بررسی خاستگاه رسوبی و تعداد در شبه‌هنه‌ها هاله مجاورتی اسلاملو اشنویه
(آذربایجان غربی)

امیر محجوب، منیر مجرد

1- دانشکده علوم طبیعی دانشگاه تبریز
2- گروه زمین شناسی دانشگاه علوم، دانشگاه ارومیه
(دریافت مقاله: 92/04/12، نسخه نهایی: 92/09/20)

چکیده: در این بررسی خاستگاه رسوبی متایلیت‌های اسلاملو در شمال غرب ایران مورد بررسی قرار گرفته است. نتایج آنالیز شیمیایی سنگ کل این متایلیت‌ها حاکی از گنی‌بودن این سنگ‌ها از آهن و آلومینیوم بوده و کاتی گارین (المانن) فراوانی می‌باشد. به‌طور کلی در منطقه‌های پرفسیسی آلومینیوم کم بوده و در تركیه فراوانی می‌باشد که نیز در پرتوتوپسیکال‌ها پایین است. موقعیت متایلیت‌های اسلاملو در نمودارهای سازگاری AFM تقریباً مشابه است لذا به ترتیب شیمیایی‌ها یکسان دما و فشار در تشکیل پارازتل‌ها مختلف، متفاوت و آلومینیوم به محتوای بالای آهن و آلومینیوم این نمونه‌ها از نوع لاتریت است. شاخص‌های CIA و PIA در شاخص‌های حاکی از شدت بیش‌پایه‌ی هوازدگی و CIA، PIA این سنگ‌ها از نوع لاتریت است. است. این سنگ‌ها باعث به‌وجود آمدن محتوای آهن و آلومینیوم در این سنگ‌ها شده است. بر اساس اکسیدهای عناصر اصلی محتوی زمین ساخته تشکیل سنگ‌های مندل متایلیت‌های اسلاملو حاشیه فعال قاره بوده و این به معنی تشکیل رسوب‌های سازند رونه‌های پرتوتوپسیکال از محل حاشیه فعال نیست.

واژه‌های کلیدی: متمایلیت؛ اسلاملو اشنویه؛ خاستگاه رسوبی؛ انتقال جرم؛ هوازدگی؛ پارازتل.

مقدمه

پطور کلی ترکیب سنگ‌های تخربه سیلیسی‌دار تحت تأثیر براده‌های تالک، ترکیب سنگ‌های خاستگاه، هوازدگی و فرسایش در محل خاستگاه سانیده و به‌طور گسترده‌ای هیدرولیک است. اندازه و تعداد، خاستگاه‌های سنگ‌دزی و زمین‌ساختی سنگ‌های ترش و فن دارنده در قالب قرخه‌های محدب قابل تکرار که که این ساختار باعث پیچیدن شدن بررسی‌های خاستگاه رسوبی می‌شود. بنابراین پیشنهاد می‌شود بررسی‌های خاستگاه رسوبی می‌شود. بنابراین پیش‌
وجود درد و در برخی مناطق مانند جنوب اروپه تا بوکان (جنوب آذربایجان غربی) در سطح پاپانست سنت آخک های رونه یک سطح فرسایشی وجود دارد که با عدسی یک بوکسیت-لارتنی مشخص می‌شود [18]. لاسی [19] می‌گوید روسیه رونه را همسان می‌بیند که خطر حاضر ریزداده جنوبی کنوتی خلیج فارس می‌داند. از سنت آخک های آذرین موجود در منطقه می‌توان به استوک گزارو-دیورنیت مجموعه نفوذی اروپه [20] اشاره کرد که نفوذ این استوک به داخل سنت‌های روسیه سازند رونه (پریمین) باعث درگروجی مجاربی شده است [21] سن بخش دیورنیت مجموعه‌ی نفوذی اروپه سامانی‌یک تعبین شده است. [20] برگزیدن جرم سنت‌های دگرگون مجاربی منطقه‌ای اسلالمو مربوط به هورنفلس آهکی و مرمهره دیوتیموئیکی است. با توجه به خلوت نسی سنت‌های آهکی تشکیل دوگاه‌های منفوذی در این سنت‌های دیده نشده است. هورنفلس‌های رسته سالاند اسلالمو حجم بسیار کوچکی از سنت‌های دگرگون مجاربی منطقه‌ای را تشکیل می‌دهند (شکل 1).

