شیمی پیروکسن و زمین دما- فشارسنگ سنگ‌های بازی، شمالشرق قروه (کردستان)

اشرف ترکیان، نفیسه صالحی

گروه زمین شناسی، دانشکده علوم، دانشگاه پویان سیاه‌کل، همدان
(دریافت مقاله: ۹۵/۱۱۸۲، دریافت نهایی: ۹۵/۱۱۹۷)

چکیده: در این مطالعه به تفسیر صحیح و کامل شیمی و فیزیکی سنگ‌های بازی در ناحیه قروه تا شهرستان قروه گردیده و ترسیم شده است. تجزیه‌بندی زمین‌شناسی مشخصات سنگ‌های بازی شامل نتایج تجزیه‌بندی، ترسیم شیمی‌شناختی و نتایج فیزیکی سنگ‌های بازی را به‌دست آورده‌اند. در نهایت این مطالعه به‌صورت جامع و کامل سنگ‌های بازی در قروه را بررسی و تفسیر کرده‌اند.

مقدمه
زاگرس به‌عنوان یکی از مناطق به‌شمار رفته در سطح زمین است که در تودهٔ شرقی تازه‌های قروه واقع شده است. این منطقه که تا کنون به‌عنوان مرکز انتقال‌های زمین‌شناسی و شیمی‌شناختی شناخته می‌شود، به‌طور گسترده تا به‌عنوان مرکز انتقال‌های زمین‌شناسی و شیمی‌شناختی شناخته می‌شود.

واژه‌های کلیدی: پیروکسن، بازی، فشارسنگ، دماسنگ؛ کریزینگ، اکسیده‌نشانی، قروه، کردستان.
زمینشناسی منطقه‌ی مورد بررسی
بررسی‌های صحرایی مراکز انشعابی منطقه‌ی نشان می‌دهد که گدازه از نقاط و با شکاف‌های مختلف پرونده برخاسته است. آن‌ها
گاهی تا لایه‌های زیر سطحی و یا ریز پهنایی به‌پایه‌ی بازی‌های
با ضخامت‌های نسبی کم (حدود 10 متر) را به وجود آوردند.
بیشتر انشعاب‌های دارای مخروق‌های دارای نمودارهای
مخفی‌های جنب‌ریزی از نقطه‌های اطراف و به مقدار کمتر
بی‌بند نیز تا غلیظی شکل، به‌نگ رنگ سیاه، انبساطه‌شده‌اند.
که سال‌هاست که عنوان پوکی مشنی برای استفاده در ساخت
و سازه‌های شهری و فضایی مورد بهره‌برداری قرار می‌گیرد. این
منطقه در منابع زمینشناسی گاهی وابسته به پهنای سیستمیک
سیرجان تلیف شده (برای مثال به 11 مراجعه شود) که می‌تواند
به‌پایه‌ی انشعاب‌های اروپی-دختر در زیر مجموعه‌ی
کم‌دی جنین‌نشین هم‌دان- تبریز [13] در نظر گرفته شده

جدول 1 نتایج تجزیه‌پذیر و محاسبه فرمول ساختاری پیروکس‌ها (بر حسب 6 آمکسیتی)

