق رود کیانگ ماهیت قلبای (Alkaline) می‌باشد. (Subalkaline) است.

براورد برای‌مترهای شدید (دما و فشار)

ترکیب شیمیایی پیروکسنب را می‌توان در راستای تنها دما و فشار سنگ‌های حامل آن بکار برد. بگیرنده دما بر اثر اثرات آن در درستی تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور می‌شود. تا امکان فراهم شدن ارتباط تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور کانی‌ها و به بی‌پرو ران دان نسکه مورد قرار گیرد.

۱۹۷

برای دسترسی به مقاله کامل، کلیه مطلب موجود در این صفحه را دانلده و چاپ کنید.

مرجع: "شیمی پیروکسنب و زمین دما-فشارسنجی سنگهای..." جلد 22، شماره 4، زمستان 1392

۶۶۵

شکل ۵ (الف) موقعیت نمونه پیروکسنب‌های مورد بررسی در پازالت‌های شمال شرق رود کیانگ ماهیت قلبای (Alkaline) می‌باشد. (Subalkaline) است.

براورد برای‌مترهای شدید (دما و فشار)

ترکیب شیمیایی پیروکسنب را می‌توان در راستای تنها دما و فشار سنگ‌های حامل آن بکار برد. بگیرنده دما بر اثر اثرات آن در درستی تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور می‌شود. تا امکان فراهم شدن ارتباط تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور کانی‌ها و به بی‌پرو ران دان نسکه مورد قرار گیرد.

۱۹۷

برای دسترسی به مقاله کامل، کلیه مطلب موجود در این صفحه را دانلده و چاپ کنید.

مرجع: "شیمی پیروکسنب و زمین دما-فشارسنجی سنگهای..." جلد 22، شماره 4، زمستان 1392

۶۶۵

شکل ۵ (الف) موقعیت نمونه پیروکسنب‌های مورد بررسی در پازالت‌های شمال شرق رود کیانگ ماهیت قلبای (Alkaline) می‌باشد. (Subalkaline) است.

براورد برای‌مترهای شدید (دما و فشار)

ترکیب شیمیایی پیروکسنب را می‌توان در راستای تنها دما و فشار سنگ‌های حامل آن بکار برد. بگیرنده دما بر اثر اثرات آن در درستی تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور می‌شود. تا امکان فراهم شدن ارتباط تغییرات فراوری کانی‌ها با سطحی فشار و دمای تبلور کانی‌ها و به بی‌پرو ران دان نسکه مورد قرار گیرد.

۱۹۷

برای دسترسی به مقاله کامل، کلیه مطلب موجود در این صفحه را دانلده و چاپ کنید.

مرجع: "شیمی پیروکسنب و زمین دما-فشارسنجی سنگهای..." جلد 22، شماره 4، زمستان 1392

۶۶۵

شکل ۵ (الف) موقعیت نمونه پیروکسنب‌های مورد بررسی در پازالت‌های شمال شرق رود کیانگ ماهیت قلبای (Alkaline) می‌باشد. (Subalkaline) است.
جهان شرق قره، در فشار متوسط در گسترده پیروکسن‌های Mg گنی از قرار گرفته‌اند (شکل 6-ب).

نظام حادی در جدول 2 از ارائه شدند. در فشارهای مفروض 1 تا 10 کیلوبرد در حدود 250 تا 990 درجه سانتی‌گراد به دست آمده است. اما باید توجه داشت که بودن مقدار عدد می‌تواند با استحثاه نمونه های 64-10 و 46-GHB به Al و AlV کمی کمتر از مقدار است و نیز نسبت پیروکسن‌های (به استحثاه) حاکی از آن است که آنها در فشارهای بالا تشكل هستند و به همین دلیل دمای محاسبه شده در پیش فرض‌های فشار کم‌پایه در نظر گرفته نمود. بنابر

این منظورهای دیگری که در جدول 99-129 درجه سانتی‌گراد مصرفی

یک‌و- دوم‌فهرست‌ای نیز که در جدول شاهد هستند و در این صورتی که در جدول باید با یکدیگر مشابه شده‌اند. این فعالیت‌ها در دنیای بازالت‌های پیروکسن‌های آنها در فشارهای محدود شده، در معرض شود. لازم است اثر این عامل نیز در تشكل پیروکسن گذشته‌اند.

های مورد بررسی گرید.