شیمیایی آن‌هاست. مثالی‌هایی اسلالمو در اثر نفوذ یک استوک گزارو-دیورنیت به داخل سنت‌های روسیه سازند رونه (پریمین) در گروه شناسانه کانی‌های غالب مثالی‌ها شامل بوکسیت، مکسیتن، کارتنین، آنادورنیت، گرنت، گردریت و سیلیکاپت هستند [16] خلاصه‌ای از سنت‌های مختلف مثالی‌های اسلالمو در جدول 1 آورده شده است. همچنین در این مقاله شرایط‌های ترمودینامیکی و واکنش‌های دخل در تشکیل دوگاه‌سنت‌های به تفصیل مورد بررسی قرار گرفته‌اند. بررسی زاده‌رگه‌های سنت‌های دگرگون در ایران کمتر انجام شده است (از جمله [32]) و شایسته توجه بخشیری است.

زمین‌شناسی منطقه روستای اسلالمو در پانزده کیلومتری شیرازان اشتویه در استان آذربایجان غربی واقع شده است. این منطقه وابسته به منطقه‌ی زمین‌ساختاری خوی-همیاب است [17] قدیمی‌ترین واحدهای سانت‌های سازند رونه (پریمین) است که بیشتر پیش از دهه میلادی میان لایه‌هایی از شیل و مارن است [18] بین سازند درود و رونه یک واحد لارتنی

<table>
<thead>
<tr>
<th>نام سنک</th>
<th>شماره نمونه</th>
<th>Qtz</th>
<th>Crd</th>
<th>Cld</th>
<th>Grt</th>
<th>And</th>
<th>Sil</th>
<th>Ms</th>
<th>Bt</th>
<th>Chl</th>
<th>Pl</th>
<th>Ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 11-1</td>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 11-2</td>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 11-3</td>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 11-3b</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 11-4</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 15 A</td>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 15 B</td>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 18</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 20</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 24 a</td>
<td></td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 64</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 65 A</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 65 B</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 72 A</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 72 B</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 74</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 75</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 83</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 85</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 86-1</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>E 86-2</td>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
</tbody>
</table>
روش پژوهش

به منظور بررسی شیمی سنگ کل مخاپیت‌های اسلامولو تعداد ۵ نمونه حاصل کلیه‌ی معروف برای آنالیز XRF انتخاب شدند و در آزمایشگاه کانادا مورد بررسی قرار گرفتند. با استفاده از نتایج این آنالیز ها و نمودارهای مربوطه، خاستگاه رسوبی نوع سنگ خاستگاه محیط زمین‌ساختی و فرآیندهای مؤثر در ترکیب شیمیایی رسوبی‌ها مورد بررسی قرار گرفتند. همچنین با استفاده از نتایج آنالیز شیمی سنگ کل تعادل بودن یا نبودن پارازنهای مربوط به بررسی قرار گرفت.[۲۲]

نتایج و بررسی

سنگ نگاری

هنر ملی ها، رس‌های محلی، و تکنیک‌های اسلامولو در نمونه‌ی دستی بسیار متفاوت بوده و مواردی رنگ‌دان. در این سنگ‌ها تنا حالی قابل مشاهده در نمونه‌ی دستی گزارنده و در مواردی بیشترین این سنگ‌ها، می‌توان این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و سخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و ناصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و Nاصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و Nاصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و Nاصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف بوده و Sخت و Nاصفتان بیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان بیشتر و موثر از Sوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از Sوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارای شکل‌های مختلف Bوده و Sخت و Nاصفتان Bیشتر و موثر از سوخته در این سنگ‌ها می‌شود. این سنگ‌ها دارا
آکسیدهای الومینیوم و تیتانیم با سیلیس منفی است. با توجه به این نمودارها آکسیدهای آلن و منزیم در نمونه‌های پر سیلیس بالا بوده و به همین دلیل منابع‌های اسلام‌مارکارایی فراوانی می‌باشد. فراوانی آکسیدهای الومینیوم، آلن، تیتانیم و منزیم در برابر اکسید سیلیس در شکل ۲ ترسیم شده است. جناح ملاحظه می‌شود که همبستگی مثبت بین آکسیدهای آلن و منزیم با اکسید سیلیس وجود دارد. در صورتی که این همبستگی بین