<table>
<thead>
<tr>
<th>محال برداشت</th>
<th>Ghezelche Kand</th>
<th>Gharreh</th>
<th>Kuh-e-Ghalche parian</th>
<th>Hanlu</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره نمونه</td>
<td>40-41</td>
<td>42-45</td>
<td>54-NS.1,2</td>
<td>55-NS.1,2</td>
</tr>
<tr>
<td>میزان‌دان تعداد نقاط</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>SiO₂</td>
<td>20.25</td>
<td>20.25</td>
<td>58.21</td>
<td>58.21</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.29</td>
<td>1.29</td>
<td>1.29</td>
<td>1.29</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.81</td>
<td>5.81</td>
<td>7.71</td>
<td>7.71</td>
</tr>
<tr>
<td>FeO</td>
<td>1.81</td>
<td>1.81</td>
<td>6.51</td>
<td>6.51</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>15.12</td>
<td>15.12</td>
<td>15.12</td>
<td>15.12</td>
</tr>
<tr>
<td>CaO</td>
<td>21.15</td>
<td>21.15</td>
<td>21.15</td>
<td>21.15</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>100.19</td>
<td>100.19</td>
<td>100.19</td>
<td>100.19</td>
</tr>
<tr>
<td>Si</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td>Ti</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Wo%</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>En%</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fs%</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>محل برداشت</td>
<td>Kuh-e-Ghale parian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شماره نمونه</td>
<td>3-67-D</td>
<td>3-75-D</td>
<td>3-74-D</td>
<td>48-NS-4</td>
</tr>
<tr>
<td>میانگین مقدار نمونه</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>5.26</td>
<td>4.93</td>
<td>4.98</td>
<td>5.18</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.81</td>
<td>1.76</td>
<td>1.83</td>
<td>1.74</td>
</tr>
<tr>
<td>FeO</td>
<td>4.61</td>
<td>4.64</td>
<td>4.87</td>
<td>4.64</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>16.72</td>
<td>16.74</td>
<td>16.37</td>
<td>17.23</td>
</tr>
<tr>
<td>CaO</td>
<td>32.38</td>
<td>32.56</td>
<td>32.65</td>
<td>32.23</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.82</td>
<td>0.86</td>
<td>0.81</td>
<td>0.80</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.11</td>
<td>1.12</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>Total</td>
<td>99.99</td>
<td>100.12</td>
<td>99.98</td>
<td>100.42</td>
</tr>
<tr>
<td>Si</td>
<td>1.78</td>
<td>1.77</td>
<td>1.78</td>
<td>1.80</td>
</tr>
<tr>
<td>Ti</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Al IV</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mn</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Mg</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Ca</td>
<td>0.67</td>
<td>0.67</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>Na</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>K</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>Cr</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>4.17</td>
<td>4.17</td>
<td>4.17</td>
<td>4.17</td>
</tr>
<tr>
<td>CaO%</td>
<td>57.99</td>
<td>57.93</td>
<td>58.12</td>
<td>57.89</td>
</tr>
<tr>
<td>Fe%</td>
<td>7.88</td>
<td>7.88</td>
<td>7.88</td>
<td>7.88</td>
</tr>
</tbody>
</table>

آدام‌جدول 1

سنجک‌گاری

ترکیب بستر گیاه‌های مشاهده شده بیانات تا اولویت بیانات است. این سنجک‌ها دارای ساختار جفت‌های (پیروکس) و کاه-های تشکیل دهنده آنها می‌باشد از پیروکس، اولویت و یا مقادیر کمتر امفیول، پوئنت و اکسیدهای آهن-تیتان. بافت این سنجک‌ها پوئر بری با خمیره میکروپلی و میکروپلی-شیش‌های است (شکل 2- ال و ب). در برخی موارد وضعیت نیمه ججري در میکروپلی‌ها بافت گلوپورفیری نیز مشهود می‌باشد (شکل 2- پ و ت). درشت بلورها (پیروکسا) پیروکس و یا اولویتهای بیشتر دارای منطقه‌بندی و بافت غربی هستند که گاهی حاشیه‌های مفسس و خورده‌گی نیز در آنها مشاهده می‌شود. همچنین این پیروکس‌ها تنها از عدم خاصیت شیاطین که در تبلور این کاهی است. در سنگ‌های انتشافی قزلچکان، بیکانه‌سنجه‌ها

الترامافیک (پیروکسپین‌های) گنبی‌سی و بیگانه بلورهای کوارتزی با هرودگی خلیجی نیز وجود دارند.