- فشار بخشی (گرید‌زدگی) اکسیژن

از انگاه فشارخیزی اکسیژن در دنیالی و نوع کان‌های متولوشده در گاپ باشته‌ست در اثر مدل به [26-27] مراجعه شود. به همین دلیل دمای محاسبه شده در پیش فرض‌های فشار کم‌پایه در نظر گرفته نمود. بنابر

این منظورهای دیگری که در جدول 99-129 درجه سانتی‌گراد مصرفی

یک‌و- دوم‌فهرست‌ای نیز که در جدول شاهد هستند و در این صورتی که در جدول باید با یکدیگر مشابه شده‌اند. این فعالیت‌ها در دنیای بازالت‌های پیروکسن‌های آنها در فشارهای محدود شده، در معرض شود. لازم است اثر این عامل نیز در تشكل پیروکسن گذشته‌اند.

- فشار سنگی

تعیین فشار حاکم بر تبلور سنگ‌های خاکی پیروکسن همانند

دمانشجی آنها از روش‌های سیستم‌پزشکی خاصی است. الیف سیستم‌پزشکی از روش [20] است. بر همین مبنای فشار برآورده شده پیروکسن‌های رایج در واقع مورد بررسی بین 4 تا 10 کیلوبرد و معمولاً متقابل 3-10 کیلوبرد. نظر گرفته شده است. (شکل 6-ب).

(ب) به اعتقاد [23] نسبت AlIV به Al به در پیروکسن‌ها بر می‌توان برای تعیین فشار میتوانید تشکیل سنگ به کار گرفت. پیروکسن‌های در فشارهای بالا در اکثریت‌ها متشکل می‌شوند. در این صورتی که در جدول باید با یکدیگر مشابه شده‌اند. این فعالیت‌ها در دنیای بازالت‌های پیروکسن‌های آنها در فشارهای محدود شده، در معرض شود. لازم است اثر این عامل نیز در تشكل پیروکسن گذشته‌اند.

- فشار بخشی (گرید‌زدگی) اکسیژن

از انگاه فشارخیزی اکسیژن در دنیالی و نوع کان‌های متولوشده در گاپ باشته‌ست در اثر مدل به [26-27] مراجعه شود. لازم است اثر این عامل نیز در تشكل پیروکسن گذشته‌اند.
جدول 2: داماهای محاسبه شده در فشارهای 1 تا 10 کیلو پاسیو کیلو در سه گروه آمپلیاسیون شمار شرق قروه - کردستان

<table>
<thead>
<tr>
<th>محل نمونه</th>
<th>Ghezelche Kand</th>
<th>Ghal-e–Ghalah parian</th>
<th>Ilanlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>فشار (کیلوپاس)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نمونه‌ها</td>
<td>40-GH</td>
<td>GH-42</td>
<td>43-GH</td>
</tr>
<tr>
<td>1</td>
<td>699</td>
<td>661</td>
<td>667</td>
</tr>
<tr>
<td>2</td>
<td>601</td>
<td>663</td>
<td>669</td>
</tr>
<tr>
<td>3</td>
<td>603</td>
<td>665</td>
<td>671</td>
</tr>
<tr>
<td>4</td>
<td>605</td>
<td>667</td>
<td>673</td>
</tr>
<tr>
<td>5</td>
<td>607</td>
<td>669</td>
<td>675</td>
</tr>
<tr>
<td>6</td>
<td>609</td>
<td>671</td>
<td>677</td>
</tr>
<tr>
<td>7</td>
<td>611</td>
<td>673</td>
<td>679</td>
</tr>
<tr>
<td>8</td>
<td>613</td>
<td>675</td>
<td>681</td>
</tr>
<tr>
<td>9</td>
<td>615</td>
<td>677</td>
<td>683</td>
</tr>
<tr>
<td>10</td>
<td>617</td>
<td>679</td>
<td>685</td>
</tr>
</tbody>
</table>