![Diagram](https://example.com/diagram.png)

شکل ۲ تصاویر نمایگیری از منابع‌های اسلام‌مارکارایی. علامات اختصاصی نام‌گذاری گرفته شده‌اند. علامات اختصاصی
جدول 2. ترکیب سنگ كل متابیت‌های اسالامو و کسر مولی آهن و آلومینیوم.

<table>
<thead>
<tr>
<th></th>
<th>E 83</th>
<th>E 86-1</th>
<th>E 24a</th>
<th>E 74</th>
<th>E 86-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>31.31</td>
<td>35.18</td>
<td>31.22</td>
<td>38.32</td>
<td>34.76</td>
</tr>
<tr>
<td>TiO₂</td>
<td>7.57</td>
<td>6.20</td>
<td>6.24</td>
<td>11.68</td>
<td>11.78</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>35.80</td>
<td>28.69</td>
<td>35.44</td>
<td>41.24</td>
<td>41.24</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>20.84</td>
<td>25.80</td>
<td>26.71</td>
<td>41.73</td>
<td>41.73</td>
</tr>
<tr>
<td>MnO</td>
<td>0.40</td>
<td>0.50</td>
<td>0.40</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>MgO</td>
<td>1.65</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td>CaO</td>
<td>3.51</td>
<td>3.11</td>
<td>3.11</td>
<td>3.11</td>
<td>3.11</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.10</td>
<td>0.84</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>0.95</td>
<td>1.95</td>
<td>0.95</td>
<td>1.95</td>
<td>1.95</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>XFe</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>XAl</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

\[XAl = \frac{(Al_2O_3 \cdot 3K_2O \cdot Na_2O)}{(Al_2O_3 \cdot 3K_2O \cdot Na_2O + FeO + MgO + MnO)} \]
\[XFe = FeO / FeO + MgO \]

![Diagram](https://via.placeholder.com/150)

شکل 3. نمودار تغییرات اکسیدهای آلی، آلومینیوم، منیزیم و تیتانیم نسبت به SiO₂ در متابیت‌های اسالامو.

برای تعیین نوع سنگ رسوبی قدیمی می‌توان از عناصر اصلی استفاده کرد. بدن منشور از نمودارهای هرون [23] و پیتیان و همکاران [24] استفاده شد بنا بر این نمودارها سنگ ماده رسوبی اولیه از نوع گروپک و شیل آهی است (شکل ۴-الف و

ب) همچنین در نمودار ارائه شده توسط کریس و همکاران [25] نمونه‌ها در کستره‌های گروپک قرار گرفته‌اند (شکل ۴-ب). مجزاگرایی این نمودارها بر منابع تغییرات لگاریتمی اکسیدهای مربوط به انتخاب شده‌اند.
شکل 4 نمودار رده‌بندی سنگ‌های رسی (۱۴) مزدهار اصلاح شده‌اند (۲۳). با پارامتر نمودار، سنگ‌های آلومینی‌های اسلاملو از نوع غربی هستند. به رده‌بندی هرتن (۲۳) که بر اساس آن سنگ‌های آلومینی‌های اسلاملو از نوع غربی هستند، پیش‌بینی می‌کند. در نمودار ارائه شده توسط قربان و همکاران [۲۵] نیز سنگ‌های آلومینی‌های اسلاملو در گروه غربی واقع شده‌اند. علائم: G: greywacke, LA: litharenite, A: arkose