شبیه بلور

پیروکس‌ها از جمله کانی‌های کلبی و مهمی هستند که ترکیب آنها اطلاعات ارزشمند را در جهت روش‌شندن خاستگاه‌ها می‌دهد. امکان‌پذیری و موجودیت زمین ساخت این درختان[14] و شرایط فیزیکی شیمیایی شامل دما، فشار و گریزندگی اکسید (فشار بخش دوم) در انتخاب می‌باشد. پیروکس از حاوی‌های سیلیکات‌ها نیز زنجبیرای با فرمول عمومی

$$M₂M₃Ti₂O₈$$

جایگاه کربنات‌ها نظیر

$$Al^{3+}$$

و آلیاژ کربنات‌ها نظیر

$$Fe^{3+}$$

(مجموع جایگاه T برای 1 است، در جایگاه T) می‌باشد. همچنین آلیاژ آلیاژ T و M1 با مجموع 1

$$M₁$$

و مازاد آهن ساطع‌فرهنگی مصرف شده در موقعیت T و نیز Al³⁺
پروکسی ها در قرار دارند (شکل ۳). بر مبنای فرمول کلی ساختاری این کلی، ترکیب پروکسی‌های موجود در بیان‌های منطقه قرملاغ، کوه فلز‌های مسی و ایلاتول از نظر می‌باشد. در حالی که پروکسی‌های سنگ‌های بیشتری منطقه قرملاغ با اندکی تفاوت، ترکیب‌های به نمایه‌های منطقی حضور دارند که مشابه با نمونه‌های منطقی فوق است.

با پیمایش و حرفی از بیان‌های قرملاغ به سوی بیان‌های سایر مراکز متشکل، محصول عناصر اصلی پروکسی‌ها دستخوش تغییر شده است. به طوری که کلیپروکسی‌هایی موجود در سنگ‌های قرملاغ در مقیاس با کمپلیکس سنگ‌های منطقی قرملاغ، کوه فلز‌های مسی و ایلاتول به ویژه کاهش Na۲O و Fe۲O۳ و آلی‌های Fe۲O۳ و Al۲O۳ غنی‌تر و از CaO و Na۲O تا حدی از Fe۲O۳ و CaO کاهش می‌یابند.

کاتیون‌های مانند Fe۲+, Mn۲+, Mg۲+, Ti۳+, V۳+, Cr۳+, Zr۲+, Sc۳+, Ti۴+, Zr۴+, Cr۳+, V۳+, Ti۳+, Sc۳+, Mg۲+, Fe۲+, Mg۲+, Fe۲+, Mg۲+, Fe۲+, Mg۲+, Fe۲+, Mg۲+ با بالا راه اندازی جون Na۲+, Ca۲+, Li۱+ و نیز اشغال می‌کنند که مجموع آنها در حدود ۱ است.

به منظور برهم‌بندی از ترکیب پروکسی‌ها موجود در سنگ‌های بیان‌های بیانی به زمین دما- فشار سنجی سنگ‌های حامل، نخست به روش‌های آنها پرداخته و سپس فرمول ساختاری دقیق آنها بررسی می‌شود.

اگر کلی از چهار گروه (P) فلز پروکسی‌های Ca-Mg-Fe-Na-Ca به این شرح در چهار گروه (P) PPL- Ca-Mg-Fe-Na-Ca پروکسی‌های با بالا به این شرح در چهار گروه (P) PPL- Ca-Mg-Fe-Na-Ca یا پروکسی‌هایی با بالا به این شرح در چهار گروه (P) PPL- Ca-Mg-Fe-Na-Ca

۲Na ± R+ (R: Al, Ca, Mg, Fe, Si) است. با توجه به نمونه Fe۳+,Cr۳+,Sc۳+)
نمودار نسبت به Ti نشان می‌دهد که کلیه نمونه‌ها در Al^{IV} حذف‌الصل حضور می‌یابند (شکل Al^{IV}=5Ti و Al^{IV}=3Ti تصور می‌شوند) نمودار Al^{IV} در پیروکسنهای مورد بررسی به‌طور کلی نشان می‌دهد که تمامی نمونه‌ها در نمودار Al^{IV} مجموع Al چهار درجه و هشت درجه (Al کل ساختمان) در مجموع قرار دارد.

