زمین دما-فشارسنجی و کانی شناسی توده‌های نفوذی اسیدی الیگو-میوئسی شمال غرب شهریابک، کرمان

غلامرضا قدمی ۱، عباس مرادیان شهریابکی ۲، سیدمحسن مرتشوی۲

۱- دانشگاه هرمزگان، دانشکده علوم فارابی، گروه زمین شناسی، بند عباس
۲- دانشگاه شهید باهنر کرمان، دانشکده علوم، گروه زمین شناسی، کرمان

چکیده: در جنوب شرق کویرن میکانیسم‌های ارتمای-دختر، شمال غرب شهرویانه شمال باک، بیش از ۲۰ توده‌ای نفوذی از نوع تونالیت تا گرانولیتریت با سن الیگو-میوئسی به درون سنگ‌های آتشنشانی انسان نفوذ کرده‌اند. این سنگ‌ها دارای یافته‌های دانه‌ای، یونکتی و شیمبهای اجرایی از کانی‌های، کوارتز، نانوسیال قلبی و کانی‌های گردن گرفته‌اند. فلسفه‌های میکانیسم‌های این سنگ‌ها از نوع آنکروت (Ab26.6-Ab3.4) (An21-An47) (QR3.4) است. بر اساس میزان الومینیوم موجود در آمپیبول نتایج نفوذی فوق در گسترشی تفاوت ۹ تا ۵۵ کیلوبرت (معادل عمق ۸۰ تا ۸۲ کیلوبرت) و گسترشی دمایی ۷۲ تا ۷۵ درجه سانتی‌گراد مشابه است. نتایج فوق نشانزند تکثیر آمپیبول در دماها و ابعاد مناسب است. بر اساس داده‌های زمین‌شناسی، توده‌های نفوذی فوق از نوع آکی-قلبی بوده و در یک حاشیهی فعال قراری تشکیل شدند.

واژه‌های کلیدی: زمین دما-فشارسنجی تونالیت، گرانولیتریت، الیگو-میوئسی؛ ارتمای-دختر

مقدمه

کویرن میکانیسم ارتمای-دختر شامل سنگ‌های نفوذی و آتشنشانی به سن کرشنه تا آزمایش به عرض ۱۵۱ تا ۱۵۱ کیلواندا و ضخامت ۴ کیلوبرت با روند شمال غربی-جنوب شرقی است. سنگ‌های میکانیسم کویرن ارتمای-دختر در استان کرمان بروندهای قابل توجهی دارند و از نوع و حجم قابل ملاحظه‌ای برخوردارند. برای از پژوهشگران، این بخش از کویرن میکانیسم ارتمای-دختر را تحت عنوان کویرن دوج-ساردونه معروف کرده و برای آن تفسیری مهم و سرگذشت جدایگانی در نظر گرفته‌اند. برای این منظور دست‌یافتهای عجیب و غریبی در طول سنوزیتل‌ها دیده شده است

brxh iz یوهوگران میکانیسم سنوزیتل این منطقه را به فروراش نتویت، به زیر ایران مرکزی نسبت داده.[۲] و تغییرات ترکیب شیمیایی میکانیزم در طول سنوزیتل‌ها را به تغییرات شیب فروراش نسبت دادهند.[۲] برخی نیز میکانیزم الیگو-میوئسی این ناحیه را ادکلنی معرفی کرده‌اند.[۲-۵]

سنگ‌های نفوذی اسیدی الیگو-میوئسی جنوب شرقی کویرن میکانیسم ارتمای-دختر کمربن دهک-ساردونه که در شمال غرب شهریابک قرار گرفته‌اند محور اصلی بررسی‌های ما را تشکیل می‌دهند. در بخش یوهوگران، سنگ‌گذاری و فشرده‌سازی

ghadamigholamreza@yahoo.com

نویسنده مسئول، تلفن: ۰۹۱۷۶۳۷۶۲، تلگرام: ۰۹۱۷۶۳۷۶۲۰۵۸، پست الکترنیکی:

Downloaded from ijcm.ir at 14:17 +0330 on Thursday February 25th 2021
موجود در سنگ‌های نفوذی فوق، ترکیب شیمیایی پلاژیوکلازها
و تغییرات ترکیبی آنها، ترکیب شیمیایی آمفیبول و زئین
دما، فشار و نفوذی ترکیب زئین با توجه به ترکیب شیمیایی
آمفیبول مورد بررسی قرار خواهد گرفت.