در سازند پرمن استان آذربایجان غربی (به کش زمین‌شناسی مربوط به رجوع شود)، احتمال بحث سنگ مادر سنگ‌های آلومینی‌های نسبت آدنیو‌های بالا نسبت به سه‌رازری بالایی هستند. در نمودار ۴ تاثیر سلیس یزد به‌طور کلی نسبت به رسوب‌ها مورد بررسی قرار گرفته است [۲۸]. چنان‌که ملاحظه می‌شود سنگ‌های آلومینی‌های اسلاملو در میدان سلیس تخربی واقع شده‌اند که این حاکی از عدم تأثیر سلیس زیست‌نهاد در این سنگ‌های آلومینی‌های مختلف به‌طور کلی ممکن است با وجود آدنیو ممکن است با توجه به وجود اف دی‌التریتنی در استوانه‌های سلیس واقع شده‌اند. با توجه به وجود اف دی‌التریتنی

شکل ۵ نمودار سه‌افزایی برای تفکیک بکسیت‌ها از سنگ‌های رسی و اهنتی از آنها [۲۷]. همچنین نمودار مورد بررسی در گروه لاتریت قرار گرفته‌است.
درجهٔ دیگرسانی سنج خاستگاه

عناصر اصلی و فرعی گل‌های امروزی، درجه‌ی هوازدگی را در ناحیه‌ی خاستگاه مشخص می‌سازند [29]. این امر در مورد متلاپیته‌ها نیز صادق است. هوازدگی ناحیه‌ی خاستگاه باعث شده‌گی از عناصر قلبی و قلبی خاکی و غنی شناخت از آلومینیوم و تیتانیوم در سغنگ‌های رسوبی خاکی‌زد می‌شود [29-31]. به‌منظور بررسی درجه‌ی هوازدگی و تأثیر آن در ترکیب شیمیایی رسوب‌های حاصل، شاخص‌های متغیر ویژه وجود دارند که با یکدیگر پیاپی آنها بررسی می‌کنند [1] (Chemical Index of Alteration) CIA (Plagioclase Index of Alteration) PIA و [21] (Chemical Index of Weathering) CIW در جدول ۳ مقادیر و مرحله‌های این شاخص‌ها در نمونه‌های متلاپیته‌ای اسلالوم نشان داده شده‌اند.

تبلیغ جرم شیمیایی

به‌منظور مقایسه شیمیایی سنج کل متلاپیته‌های اسلالوم با متلاپیته‌های استاندارد نمو‌پذیر عکوبانی شامل ۸ ترکیب شده است. در این مورد درصد ورودی آکسیدهای متلاپیته‌های اسلالوم نسبت به آن در اختیار شاخص است. این ماتیپیته‌ها عرف ترکیب متابولیت‌های بررسی شده توسط دانشمندان مختلف است که برای مقایسه مورد استفاده قرار می‌گیرد (مثال: [۳۰]). با توجه به نمونه‌های مختلف، متابلیت‌های اسلالوم نسبت به متلاپیته‌های آگو از کسیدهای اولومینیوم، تیتانیوم و آهن سرشار بوده و از اکسیدهای کلسیم، سیلیسیم، منگنز، پتاسیم، نیتریژن و سبزی‌های غیر است. این مطلب نتایج با متابلیته‌های نوعی خود معروف متالورتمی بودن سیستم‌های مورد بررسی است.

درجهٔ دیگرسانی سنج خاستگاه

عناصر اصلی و فرعی گل‌های امروزی، درجه‌ی هوازدگی را در ناحیه‌ی خاستگاه مشخص می‌سازند [29]. این امر در مورد متلاپیته‌ها نیز صادق است. هوازدگی ناحیه‌ی خاستگاه باعث شده‌گی از عناصر قلبی و قلبی خاکی و غنی شناخت از آلومینیوم و تیتانیوم در سغنگ‌های رسوبی خاکی‌زد می‌شود [29-31]. به‌منظور بررسی درجه‌ی هوازدگی و تأثیر آن در ترکیب شیمیایی رسوب‌های حاصل، شاخص‌های متغیر ویژه وجود دارند که با یکدیگر پیاپی آنها بررسی می‌کنند [1] (Chemical Index of Alteration) CIA (Plagioclase Index of Alteration) PIA و [21] (Chemical Index of Weathering) CIW در جدول ۳ مقادیر و مرحله‌های این شاخص‌ها در نمونه‌های متلاپیته‌ای اسلالوم نشان داده شده‌اند.