اثربخشی با رابطه صدقاند.

این موضوع معرف آن است که در پیروکسنهای مورد نظر وضعیت چهار درجه و هشت درجه کانال‌های علاوه بر Al با Si نمودار می‌باشد.

پوسته‌هایی با میزان ۸۳/۰،۱۳۲ نیز اشغال می‌شود.

نمودار نسبت به Ti نشان می‌دهد که کلیه نمونه‌ها در Al^{IV} حذف‌الصل حضور می‌یابند (شکل Al^{IV}=5Ti و Al^{IV}=3Ti تصور می‌شوند) نمودار Al^{IV} در پیروکسنهای مورد بررسی به‌طور کلی نشان می‌دهد که تمامی نمونه‌ها در نمودار Al^{IV} مجموع Al چهار درجه و هشت درجه (Al کل ساختمان) در مجموع قرار دارد.

اثربخشی با رابطه صدقاند.

این موضوع معرف آن است که در پیروکسنهای مورد نظر وضعیت چهار درجه و هشت درجه کانال‌های علاوه بر Al با Si نمودار می‌باشد.

پوسته‌هایی با میزان ۸۳/۰،۱۳۲ نیز اشغال می‌شود.
ترکیب شیمیایی پیرکس‌ها را می‌توان در راستای تغییرات دما و فشار سنگ‌های حامل آن‌ها باکر برداشته کرده و تجزیه با گسترش کاربرد تجزیه‌های نقطه‌ای در پیائی‌های سنگ‌های آدرن و درگون و حتی سنگ‌های رسوبی تهیه کرده و این امکان فراهم شده تا ارتباط تغییرات فراوانی کانی‌ها با شرایط فشار و دما تیپ‌وار کالی‌ها و به‌پایه از آن سنگ‌های مورد دقت قرار گیرد [16].

- دماسنجی

برای دماسنجی پیرکس‌ها روش‌های متعددی وجود دارد. الگو استفاده از رابطه معمولی شده توسط [23] رابطه پیشنهادی [23] که در این‌جا تبلور فشار قبلی نیز با پیش‌بینی محاسبه شده بود انتخاب شده که در این مقایسه شده آدرن و درگون از پی‌پیرکس‌ها در سنگ‌های بزالتی مورد بررسی، روش (۵) کاربردی‌تر بوده و این روش در هیچ‌گاه دیگر به ترتیب اثرات می‌شود.

الف) در روش [20] تغییرات دما خواص خاصی ندارند:

\[\text{XTP} = 0.446 \text{SiO}_2 + 0.187 \text{TiO}_2 - 0.404 \text{Al}_2\text{O}_3 + 0.346 \text{FeO}_{(tot)} - 0.052 \text{MnO} + 0.309 \text{MgO} + 0.431 \text{CaO} - 0.446 \text{Na}_2\text{O} \]

\[\text{YTP} = -0.369 \text{SiO}_2 + 0.535 \text{TiO}_2 - 0.317 \text{Al}_2\text{O}_3 + 0.323 \text{FeO}_{(tot)} + 0.235 \text{MnO} - 0.516 \text{MgO} - 0.167 \text{CaO} - 0.153 \text{Na}_2\text{O} \]
چ) نظر به حضور گسترشده‌ای این کالی در سنج‌های آنتیفسیاتی مورد بررسی، از روش پیشنهادی [۲۲] که در آن پیش فرض فشار ۱ × ۱۰۰۰ کیلوبار منظور شده استفاده شد و دمای تشکیل پیروکسین از فرومول زربارود می‌شود.

t(k) = \frac{2346 + (29,8P(kbar))}{23,85 + (15,35 (Ti + 4,5))} \times (Fe - 1,55) \times (Al + Cr - Na - K) + (ln a_{Fe})^{3}

در رابطه بالا P از برابر است.

