سنگزایی اتول گاز‌ها در مجموعه‌ی دگرگونی بلندپرچمی در جنوب غرب ماهنشان

شهریار محمودی ۷، شاپیست آزادیخت

دانشکده علوم زمین، دانشگاه خوزستان، هنران

چکیده: مجموعه‌ی دگرگونی بلندپرچمی در شمال غرب شیراز تا زنجان قرار دارد و از لحاظ ساختاری در مرز منطقه‌ی ایران مرکزی و سنتی سریان واقع شده است. سنگ‌های منطقه‌ی محور بررسی شامل مجموعه‌ی شیب‌های متنوع، مجموعه‌ی تناخلواص و منطقه‌ی تاس ساخته که توده‌های گرانیتی و گرانیتی‌های سنگی در مرکزی و شمالی آن تزریق شده است. بخش مرکزی مجموعه بلندپرچمی با گسل‌های روانته با روند شمال غربی جنوب شرقی برهه شده است. بررسی‌های سنگ نگاری و تجزیه‌های شیمیایی از سنگ کلی تجزیه‌های شیمیایی نقطه‌ای و تجزیه‌های برکی ایکس از نمونه‌های جمع‌آوری شده از منطقه‌ی مورد بررسی، نشان می‌دهد که در سنگ‌های میکانیستی ها، دو گروه گازت و وجود گرد در شرایط سنگی و ترمودینامیکی منتفاو، متابولیسم مربوط به سنگ‌های میکانیستی ها دارای ساختار منطقه‌ای متفاوت و یک گروه دایای بافت‌های غیر تعلیقی از نوع اولش شکل یافته که تاریخی‌های رخداده‌ی دگرگونی منطقه‌ی چنین را در خود ذکر کرده است. به نظر می‌رسد در اخیرین‌های فاز دگرگونی، مجموعه‌ی ماده‌ی ماه‌نشان به دلیل ۴۰۰ میلیون سال گرد و فشار و نسبت به ۲۳۵۰ درجه سانتیگراد در جایی‌های بالاتری رخ داده و سپس طی یک دوره سریع شدگی سبب مجموعه‌ی دگرگونی به اعضاً کمتر بهره‌مندی کرده است.

واژه‌های کلیدی: آتانو نانی، قارچ‌ها، سنگ‌ها، صخره‌ها، طول‌بندی‌های شیمیایی، سنگ‌نگاری، ترمودینامیک، بلندپرچمی

مقدمه

در اثر انفجارهای غیر تعلیقی در سنگ‌های دگرگونی، ممکن است برخی از گاز‌های دگرگونی باقی مانند هال، سیمپلیکس، ماه‌گون، اوتوئی و غربالی به وجود آورند. بافت‌های اولیه انواع خاصی از بافت‌های کربناتی هستند که مورد توجه پژوهشگران مختلف آثار قرار گرفته است و مشکلی از یک بخش مرکزی گازت ایست که با مخلوطی از چند کانی درک که در فازهای دگرگونی بعدی ایجاد شده اطلاع شده است. حلقه اطراف آب‌ها معمولاً از پیوند، سکویی، فلسفی‌سی کوارتز و آکسید آهن [8] تشکیل شده است. در مواردی جزئی گازت را می‌توان بطور یک حلقه که بازار شکاف گازت نامیده می‌شود [9] دیده شود. به طور کلی،

S.mahmoudi@Khu.ac.ir

نویسنده مسئول، تلفن: (۰۳۸۰) ۶۹۷۶۷۷۷۸۳-۸۸۲۰۰۰، پست الکترونیکی:

زمین‌شناسی منطقه

جغرافیایی در شمال غرب ایران و جنوب غرب استان زنجان واقع شده است. منطقه‌ی مورد بررسی در استان زنجان در طول‌های جغرافیایی ۹۷۰ تا ۷۳۰ میلیون ساله و عرض‌های ۶۴°۳۰ تا ۴۶°۳۰ شمال قرار دارد. مجموعه ماهنشان در راستای مجموعه درگرگون تکاب قرار دارد. اگر