موضع‌گیری زئین سنگ‌های

روش بررسی

در حدود ۱۵۰ نمونه از سنگ‌های نفوذی در بررسی
سنجش جمع آوری و بیش از ۳۰ نمونه برای تهیه مقطع
نمونه انتخاب شدند. با توجه به نوع کانی، سنگ و
موضع‌گیری به شیوه روشی گنجشده در دانشگاه برستول،
سئوگلاس آنها کشیده شدند. در این راستا کانی‌های اصلی پلاژیوکلاز،
آمفیبول، فلدسپات‌های پیتپاسیم و بیوتیت و چندین نطفه زئینه
و کانی‌های کرم جهش شدند. دستگاه ریزبردارنده از نوع
۱۵ nA با ولتاژ ۱۵کیلو ولتاژ و یکنقطه قطر ۱۱ میکرون
تعداد ۲۲ بر روی ساختگی پلاژیوکلاز بر
اساس ۱۵ تکسیزم و باری امفیبول بر اساس ۱۵ تکسیزم
محاسبه و در جدول‌های ۱ و ۲ ارائه شده است. برای مانگمار
دقیق کانی‌ها از برناه Min Pet و برای محاسبه کاتیون‌ها از
Excel استفاده شده است.

شکل ۱ واحدهای اصلی واقع در کمربند کوه‌های زاغرس [۱۷]. موضع‌گیری نفوذی

دخترا شهرستان شهر بابک، اعیان، خرم‌آباد و
دهج بین طول‌های جغرافیایی، ۳۰ درجه شرقی
و عرض‌های جغرافیایی ۳۰ درجه شرقی
در بخش یکم از سنگ‌های منطقه را شامل می‌شود که در یار
ترکیب غالب آن‌ها از بارلت و با گرایش آهی- قلبی‌ای
شوشوئیسنند ۴۱ [۲۰].

بخش قبل نویشی از سنگ‌های منطقه به نفوذی
اسبی و است. در این ناحیه بیش از ۲۰ توده نفوذی
گیلیکونیا به سیلیکو-ماگنیتیک به درون سنگ‌های
انسان‌نواز که این سنگ‌های طبیعی در شار می‌شود.
در شار لایه‌ها به شکل دایره از سنگ‌های
اطلب با نتایج تهیه‌ای از کانتراسپتیا مس همراه که می‌توان
به گودگیری، سلطان‌آباد، ارومیه و کمر اثری کرد. جوان‌ترین

شکل ۱. واحدهای اصلی واقع در کمربند کوه‌های زاغرس [۱۷]. موضع‌گیری نفوذی

۵۴۴ قدمی مراحل موادی که ناشی از این سنگ‌های از

Downloaded from ijcm.ir at 14:17 +0330 on Thursday February 25th 2021
بحث و بررسی

توده‌های نفوذی اسیدی منطقه‌ای مورد بررسی شامل دو دسته یعنی سنته‌های تونالیتی-گرانودورپتی است که دارای:

\[\text{SiO}_2(58.8-65.5)\quad \text{MgO}(0.62-2.98)\quad \text{FeO}^{*}(2.2-5.41)\quad \text{Al}_2\text{O}_3(17.6-15.58)\quad \text{CaO}(5.8-3.37)\quad \text{Na}_2\text{O}(5.01-4.21)\quad \text{K}_2\text{O}(2.46-1.91) \]

درشت بلورها به قرار زیر است:

پلاژیوکلازاها

از کاتیون‌های اصلی تشکیل دهنده این سنته‌ها است. در این سنته‌ها، گرانودورپتی، تونالیتی، کارترز در دو دسته یعنی سنته‌های تونالیتی کنترل‌کارترز در دو دسته یعنی سنته‌های گرانودورپتی به دو دسته می‌باشد. به‌پایه نتایج میدانی این سنته‌های نفوذی، توده‌های یاد شده در گستره‌های این سنته‌ها را در یک گستره تحقیقاتی به بهترین‌های گیرند (شکل 3).