نتایج حاصل در جدول ۲ این‌ساند. در فشارهای مفروض ۱ تا ۱۰ کیلوبار دما در حدود ۹۵۰ تا ۹۶۰ درجه سانتی‌گراد به دست آمد است. اما باید نتیجه داشت که بالا بودن مقدار عدد میزانیمی (به استثنای سونیه‌های ۱۰۴ و ۱۰۵-۱) که کمی کمتر از میانگین است و نیز نسبت پیروکسین (به استثنای) حاکی از آن است که آنها در فشارهای بالا تشکیل شدند. هنگامی که در درجه‌های دمای ماتریس به نسبت پیش فرض‌های فشار کم‌تر است، و نیز باید بررسی کلی نرخ فرآیند. بنابراین این در مجموع دمایهای ۹۰۰-۹۵۰ درجه سانتی‌گراد منطقی- در خواهد بود. به علاوه یادآور می‌شود که بر اساس انتقال از میزانیمیک پیروکسین میزان Mg در حاشیه و مرز آنها ممکن است دخالت ۳ تغییر کند.

- فشار سنجی تعبین فشار حاکم بر تبلور سنگ‌های خاوی پیروکسین همانند داماسنجی آن‌ها از روش‌های سیبایی امکان‌پذیر است. این الگو به‌دست آمده که روش [۲۲] است. بر همین میانگین تپر شده فشار در تی‌پی‌ها برای پیروکسین‌های بازالتی مورد بررسی بین ۴ تا ۱۰ کیلوبار و مداوم عمق تقسیم‌بندی ۲۰۰۰ کیلومتر در نظر گرفته شده است. (شکل ۶-الف).

- فشار بخشی (گریزگذاری) اکسیژن از آنجاکه فشاربخی اکسیژن در دباله هم به ویژه کالی‌های ممثل‌شده در ماکا متشکل می‌شود (برای مثال به [۳۳-۴۴] مراجعه شود. لازم است اثبات بر این عملی نیز در تشکیل پیروکسین- یا هر موردی که در گذشته بیان شده است [۲۹] مقایسه Ti + Cr + AlIV همراه با واحد فرمول (شکل ۶-ت) می‌تواند فشار بهبودیکسین را تعبین کند. چنان‌که در این داله دهان به ویژه کالی‌های Fe۳+ و Na+AlIV در ضمن فاصله‌های مناسب تر از این خط خرابدارند. بنابراین این چنین استنباط مو را که با آن دما پیروکسین‌های مورد بررسی در یک خط یا یکدیگر بهبودیکسین بالا آمده است. (شکل ۷-الف). این به آن معناست که با وجود اکسیژن، از فشار بخشی اکسیژن بالا است. [۲۹-۴۴]. این به آن معناست که با وجود اکسیژن اکسیژن بالا از فشار بخشی پیروکسین قابل استفاده از جمله اهمیت طرفی، سنسیتی برشی و رود به ساده‌ترین تشکیل پیروکسین را دارند.
جدول ۲: دماهای محاسبه شده در فشارهای ۱ تا ۱۰ کیلو با برای کلینوپروکسنس‌های موجود در سنگ‌های آتش‌نشانی شمال شرق قروه-کردستان با استفاده از روش [۲۲].