ادامه جدول 2

<table>
<thead>
<tr>
<th>محل نمونه</th>
<th>Kuh-e–Ghalah parian</th>
<th>Ghareh Bolagh</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه‌ها</td>
<td>1-1-67-D</td>
<td>3-73-D</td>
</tr>
<tr>
<td>فشار (کیلوپاس)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نمونه‌ها</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>770</td>
<td>772</td>
</tr>
<tr>
<td>2</td>
<td>771</td>
<td>773</td>
</tr>
<tr>
<td>3</td>
<td>772</td>
<td>774</td>
</tr>
<tr>
<td>4</td>
<td>773</td>
<td>775</td>
</tr>
<tr>
<td>5</td>
<td>774</td>
<td>776</td>
</tr>
<tr>
<td>6</td>
<td>775</td>
<td>777</td>
</tr>
<tr>
<td>7</td>
<td>776</td>
<td>778</td>
</tr>
<tr>
<td>8</td>
<td>777</td>
<td>779</td>
</tr>
<tr>
<td>9</td>
<td>778</td>
<td>780</td>
</tr>
<tr>
<td>10</td>
<td>779</td>
<td>781</td>
</tr>
</tbody>
</table>

شکل 6: گستره فشار 6-10 کیلو پاسیو حاصل از روش [20] برای پیروکسنس های منطقه ای مورد بررسی تحت بهینه شده، ب) کلینپروکسنس های مورد بررسی دارای فشار متوسط و غنی از منزیم هستند (ب) نموند AlIV در برابر AI VI توان می‌دهد که ماکم‌های بالایی مورد بررسی در فشار زیر 10 کیلو پاسیو و ب) 2 تا 10 درصد یا 10 نمونه پیروکسنس ها را می‌توان کرد (است. ت) موقعیت کلینپروکسنس ها در نمونه‌های آلی در برابر Al و Si و Si بیانگر نشته که در کلینپروکسنس های این منطقه موقعیت جاروچی ساختاری است.
برداشت

در شمال شرق شهرستان قروه در استان کرمان، تعداد زیادی مخروط آتش‌نشانی بارزانی وجود دارد. بررسی‌های سنگ‌نگاری نشان می‌دهد که این سنگ‌ها کلیپتروپوکسن+ اولوپروکسن، آمفیبول + بوئینت، کانی‌های قزی و شیشه‌زیمنه سنگ را تشکیل می‌دهند.

داده‌های شیمی بالوهای پیرپوکسن نشان می‌دهد که این سنگ‌ها از لحاظ کانی‌شناسی پیرپوکسن شیب‌های سبیلی با یکدیگر دارند و به نظر می‌رسد از نظر زننده‌ی نیز به یکدیگر واژگونگانی شده‌اند. شایع‌ترین شیمی‌ایی این کانی در مناطق مختلف مورد بررسی‌های این کانی بوده و اکثر تحقیقات آنها به طوری که تاکنون در کل منطقه کلسیم-منیزیم-آهن-دار و از نوع دیپسی نرمال قرار می‌گیرند. از طرفی بررسی‌های ترکیب پیرپوکسن‌ها با آن‌ها در آزمایشگاه مورد بررسی قرار نگرفته است. کمک بخش عناصر آن از قربانی آن به سمت قرنطین کننده، کوه‌های پاییز و ابلاط، احتمالاً به دلیل افزایش درجه تقویت مکانیکی دستخوش تغییرات شیمی شده‌اند. به Ca و Na، Si، Fe، Caو Al، Ti نیرو که مقدار Ti، فراوانی تر از مقدار فوسفور، Fe و آلیاژ می‌شود. از طرف دیگر بررسی‌های سنگ‌نگاری در سنگ‌های مناسبی، که فاکتوری برای درجه جدایی پالتی می‌باشد، خاصیت‌های تغییرات عناصر اصلی در در بررسی‌های مناسبی و تغییر مناسبی سنگ کلیپتروپوکسن در تاریخ‌های مورد بررسی شناخته می‌شود.


[3] (2) میلکوتنس س، حق نظر ش، قربانی م، امامی م، "بررسی تحلول‌های مکانیکی سنگ‌های آتش‌نشانی پازاری کردستانی مخور قروه- تکاب، مجله قلمزنی، 50 (1385) ص 149-187.

[4] (4) عیدی، قربانی م، تیتریولوپوکسن سنگ‌های آتش‌نشانی شمال شرق قروه (کردستان)، پایان‌نامه کارشناسی ارشد، دانشگاه شیخ بهشتی (1357).

[5] (5) حق نظر ش، ملکوتنس س، خصوصیات منشا کوشنه ای اکتیک‌های پازاری آتش‌نشانی منطقه قروه- تکاب، مجله پتروشیمی، شماره 3 (1370) ص 17-23.