این سنته‌ها زیر میکروسکوپی نواحی ویفریت و خمیری ریزدانه‌ای به و درشت بلورها شامل پلاژیوکلازا، هورتالکس و پتیت‌نیت که در منابع از کاتیون‌های زیر، بلور کوارتز و فلئسپین با تپیس قرار گرفته‌اند. کاتیون‌های فرعی شامل کاتیون‌های کدرو، اپاتیت و زبرک است (شکل 3).
شکل ۲: تقسیم‌بندی سنگ‌های نفوذی منطقه با توجه به میزان آلیت، آنتوریت و اوترت موجود در نورم آنها (ًتونالیت، گراندوپورت).

شکل ۴: (الف) آمفیبول‌های شکل‌دار و نیمه شکل‌دار هنگام با پلاژیوکلازه با رنگ زمینه‌ای آفت پورفیری میان‌دانه‌ای در سنگ‌های تونالیتی (XPL). (ب) جنبه‌های اصلی‌تر (آرف) در پلاژیوکلازهای به‌سیاهی منطقه‌بندی شده در یک زمینه‌ای با آفت پورفیری رنگ دانه‌ای در سنگ‌های تونالیتی (PPL). ب) تبدیل آمفیبول به بیونیت و رشد بعدی بیونیت در سنگ‌های گراندوپورتی (Am–Op, Bi–Pl). (الف) آرتیک‌بیونیت، آمفیبول سوزنی و شکل‌دار، هنگام با پلاژیوکلازهای دارای منطقه‌بندی و حاشیه‌ای فلزی‌های میکروپتی فلایی در یک زمینه‌ای با آفت پورفیری میان‌دانه‌ای در سنگ‌های گراندوپورتی (XPL).
نتایج تجزیه‌ی نقطه‌ای برخی از پلاژوکلرها درشت بلو و منطقه‌بندی شده و مقدار کاتونه‌ی آنها بس از محاسبه بر اساس فرمول ساختاری 8 گویسین از جدول 2 اخذ شده است. نوع

<table>
<thead>
<tr>
<th>ویژگی‌ها</th>
<th>نقطه 1</th>
<th>نقطه 2</th>
<th>نقطه 3</th>
<th>نقطه 4</th>
<th>نقطه 5</th>
<th>نقطه 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al2O3</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
</tr>
<tr>
<td>CaO</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
</tr>
<tr>
<td>K2O</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Total</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
</tr>
</tbody>
</table>

نتایج تجزیه‌ی نقطه‌ای برخی از پلاژوکلرها درشت بلو و منطقه‌بندی شده و مقدار کاتونه‌ی آنها بس از محاسبه بر

<table>
<thead>
<tr>
<th>ویژگی‌ها</th>
<th>نقطه 1</th>
<th>نقطه 2</th>
<th>نقطه 3</th>
<th>نقطه 4</th>
<th>نقطه 5</th>
<th>نقطه 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al2O3</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
</tr>
<tr>
<td>CaO</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
</tr>
<tr>
<td>K2O</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Total</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
</tr>
</tbody>
</table>

نتایج تجزیه‌ی نقطه‌ای برخی از پلاژوکلرها درشت بلو و منطقه‌بندی شده و مقدار کاتونه‌ی آنها بس از محاسبه بر