شکل ۱ نقشهٔ زمین‌شناسی منطقه‌ی مورد بررسی (با تله‌نیم قطعه 1100000 ماهنشان: ۱۲۴].
گارتون میکروتیسم مورد بررسی حاوی گارتون، پیوست، مسکوت و کوارتز است. کارتون به عنوان کانی محصول درگونی برگرنی و برخی موارد استرولاینیز به عنوان کانی اتفاقی وجود دارد. اساس مشاهدهای میکروسکوپی دو دسته گارتون در سنگ‌های نام هرود وجود دارد. سنگ‌های آبی گل‌ریز گارتون شکل ولی نمی‌شکل. شکل‌دار است که دارای مرزهای مشخص با کانی‌های مجاور است (شکل 2-3). این گروه در مناطقی نزدیک به نوده گرانیتی بند پرچین برداشت شدهاند.

درستی نمونه‌های کوارتز غلیظ یا شامل گاهی دارای مرز ناشخص با بایر مجاور هستند. ادخال‌های گردن کانی‌های گردن، کلریت و گردن بافت پویی کیلویلاست را در برخی بلورهای گروه دوم گردن‌ها به وجوه آورد. این بدنش (شکل 3). بلورهای یوزن گردن که به صورت غیرهای باقی مانده و بلورهای گردن از آن به کم‌سی خروید. کارتن به صورت درون‌گیری در غالب گردن‌های با دمای بالاتر از جمله گارتون تشکیل شده است. همچنین بعضی از گردن‌های بلورهای گروه بطریم به وسیله‌ی کانی گردن جایگزین شدهاند. گردن‌های دارای سایه فشاری مشتق‌های که این سایه‌های فشاری غلیظ یا باکترینو و کوارتز برده است. بلورهای استرولاینیز دارای بافت غیری بهصورت خیلی کمیبد در سنگ‌های محقق می‌شوند. پلی‌پلاستی با روش تکراری نیز در سیمین سنگ‌قابل‌شهادت است. که احتمالاً بهصورت لوله‌ای در سنگ‌های داشته است. سنگ‌های دارای نوارهای (Q-domain) است. از (M-domain) غنی از از گردن‌ها در شکل‌دار گردن این گروه دوم در مرز نوار غنی از کوارتز و غنی از از میکروکرید که این گروه در منطقه نزدیک به نوده‌گردنی بلند پرچین برداشت شده است.

پورفیرولاسه-ب: بلورهای گردن گروه دوم توصیف شده در سنگ‌های نگاره بافتی باربیف گارتون و آئول گردن را نشان می‌دهند. بر این نظر گردن به طور تغییرات داشته است. در سنگ‌های منطقه (بیشتر از 2 میلیمتر) و طرف دارای ساختار منطقه‌ای هستند که به سراسر نهایی اختراب و اعمال تکمیلی می‌شوند. (شکل 1-2) منطقه‌ی I از باربیف گردن کاملاً خالص بوده و از نظر خصوصیات میکروسکوپی مشابه گردن‌های سالم در نوع اول است. زون 2-3 دارای ادخال‌های کلریت و کوارتز است و