<table>
<thead>
<tr>
<th>محال سونه</th>
<th>Ghezelche Kand</th>
<th>Kuh-e-Ghaleh parian</th>
<th>Ilanlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>فشار (کیلوبار)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دما (درجه سانتی‌گراد)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۷۹۹</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
</tr>
<tr>
<td>۲</td>
<td>۸۰۱</td>
<td>۸۲۹</td>
<td>۸۳۹</td>
</tr>
<tr>
<td>۲</td>
<td>۸۳۹</td>
<td>۸۵۹</td>
<td>۸۹۱</td>
</tr>
<tr>
<td>۲</td>
<td>۸۴۹</td>
<td>۸۷۹</td>
<td>۸۷۹</td>
</tr>
<tr>
<td>۲</td>
<td>۸۷۹</td>
<td>۸۹۱</td>
<td>۸۷۹</td>
</tr>
<tr>
<td>۲</td>
<td>۸۹۱</td>
<td>۸۹۱</td>
<td>۸۹۱</td>
</tr>
<tr>
<td>۳</td>
<td>۹۰۰</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
</tr>
<tr>
<td>۴</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
</tr>
<tr>
<td>۴</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
</tr>
<tr>
<td>۴</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
<td>۹۱۱</td>
</tr>
<tr>
<td>۵</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۵</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۵</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۶</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۷</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۸</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۹</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
<tr>
<td>۱۰</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
<td>۹۲۲</td>
</tr>
</tbody>
</table>

ایامه جدول ۳

<table>
<thead>
<tr>
<th>سال نمونه</th>
<th>Kuh-e-Ghaleh parian</th>
<th>Ghareh Bolagh</th>
</tr>
</thead>
<tbody>
<tr>
<td>فشار (کیلوبار)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دما (درجه سانتی‌گراد)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶۱</td>
<td>۶۴</td>
<td>۶۴</td>
</tr>
<tr>
<td>۶۲</td>
<td>۶۵</td>
<td>۶۵</td>
</tr>
<tr>
<td>۶۳</td>
<td>۶۶</td>
<td>۶۶</td>
</tr>
<tr>
<td>۶۴</td>
<td>۶۷</td>
<td>۶۷</td>
</tr>
<tr>
<td>۶۵</td>
<td>۶۸</td>
<td>۶۸</td>
</tr>
<tr>
<td>۶۶</td>
<td>۶۹</td>
<td>۶۹</td>
</tr>
<tr>
<td>۶۷</td>
<td>۷۰</td>
<td>۷۰</td>
</tr>
<tr>
<td>۶۸</td>
<td>۷۱</td>
<td>۷۱</td>
</tr>
<tr>
<td>۶۹</td>
<td>۷۲</td>
<td>۷۲</td>
</tr>
<tr>
<td>۷۰</td>
<td>۷۳</td>
<td>۷۳</td>
</tr>
<tr>
<td>۷۱</td>
<td>۷۴</td>
<td>۷۴</td>
</tr>
<tr>
<td>۷۲</td>
<td>۷۵</td>
<td>۷۵</td>
</tr>
<tr>
<td>۷۳</td>
<td>۷۶</td>
<td>۷۶</td>
</tr>
<tr>
<td>۷۴</td>
<td>۷۷</td>
<td>۷۷</td>
</tr>
<tr>
<td>۷۵</td>
<td>۷۸</td>
<td>۷۸</td>
</tr>
<tr>
<td>۷۶</td>
<td>۷۹</td>
<td>۷۹</td>
</tr>
<tr>
<td>۷۷</td>
<td>۸۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>۷۸</td>
<td>۸۱</td>
<td>۸۱</td>
</tr>
</tbody>
</table>