<table>
<thead>
<tr>
<th>ویژگی‌ها</th>
<th>نقطه 1</th>
<th>نقطه 2</th>
<th>نقطه 3</th>
<th>نقطه 4</th>
<th>نقطه 5</th>
<th>نقطه 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
<td>61.31</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al2O3</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
<td>34.91</td>
</tr>
<tr>
<td>CaO</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
</tr>
<tr>
<td>K2O</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Total</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
<td>99.95</td>
</tr>
</tbody>
</table>
دانشگاه می‌شود و دو نسل از پلازیکلاژهای کاکتوس با حاشیه‌های
انحلال یافته و درگیری بدون حاشیه‌های احتمالی در این سنگ‌ها ممکن است است (شکل 4). منطقه بندی عادی معکوس و
نوشان پلازیکلاژهای نیز با توجه به بررسی‌های سنگ‌نگاری
سنگ‌گاه منطقه می‌تواند به دلیل افزایش فشار مواد فرار باشد
[11]. افزایش فشار مواد فرار می‌تواند ناشی از کاهش فشار
همای افکار در مخازن پوسته‌ای عمیق و سطحی باشد. در این
حالت افزایش فشار مواد فرار باعث جابجایی منجینی‌های سیلان
و انجام می‌شود که حتی ممکن است باعث احتمال داشته باشد افزایش فشار مواد فرار در اطراف سیلان‌های سنگ‌نگاری
است. در این حالت شرایط برای تابلوی لایه‌های غنی از
آذریتی‌های فراهم می‌شود و فشار مواد فرار در معرض احتمال
قرار می‌گیرد [12,18]. در شرایط جدید (از آغازین فشار مواد
فرار) نسل جدیدی از پلازیکلاژهای سنگ شکل خواهد شد
که این پدیده نیز در تمامی سنگ‌های تونالیت-گرناودورلبیتی
بله، درصد سگان. این کانی به دو صورت بلورهای درشت
اولیه و زیم بلور در زمین‌ست سگه دیده شدند و اغلب از نوع
اولیه و بدون آثار تجزیه سختی و آن در انداره‌های
کمتر از 0.1 میلیمتر در سنگ‌های دکتر (شکل 4). میزان
فلدسفات انسامین به سنگ‌های تولاته‌ای حداکثر 10 درصد است
در صورتی که سنگ‌های گراندبوریت به حداکثر 25 درصد می‌رسد
و دوی سری سنگ‌های گراندبوریت محوطه‌ای صورت می‌گیرد.
فلدسفات‌های پرتیس در اندازه‌های جدول ناحیه پرتیس و گراندبوریت
از بخش‌هایی از سنگ‌های ۱۲۵ درصد است. میزان آنتز در این کانی‌ها بین
۷۵ درصد است. این فلدسفات‌ها به شکل‌هایی می‌شوند (شکل ۴، ۵-B).

آمیپیلوویا

آمیپیلوویا به رنگ سبز تا سبز روشن به فوهای قرارگیرین
کانی قریب‌تابستان سگه‌های نفوذی سختی در سنگ‌های
تولاته‌ای و پاتولزیون‌های قرارگیرین کانی تشکیل دهنده
سنگ‌های، ولی در سنگ‌های گراندبوریت قرارگیری آن‌ها کمتر از

جدول ۴ کانی‌های تولاته‌ای به شکل‌هایی است. آمیپیلوویا به شباهت

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>49.6</td>
<td>48.9</td>
<td>48.2</td>
<td>49.7</td>
<td>49.9</td>
<td>48.7</td>
<td>48.2</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.8</td>
</tr>
<tr>
<td>Al2O3</td>
<td>5.5</td>
<td>6.5</td>
<td>6.0</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>FeO*</td>
<td>14.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
</tr>
<tr>
<td>MgO</td>
<td>14.7</td>
</tr>
<tr>
<td>CaO</td>
<td>15.6</td>
</tr>
<tr>
<td>Na2O</td>
<td>3.2</td>
</tr>
<tr>
<td>K2O</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>95.5</td>
</tr>
<tr>
<td>Formula</td>
<td>SiO2</td>
</tr>
<tr>
<td>Si</td>
<td>7.00</td>
</tr>
<tr>
<td>Al</td>
<td>1.10</td>
</tr>
<tr>
<td>Ti</td>
<td>0.93</td>
</tr>
<tr>
<td>Fe3+</td>
<td>0.29</td>
</tr>
<tr>
<td>Mg</td>
<td>0.11</td>
</tr>
<tr>
<td>Fe2+</td>
<td>0.29</td>
</tr>
<tr>
<td>Mn</td>
<td>0.07</td>
</tr>
<tr>
<td>Ca</td>
<td>1.86</td>
</tr>
<tr>
<td>Na</td>
<td>0.33</td>
</tr>
<tr>
<td>K</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>15.32</td>
</tr>
<tr>
<td>Mg(Mg2Fe2+)</td>
<td>0.07</td>
</tr>
<tr>
<td>FeOTotal(FeO<sub>Total</sub>+MgO)</td>
<td>0.02</td>
</tr>
</tbody>
</table>
شکل 7 تقسیم‌بندی أمفیبول‌ها در این نمودار امفیبول‌های سنگ‌های (تولانیتی و گرانودورینی در محدوده کلیک قرار می‌گیرند) [20].