تبلیغ جرم شیمیایی

به‌منظور مقایسه شیمیایی سنج کل متلاپیته‌های اسلالوم با متلاپیته‌های استاندارد نمو‌پذیر عکوبانی شامل ۸ ترکیب شده است. در این مورد درصد ورودی آکسیدهای متلاپیته‌های اسلالوم نسبت به آن در اختیار شاخص است. این ماتیپیته‌ها عرف ترکیب متابولیت‌های بررسی شده توسط دانشمندان مختلف است که برای مقایسه مورد استفاده قرار می‌گیرد (مثال: [۳۰]). با توجه به نمونه‌های مختلف، متابلیت‌های اسلالوم نسبت به متلاپیته‌های آگو از کسیدهای اولومینیوم، تیتانیوم و آهن سرشار بوده و از اکسیدهای کلسیم، سیلیسیم، منگنز، پتاسیم، نیتریژن و سبزی‌های غیر است. این مطلب نتایج با متابلیته‌های نوعی خود معروف متالورتمی بودن سیستم‌های مورد بررسی است.
جدول ۲ مقدار شاخص‌های هوازدگی CIA, CIW, PIA در منایلیت‌های اسلاملو و مراجع مورد استفاده

<table>
<thead>
<tr>
<th>اندازه‌های</th>
<th>CIA</th>
<th>CIW</th>
<th>PIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 83</td>
<td>92,59</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>E 86-1</td>
<td>94</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>E 24 a</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>E 74</td>
<td>93</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>E 86-2</td>
<td>94</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>مرجع مورد استفاده</td>
<td>[9]</td>
<td>[31]</td>
<td>[32]</td>
</tr>
</tbody>
</table>

CIA = 100[Al\(_2\)O\(_3\)/(Al\(_2\)O\(_3\)+CaO+Na\(_2\)O+K\(_2\)O)]
CIW = 100[Al\(_2\)O\(_3\)/(Al\(_2\)O\(_3\)+CaO+Na\(_2\)O)]
PIA = 100[(Al\(_2\)O\(_3\)-(K\(_2\)O)/(Al\(_2\)O\(_3\)+CaO+Na\(_2\)O-K\(_2\)O)]

شکل ۷ نمودار مثلثی طراحی شده توسط بانک و نسبت [9] در این نمودار وCNK H=K\(_2\)O و CN=CaO+Na\(_2\)O A=Al\(_2\)O\(_3\)
چنانچه در این نمودار دیده می‌شود شدت هوازدگی بیش از ۹۰ درصد است. ب (مثلث ACN نموده‌ها) تزییدک به رأس A و به جای شدت بسیار بالای هوازدگی است.

به ظاهر افزایش نشان دهنده [27] در تناوب تجزیه، جریه
وجود ندارد که با آن بتوان یکی از این دو گروه را انتخاب کرد.
اگر شرایط مستند درباره چگونه تغییر جرم یا حجم سنگ در هوازیگی داده شود، محله قرار گیرد. این گونه شاوهای
معمولاً دست یافتنی نیستند. بنابراین فقط می‌توان یک بک برای
اختراش پیش رفت. در طول فرآیندهای درگیر شده در این
عصار از دیگر میوه‌ها نیز قادرا. در این بسیار
عصار از هوازیگی به عنوان عنصر ناترا بی‌تحرک انتخاب شده
است. چنان‌چه در جدول ۴ نشان داده شده، محاسبه از طریق
مراحل زیر صورت می‌گیرد:

- تناوب تجزیه‌ای را با توزیع تجزیه‌ای به ۱۰۰ درصد می‌دانیم.
- رسایی (ستون S) و PC* و E* در فرض می‌کنیم.
- تابث است. قرار گرفتن هوازیگی باعث کاهش وزن ۱۰۰ گرم سنگ
تشریه و در نتیجه مقدار
Al2O3 به طوری از ۱۶۲۷ به ۲۳۷۹/۹۱ درصد افزایش یافته است. بنابراین وزن کن سنج
نسبت (35/91) از ۱/۰۰ می‌باشد به
۴۵/۹۴ کاهش یافته
است. مقدار هر یک از اجزای در ۴۵/۹۴ گرم می‌توانیم با ضرب
مقدار هر یک (ستون S) در این نسبت (0/9۸۶) به مقدار
آورد. از این راه ارقام سنگ فله به دست می‌آید. ۳- کاهش
یا افزایش هر جزء به کسر گرفتن سنگ از ارقام سنگ
به دست آمده (ستون B) درصد کاهش یا افزایش
PC* هر جزء تقسیم کردن ارقام سنگ ب ارقام سنگ
مالیه‌ها
شفافیت در E و PC
درصد و فقط مقدار کمی از آلومینیوم و آهن اولیه خود را از
دست داده باشد. این نتیجه چنان‌چه نتایج تجزیه
جدول ۴ نشان می‌دهد، افزایش ظاهری در مقدار دولتی
اخر را نشان خواهد داد. روش است که در یک توضیح تجزیه
که کاهش در برخی اجزا و افزایش در برخی اجرا نشان می‌دهد. برای مثال سیلیس و
کاهش هر دو ممکن بوده است، به عبارت دیگر هوائیگی
می‌باشد. این نتایج به در نظر گرفت که جرم کل سنگ ناب قابل ممکنه
بر اساس این محاسبات، بیشترین کاهش مربوط به اکسیدهای مزدوج، کلسیم، سدیم و
باتانسیم است. بنابراین اکسید افزایش براساس این محاسبات
تبتانی است که افزایش در حدود ۴۴ درصد نشان می‌دهد.
بنابراین همواره با پیش دقت که با استفاده از نتایج آقای
شیمی سنگ کل نمی‌توان به افزایش یا کاهش واقعی اکسیدها
یپ برده و به این منظور با پیش‌سی و انتقال جرم انجام
شده.
جدول ۴ محاسبه ترکیب مواد اضافه شده و از دست رفته طی هوازدگی ستون E به ترتیب مقادیر اکسی‌ها متانلیت‌های اسلاملوا و رسی پلازی کارمایلک [۴۶] است. ستون Hای E* در مقایسه با خان اکسید باقی مانده از هوازدگی ۱۰۰ گرم سلول را با فرض نتیجه بودن Al۲O۳ بر حسب گرم نشان می‌دهد. ستون B از دست رفتن و ازودن شدن اکسیدهای مختلف بر حسب گرم و ستون B همان از دست رفتن و افزوده شدن را بر حسب درصد مقادیر اولیه نشان می‌دهد.

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>E</th>
<th>PC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۵۹.۹۹</td>
<td>۵۳.۷۹</td>
<td>۵۳.۷۹</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۱۶۶۰</td>
<td>۱۶۸۲</td>
<td>۱۶۸۲</td>
</tr>
<tr>
<td>FeO۲</td>
<td>۹۷.۹۸</td>
<td>۷۸.۴۲</td>
<td>۷۸.۴۲</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۷.۸۳</td>
<td>۳.۸۴</td>
<td>۳.۸۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>K۲O</td>
<td>۲.۰۳</td>
<td>۱.۷۲</td>
<td>۱.۷۲</td>
</tr>
<tr>
<td>H۲O</td>
<td>۹۵.۰۰</td>
<td>۹۵.۰۰</td>
<td>۹۵.۰۰</td>
</tr>
<tr>
<td>LOI</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Total</td>
<td>۹۹.۳۰</td>
<td>۹۹.۳۰</td>
<td>۹۹.۳۰</td>
</tr>
</tbody>
</table>