در زون III با ادخال‌های کارا و کوارتز و کوارتز است. در بیشتر
بلورهای ساختاری نابوده‌ای از گردن مشاهده می‌شوند. منطقه‌ی
بیشتر قطعه (خلد شده) است. بیان‌برای در برخی
قسمت‌ها زون‌های I و II به ام رتباط دارند. آئول گردن‌ها
دارای یک حفره‌ای حاوی انیوهوئیتی از پیوست، کوارتز و الیت
ستفی در اندازه‌ی 7 تا 10 میلیمتر است. آبسن پیرامون
حفره به باکترین غنی از اسپارتنس و باکترین پیچیده از
آنان به ماده می‌شد (شکل 2-3). این بلورهای با صورت
واضح بر اساس تعیین و نتیجه به باربیف گردن‌ها
و می‌غلیط محقق خلاف به طور کلی شکل آئول گردن را
برای توصیف آنها به کار بردن [24].
شکل ۱ منطقه میکروسكوپی گرانه خشک‌های منطقه‌ی منتقله‌ی یلد برعین. الکترنی گرانه‌های خشک شکل بدون شواده مینی بر دگرگونی برگشتی و فاقد

شکل ۲ مقطع میکروسكوپی گرانه‌های شیمیایی منطقه‌ی بلوهای آتول گرانه دارای ادخال‌های فراوان و حواشی برده.

جدول ۱ نتایج تجزیه‌ی شیمیایی گرانه در نمونه‌های SB-120,BS-112 و محاسبه جزء مولی اعضا انتهای گرانه بر اساس ۱۲ آنم اکسیر

میکروسكوپی گرانه گر در متصل شده است.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BS-112 (Grt)</th>
<th>SBR-120 (Grt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p1</td>
<td>p2</td>
</tr>
<tr>
<td>W2O5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>SiO2</td>
<td>77.6</td>
<td>77.5</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>MnO</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MgO</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CaO</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>Al</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fe2+</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fe3+</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mn</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mol% X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almandine</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Andradite</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Grossular</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Pyrope</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Spessartine</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
جدول ۲ تعدادی از تجزیه‌های شیمیایی نمونه‌های آب‌و‌زیستی موجود در نمونه‌های BS-112, BS-120, نمونه‌های اکسیژن

<table>
<thead>
<tr>
<th>Sample</th>
<th>BS-120</th>
<th>SB-112</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>We%</td>
<td>P₁</td>
<td>P₂</td>
</tr>
<tr>
<td>SiO₂</td>
<td>57.2</td>
<td>57.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.79</td>
<td>0.81</td>
</tr>
<tr>
<td>MnO</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>CaO</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>19.82</td>
<td>19.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.39</td>
<td>0.37</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol% X</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y total</td>
<td>3.16</td>
<td>3.28</td>
</tr>
<tr>
<td>X total</td>
<td>1.86</td>
<td>1.88</td>
</tr>
<tr>
<td>Al total</td>
<td>2.42</td>
<td>2.67</td>
</tr>
<tr>
<td>XFe</td>
<td>0.58</td>
<td>0.58</td>
</tr>
</tbody>
</table>

شکل ۴ ترکیب شیمیایی گی Braves بر اساس [32] ب. منحنی‌های همدما بر اساس دمای مرطوبه گی برای بیوئیت‌های میکاسیست‌های منطقه‌ای مورد بررسی [32].
بحث

ژئوئمبابرومتری

تداخل اولی به Mg-Fe

مترادف با ترکیب نرم‌افزاری در سری‌های پیلیئی است.

بیش از ۲۰ روش محاسبه‌ای که مربوط به لغایت این اثر هست که به‌طور فردی و بدون ترکیب نرم‌افزاری کامل و در اینجا باید استفاده شود. محاسبه‌ای دما و فشار مکانیسم‌های منطقه‌ای بر اثر باور و نیز ویژه‌ای

در تصویر ۱ و سطح‌های نوع اول استوده که احتمال

وجود ترکیب نرم‌افزاری در آنها با کمک است. محاسبه‌ای دما و

فشار تا ۲۰ (کیلوبار بسته می‌شود. شاخص موجود در

بخش‌های بازی گروه دوم می‌باشد. در عموم ترکیب

ژئوئمبابرومتری کامل وجود دارد استفاده از این روش را در

گزارنده مکانیسم‌های گروه دوم ناکام کرده است.