شکل 8 نمودار تقسیم‌بندی امفیبول‌ها، در این نمودار امفیبول‌های سنگ‌های نفوذی منطقه اغلب در محدوده مگنیبوئرلند و کمتر در گستردگی شرماکیت قرار گرفته‌اند [20].

پیشینه
پیشینه ی昇 از ظرفیت‌ها را وندین کهنِ ماده‌ها در نظر می‌گیرد. معمولاً به صورت درشت بلورهای شکل‌دار و نیمه شکل اولیه وجود دارد، و گاهی نیز از تبدیل آمفیبول‌ها حاصل شده‌اند که در این صورت یک شکل می‌گیرد.
تبلیغ شده‌اند و بیوی‌ها نیز می‌توانند شده‌اند. در اخیر، مرحله‌ی انجماد که ماسک‌ها به افکت‌ها بالاتر رساند است. رژیم‌های و متن سنج مطبوعاتی شده‌است. در این مرحله پترول‌های سدی کوارتاژ، افزایش‌های سنجش در کاهش‌های فراموش هستند. همچنین نمایش‌های بی‌شمار در رهگذری در رشته را
(شکل ۳، ز_ref) زمین‌دار فشار نسجی
یکی از نکات قابل توجه در سنجش‌های نفودی باد شده تبلیغی می‌تواند بی‌خیانت است. همچنین چک که کافی است. بر اساس کیفیت، افزایش کوارتاژ می‌تواند با تشکیل و نیز افزایش بی‌شمار شده، است. از طرف دیگر نفوذ ماسک‌های جدید به اتاق ماسک‌های می‌تواند باعث اندیزدهم و تشکیل واکنش اخر شد که نتیجه‌ی آن افزایش میزان‌آب گریزندگی اکستریم و امتزاز نابودی بریشتر است. در این شرایط کاتی‌ها مکانیکی و بیوی‌ها در اطراف اکسپلور من‌بی‌ایو و با کاهش دما می‌تواند باید بی‌خیانت بیوی‌های نسبت به اکسپلور آفرینه‌زیانی می‌باشد. این فرآیندهای اندام‌هایی کوارتاژ را باید صورت بی‌شک و پازل‌بندی کانال‌های زمین‌های پر کره‌ای و میان آن در اخیر مرحله‌ی ارائه با توجه به نتایج حساس به نگاهی سنج‌های نفوذی میزان‌آب کوارتاژ در سنج‌های تولیدی کمتر از ۱۰ درصد است. اما از سنج‌های گروندورپری شده بین ۲۵ درصد نیز می‌رسد [۹]، کاتی‌ها فرعی: معمول می‌توانند کاتی‌ها فرعی در تولیدی بیوی‌ها و گروندورپری‌های بی‌خیانت آپاته‌ی‌زه، زیتون و کدر (کسیده‌هاهی اهن، نیتانیوم) است که اغلب به صورت بردی‌دریا-هایی در کاتی‌ها درشت بی‌بی‌های (پلازموکلا)، اکسپلور و بیوی‌تها و یا به صورت دانه‌های آبی دری در اطراف اکسپلورها و بیوی‌تها و یا به متن سنج پرکنده‌هستند (شکل ۴). تجزیه نقطه‌ی برخی از کاتی‌ها اکبر نسبت به اکسپلورها و اکسپلورها نشان داده که از نگاه که اکسپلور‌های کاهش‌های اهن و نیتانیوم هستند که تجزیه اکسپلورها و بیوی‌ها حاضر شده‌اند. برسی‌های حاصل از سنج‌گیری‌های تولیدی بیوی‌ها و گروندورپری‌های نشان می‌دهد که این سنج‌ها در سه مرحله می‌توانند شده‌اند. در مرحله‌ی اول اکسپلورها و پلازموکلازهای اولیه شکل گرفته‌اند. میزان اکسپلورها بالاتر، کاهش فشار باعث افزایش فشار مواد فار در مخزن ماسک‌های شده است. در این حالت منحنی‌های انجماد و انگویی کمیک جناه‌ی هورز و پلازموکلازهای اولیه نیز کمیک اندازه‌ی بایته و یک حسی‌بر از اطراف آن تشكل شده است و نسل دوم پلازموکلازهای بدون حساسیت ارزی نیز در همین مرحله می‌توانند. شده‌اند. در این مرحله بخشی از اکسپلورها نیز به بیوی‌ها
نمونه‌ها باید دارای مشخصات زیر باشند:
- نمونه‌ها دارای مجموعه‌های مهره‌ای از کالی‌های کوارتز، فلزات پتاسیم، پلاژیوکلاز، هورنبلد، برونتز، مانیت و انگلیت باشد [۳۶]. که با توجه به بررسی‌های سنتگی‌گرای این تکثیری در نمونه‌های محله وجود دارد (شکل ۳). از آمفسیول‌های دارای ترکیب اکتینولیت‌یابی چشم پوشی کره [۷۲]. که با توجه به ترکیب شیمیایی آمفسیول‌ها و نمونه‌ها آنها ترکیب اکتینولیت در نمونه‌های تجهیز شده مشاهده نشد.
- آمفسیول‌ها باید فاقد منطقه‌بندی و بدون دگرسانی باشد [۷۲—۷۳]. با توجه به بررسی‌های سنتگی‌گرای منطقه‌بندی در آمفسیول‌های سنتگی‌گرای نفوذی مشاهده نمی‌شود.
- شرایط برای نمونه‌های بررسی شده وجود دارد (جدول ۲).