بررسی رسمی تعداد دوگانه در متانلیت‌های اسلاملوا در هفته‌های مشاهده شده در هفته‌های اسلاملوا عبارتند از [۶] And+Qtz-۲ Car+Chl+Ms+Bs+Qtz-۱ And+Cls+Sil+Ms+Chl-۹ Crd+Grt+Ms+Qtz-۶ Crd+Cls+Sil+Ms+Ms۵ Grt+Crd+And+Sil+Bs+Ms+Hc۴ Grt+Ms+Bs+M۹ Crd+Sil+Ms+Ms۷ علامت از کرتز [۱۱]

تعیین محیط زمینی ساختنی تشکیل رسوب نموداری‌های متمایز کننده، محیط زمینی ساختی سنگ‌های رسوبی را مشخص می‌کند. با توجه به انگک برخی از عناصر طی هوازدگی به سرعت سیستم را ترکیب کننده با پایه FM- اینکونه بررسی‌های اخلاقی گرد [۲۹] در نمودار- ارائه شده توسط دانه و دکتری [۳۶] متانلیت‌ها در NAM میدان کلیت-هیدرومیکا واقعی می‌شوند که حاکی از نشست رسوب‌ها در حوضه‌های خارجی روند قانونی است [۲۹۰] (شکل ۹-اف). همچنین در نمودار (offshore) بیشتردی‌های میدان و همکاران [۴] متانلیت‌های اسلاملوا در میدان حاشیه‌ای قرار دارند واقع شده‌اند (شکل ۹-ب). البته باعث افزودن که قرارگیری نمودن در موقعیت حاشیه‌ای قرار بده معنی تشکیل رسوب‌های لزومی برای این موقعیت نیست بلکه می‌تواند نشانگر تشکیل رسوب‌ها از سنگ‌های مهکمی مرزور به قوس آشفتگی‌ها تاریک (قسمت ماکمی‌ای اروپه دیگ) باشد.
شکل 9 (الف) توزیع مدل NAM-FM محل نمونه‌ها در میدان III نشان‌دهنده که تنش در محیط روز گزاره‌ای است. (I) کاتاپلیت (II) مونت مورلینیت با مقادیر اندازه‌گیری شده در فرآیند تکمیل (III) کلریت با مقادیر تکمیل هیدروکلریت و (IV) کرمت و M=(Fe₂O₃+MnO+MgO)/SiO₂ هیدروکلریت (V) کلریت، اسمکولت و هیدروکلریت (VI) NAM=(Na₂O⁺K₂O)/Al₂O₃ و شکل 10 روابط فازی و واکنش‌های دگرگونی در سلول‌های رس مطالعه بر اساس سیستم KFMASH و فازهای اضافی در سمت راست نمونه‌ها آورده شده. (الف) دوگانه‌های فاقد هرس نباید. ب) دوگانه‌های دارای هرس نباید. محل ترکیب شیمیایی نمونه‌ها با علامت O نشان داده شده‌اند.

احتمالاً تشكل دوگانه‌های مربوط به زون گارت-کردریت-بوتینت (گارت + کردریت + بوتینت + مسکویت + کوارتز) یک دوگانه‌ی تعادلی نیست، زیرا ترکیبات شیمیایی سنگ‌های این دوگانه در داخل و در خارج از ملد دوگانه‌ای مربوط به زون گارت-کردریت-بوتینت (گارت + کردریت + بوتینت + مسکویت + کوارتز) یک دوگانه‌ی تعادلی نیست، زیرا ترکیبات شیمیایی سنگ‌های این

[3] [3] مجید م.، مودنی، م.، طیبی، م.، "نوشتاری گونه کلی اثراتی که دارای شیمی‌های نهضت، ارگنتینی و پاترولی، یک کتاب در زبان فارسی، 1386 (تاریخ) صفحه 49-60.