علاوه بر تبیان بونی، ترکیب بین‌باتی، دم‌رفت از مرز

نیز $\text{T}_{\text{و}}$ با توجه به رشد گزارنده گروه دوم که اغلب در مرز

بخش‌های نیز از میکا و نیز از قرار دارد و نیز به نظر می‌رسد

که شرایط و ترکیب شیمی‌بیونیته‌ها، شرایط محدودیت

برای انتشار و نقل انتقالات بونی برای تدارک کامل واکنش‌های

دگرگونی در اولی گزارنده گروه دوم وجود ندارد. ادخال‌های

کد حواشی کریمی به به دست تحت تأثیر کاهش دما و

فشار طی یک دوره زمانی است. با توجه به تغییرات نوعی

اهن و کلسیم در شیخص مرکزی اولی گزارنده، کوئون بودن

دوره‌های تغییرات نرم‌افزاری در سنگ محتمل نظر می‌رسد

با افزایش دمای سنگ، با حضور گروه‌های مشابه با

کارنگ‌های گروه اول و یا با قبلاً کمتر رخت اکثر سنگ‌های می‌شود

(شکل ۱ ب). ترکیب غی‌تر از گزارش‌های اولی گزارنده نیز

احتمالاً ناشی از قابلیت دوره نسبت به منبع عناصر قلی ای است.

زیرا ترکیب شیمیایی سنگ مادر در هر دو گروه مشابه است.

نابودی از نظر داشت که این کمتر کمتر به سنگ‌های اولی گزارنده به

اهم و معنی‌ساز ساختار را کاهش داده و رسیدن به تاریک

ژئوئمبابرومتری نیازمند دقت و دقت‌بندی تاریکی‌های.

سختی تاریکی انتشار پاره عناصر مختلف به صورت

خاستگاهی ساختارهای منطقه‌ای گزارنده

دابلی نقل مختص برای این‌ها نرم‌افزاری زونه و نزدیک

درک شده برای ایجاد ساختارهای زونه و نزدیک
در این پژوهش به بررسی سنگ‌های شیپست در منطقه ی مورد بررسی [۸۵] فراخوانده‌ی پی‌سنگ‌های در منطقه شیپست پنج‌درصدی کریستال را نمودار مایه‌ی از میزان مورد بررسی [۳۱،۲۴۰۴۸۲۵۳۶۳۲۵۸۲۵۷۲۵۸
[17] Godard G., "Petrology of some eclogites in the Hercynides: The eclogites from the southern

[38] ساکی ع., "پژوهشگاهی اثر تغییرات هیدروژن، کوارتز و پتروگرافی سنگ‌های ناحیه غرب ماهنشان، پایان‌نامه کارشناسی ارشد.", دانشگاه تبریز (1381).

[39] آزادبخت ش., "پژوهش‌های کلی، سیاست‌های موجود در کمیکس دگرگونی ماهنشان بر اساس ماهنشان، شناسی شیمیایی کلی، تحقیقات دسترسی زمین‌شناسی.", شاپوری کلی، سیاست‌های موجود در کمیکس دگرگونی ماهنشان بر اساس ماهنشان، شاپوری کلی، سیاست‌های موجود در کمیکس دگرگونی ماهنشان بر اساس ماهنشان (1391).

[40] آرین م., "تحليل ساختار خش جنوب شرق تکاب.", پایان‌نامه کارشناسی ارشد دانشگاه شهید بهشتی (1376).

[41] غضفری ف., "پتروگرافی سنگ‌های دگرگونی ناحیه تکاب با نگرش بر کامیونی ویژه به گام‌های مختلف در معدن "، پایان‌نامه کارشناسی ارشد دانشگاه تهران (1370).

[42] جمشیدی بدر م., "پتروگرافی، زیست‌شناسی و پتروژنر سنگ‌های دگرگونی مجموعه سورتاس در شاهین دژ (ورقه تکاب، رساله دکتری دانشگاه خوارزمی (1388).