زمین فشارسنجی و زمین درمانسنجی بر اساس مقدار آلمینوم
نتایج آزمایش‌های نشان داده‌اند که ترکیب آمفسیول علاوه بر فشار، به‌دست آنها خاصیت کم‌سیستمیک ولی به‌خصوص منطقه‌بندی ۲۹.۲۸ و ۲۸.۷۱ درصد درآمفسیول کلاً در آمفسیول با کم‌سیستمیک ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

از طرف دیگر داده‌های زوئوژیمیایی سنتگی‌گرای نفوذی

الگوسیمس شالی، غرب شهربابک نشان داده است که این سنتگی‌گرای گروه آکسی‌کالی‌هستین است. دیگر مشخصات زوئوژیمیایی این توده‌ها از جمله این عناصر گیاهی نمونه‌ها LILE(Ba, Sr, Nb, Pb, K, Zr) هستند. به همراه نشانه‌های زئوسیت‌ماندگار نب و یا Ti و ترکیب هستی‌ها (۳۶).

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.

در این مقدار، ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد. در این ترکیب ترکیب کلی از سطح تا سطح لایه‌ای می‌باشد.
جدول ۳

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نقطه تجزیه شده</th>
<th>نوع مفیوبیت</th>
<th>فشار (Kbar)</th>
<th>دما (D) بریاناه (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-۰۹</td>
<td>امفیوبیت سیز</td>
<td>۰.۰۶۴</td>
<td>۷۰۷.۲</td>
<td></td>
</tr>
<tr>
<td>A-۰۳</td>
<td>امفیوبیت سیز</td>
<td>۲.۸۴۵</td>
<td>۷۳۶.۸</td>
<td></td>
</tr>
<tr>
<td>A-۰۷</td>
<td>مرکز امفیوبیت</td>
<td>۳.۴۲۱</td>
<td>۷۴۱.۴</td>
<td></td>
</tr>
<tr>
<td>A-۰۸</td>
<td>حاشیه امفیوبیت</td>
<td>۲.۹۹۷</td>
<td>۷۸۸.۳</td>
<td></td>
</tr>
<tr>
<td>A-۰۴</td>
<td>امفیوبیت سیز</td>
<td>۴.۶۷۹</td>
<td>۷۷۴.۸</td>
<td></td>
</tr>
<tr>
<td>A-۰۱</td>
<td>امفیوبیت سیز</td>
<td>۲.۴۰۷</td>
<td>۷۱۵.۸</td>
<td></td>
</tr>
<tr>
<td>A-۰۶</td>
<td>امفیوبیت سیز</td>
<td>۳.۱۵۴</td>
<td>۷۳۴.۷</td>
<td></td>
</tr>
<tr>
<td>A-۰۵</td>
<td>مرکز امفیوبیت</td>
<td>۲.۴۳۲</td>
<td>۷۱۷.۷</td>
<td></td>
</tr>
<tr>
<td>A-۰۴</td>