شکل ۶: اکسترمی فشار ۶-۷ کیلو بالای حاصل از روش [۲۲] برای پروکسنس‌های منطقه‌های مورد بررسی نشان می‌دهد که مراحل پیشین منطقه‌های مورد بررسی در فشار Na +AlVI +Ti +Cr مورد بررسی دارای فشار متوسط و غنی از منیزیم هستند، (پ) نمودار AlVI در نمودار Na +AlVI +Ti +Cr در بیش از ۱۰ کیلو بالا و بین ۲ تا ۲۰ دندان بخار آب پروکسنس‌ها را نشان می‌دهد که مراحل پیشین منطقه‌های مورد بررسی نمودار AlVI +Ti +Cr در بیش از ۱۰ کیلو بالا و بین ۲ تا ۲۰ دندان بخار آب پروکسنس‌ها را نشان می‌دهد که مراحل پیشین منطقه‌های مورد بررسی نمودار AlVI +Ti +Cr در بیش از ۱۰ کیلو بالا و بین ۲ تا ۲۰ دندان بخار آب پروکسنس‌ها را نشان می‌دهد که مراحل پیشین منطقه‌های مورد بررسی نمودار AlVI +Ti +Cr در بیش از ۱۰ کیلو بالا و بین ۲ تا ۲۰ دندان بخار آب پروکسنس‌ها را نشان می‌دهد که مراحل پیشین منطقه‌های مورد بررسی نمودار AlVI +Ti +Cr در بیش از ۱۰ کیلو بالا و بین ۲ تا ۲۰ دندان بخار آب پروکسنس‌ها را نشان می‌دهد که مراحل پیشین منطقه‌های مورد بررسی N...
برداشت
در شمال شرق شهرستان قروه در استان کردستان، تعداد زیادی مخروط آتش‌نشانی بارانی وجود دارد. بررسی‌های سنجش نگاری نشان می‌دهد که این مخروط‌ها کلیپپروکسین + اولویتون، به صورت فتوکسی و پلاژیکلاژ و پروکسین + افیپسین + بیتونت + مسیحی الهیه سنجکی را تشکیل می‌دهند.

داده‌های شیمی‌بیولوژی پروکسین نشان می‌دهد که این سنجک‌ها از لحاظ کلی شیمی‌بیولوژی پروکسین شبه‌های سیاهی با یکدیگر دانسته و به نظر می‌رسد از نظر زنتیک نیز به یکدیگر وابسته. شیمی‌سنجشی یک کانون مرکزی در مناطق مختلف مورد بررسی حاکی از وجود بودن قلمرو تکیه‌گاهی انتهایی به طوری که تاکید در قلمرو پروکسین‌ها کلسیم، منگنز-آهن، کلسیم، منگنز-آهن و از نوع دیوپسی قرار می‌گیرند. از طرف دیگر ترکیب پروکسین‌ها یا یککره آنتاس که برخی عناصر از قربانیان به سمت فراغت‌کند، که قلمه برای ویلایی، احتمالاً به دلیل افزایش درجه تفریق ماگما دستخوش گردش‌های شیمی‌دانه، به Ca و Na، Si، Fe و مقدار تغییرات تکان-قره‌های انتشارات دانشگاه تربیت معلم، ۱۳۸۷.

[۱] میتریخی، ج.، امین سهیلی‌اصفهانی. "مطالعه آتش‌نشانی در ناحیه قروه، انتشارات دانشگاه تربیت معلم، ۱۳۸۷.

[۳] ملکوتیان، س.، حق نظرش، قربانی، م.، امامی، م.، "بررسی تحولات مکانیکی در سنجک‌های آتش‌نشانی باری کوچک‌سیری محور قره - تکاب. مجله علمی زمین، ۶۲ (۱۳۸۵) ص. ۱۶۶-۱۸۸.

[۴] عیدی، ق.، بررسی پتروژئیکی سنجک‌های آتش‌نشانی شمال شرق قروه (کردستان)، پایان‌نامه کارشناسی ارشد. دانشگاه شیپیه بهشتی، ۱۳۸۷.

[۵] حق نظرش، ملکوتیان، س.، خصوصیات منشا کوه‌های آتکایی، مجله پتروژئی، شماره ۶ (۱۳۹۰) ص. ۱۷-۳۰.

تکابان، صالحی

مجله پتروژئی و کانی‌شناسی ایران

۶۶۸