<td>حاشیه امفیوبیت</td>
<td>۲.۴۲۰</td>
<td>۷۱۶.۱</td>
<td></td>
</tr>
<tr>
<td>A-۰۱</td>
<td>امفیوبیت سیز</td>
<td>۵.۰۷۲</td>
<td>۸۸۲.۳</td>
<td></td>
</tr>
<tr>
<td>A-۰۲</td>
<td>امفیوبیت سیز</td>
<td>۳.۲۴۴</td>
<td>۷۳۷.۴</td>
<td></td>
</tr>
<tr>
<td>A-۰۳</td>
<td>امفیوبیت سیز</td>
<td>۳.۷۷۸</td>
<td>۷۵۶.۶</td>
<td></td>
</tr>
<tr>
<td>۰۰۰۴</td>
<td>تونالیت</td>
<td>۵۴۵۸</td>
<td>۷۹۹.۹</td>
<td></td>
</tr>
<tr>
<td>۰۰۰۴</td>
<td>حاشیه امفیوبیت</td>
<td>۵.۰۷</td>
<td>۷۸۳.۲</td>
<td></td>
</tr>
<tr>
<td>۰۰۰۴</td>
<td>امفیوبیت سیز</td>
<td>۳.۹۰</td>
<td>۷۵۲.۷</td>
<td></td>
</tr>
<tr>
<td>M-۴۵</td>
<td>تونالیت</td>
<td>۳.۱۲</td>
<td>۷۳۳.۸</td>
<td></td>
</tr>
<tr>
<td>M-۴۴</td>
<td>مرکز امفیوبیت</td>
<td>۲.۹۰</td>
<td>۷۲۸.۳</td>
<td></td>
</tr>
<tr>
<td>M-۴۴</td>
<td>حاشیه امفیوبیت</td>
<td>۱.۸۰۰</td>
<td>۷۰۱.۱</td>
<td></td>
</tr>
</tbody>
</table>

برداشت

نتایج حاصل از بررسی روی سنگ‌های نفوذی اسیدی ایگو-یاریست، نشان می‌دهد که این سنگ‌های می‌توانند در حالت سخت و شدید سختگیری‌های زیادی باشند. در نتیجه، تولید قطعات تونالیتی و امفیوبیتی به صورت گسترده در گستره‌ای تا گل‌کوبلاژ-پس-گر نمایش می‌دهد.

توضیحات

- این سنگ‌های نفوذی اسیدی ایگو-یاریست، نشان می‌دهد که این سنگ‌های می‌توانند در حالت سخت و شدید سختگیری‌های زیادی باشند. در نتیجه، تولید قطعات تونالیتی و امفیوبیتی به صورت گسترده در گستره‌ای تا گل‌کوبلاژ-پس-گر نمایش می‌دهد.

عکس

عکسی از نمونه‌های اسیدی ایگو-یاریست واقعی صورت گرفته است.

[9] قدمی غ، مرادیان غ، مرزویو م، روتومیسی و برنژنر، توده‌های نفوذی اسیدی الیو-مونزیتی در شمال غرب شهربابک، کرمان، فصلنامه علوم زمین، سازمان زمین شناسی کشور (زیر چاپ).

[30] يوسفزاده م.چ، سیزهای م.ز، زمین دماغ-ماسمنی داسیت مارکوه (شمال شرق بیرجند) و برموهای آزمایشاتی