کاربرد شیمی کانی‌های آمفیبول و فلدسپار در بررسی پتروژنتیک مجموعه‌ی گرانیتوئیدی میوسن میانی، غرب کاشان

مریم هرنمند، تعمت اله رشیدزاد عماران، محمد هاشم امامی

چکیده: مجموعه‌ی گرانیتوئیدی نیاسر با سن میوسن میانی، در غرب کاشان و در کمربند ماگمایی ارویه- دختر برونز زدگی دارد. بر اساس بررسی‌های سنگ‌شناسی، مجموعه‌ی نیاسر شامل توده‌های با ترکیب تونالیت، کوارتزدیوریت و دیوریت است. کانی‌های اصلی تشکیل دهنده‌ی سگه‌های منطقه شامل کوارتز، پلاژیوکلاز، آمفیبول، بینوتین و فلدسپار است. آمفیبول از نوع کلسیک بوده و ترکیب آنها از مگنیوپورتان رویه کلسیک تغییر می‌کند و نشان دهنده‌ی نوع ۱ بودن توده‌های مورد بررسی است. ترکیب پلاژیوکلازها در توده‌های تونالیتی یاگکلاز با بیرونیت، در توده‌ی کوارتزدیوریتی البیتلا اندزینی و در توده‌ی دیوریتی الیگکلاز تا بیرونیت است. ترکیب کانی‌های زمین فشار‌سنجی حاکی از این است که فشار در زمان بلوپ هورلبند، در توده‌های مورد بررسی در حدود ۱ تا ۲ کیلوبار بوده که معادل با اعماق ۲ تا ۳ کیلومتر است. بر اساس دمای‌سنجی زوج کانی‌های هلیوبلند- پلاژیوکلاز و فلدسپارها، دماهای ۲۵۰ تا ۳۰۰ درجه‌ سانتی‌گراد، برای توده‌های نفوذی نیاسر، ارزیابی شد. ارزیابی گرینریدگی اکسیژن این توده‌ها نشان دهنده اکسیده‌بودن ماگماهای مولت توده‌های نیاسر است و شاهدی برای تشکیل آن‌ها در مرز ورقه‌های هگرست.

واژه‌های کلیدی: شیمی کانی‌های دمای‌سنجی، فشار‌سنجی، گرینریدگی اکسیژن، گرانیتوئیدی، میوسن میانی، کاشان

* نویسنده مسئول. تلفن: ۸۷۸۸۸۴۴۳۵ (۲۱). نمایورده (۲۰۲۱): ۸۸۸۸۸۴۴۳۵ (۲۱). بهت اکتلونیک: Rashid@modares.ac.ir

مقدمه

میوسن یکی از ترکیبات آن‌ها در سنگ‌های آذرین ارتباط نزدیکی با ترکیب و شرایط فیزیک‌شیمیایی ماگمایی برگرفته‌اند. این سنگ‌های مورد بررسی در شکاف‌های آن‌ها را پیش‌بینی می‌کنند. در نتیجه این استفاده از ترکیب کانی‌های معین و نیز کانی‌های هم‌زمان ماکم تولید شده‌است. نشانه‌های ترکیب فلدسپار با توجه به شکل و کربنات گریزده‌گی اکسیژن، ماکم در حالت بلوپ، ارائه دهد. در میان

کانی‌های تشکیل دهنده‌ی سنگ‌های گرانیتوئیدی نیاسر، فلدسپار و آمفیبول، از فراوانی‌ترین کانی‌ها هستند. لذا در این پژوهش می‌توان از آن استفاده با ترکیب کانی‌ها بیشتر شرایط فشار، دما و گرینریدگی اکسیژن ماگمایی در حال تولید از توده‌های نیاسر را بازسازی کرد. همچنین، ترکیب ددقیق کانی‌های آمفیبول و فلدسپار در تغییرات و تفسیر سنگ‌زایی و شکل‌گیری‌های ماگمایی این مجموعه‌ی نفوذی مورد استفاده و
قرار گرفته‌اند. مجموعه‌گران‌توثیقی نیاز به ۲۲ کیلوimeter غرب کاشان و جنوب نیاز به طول‌های جغرافیایی شرقی ۹۸وی ۳۳و و عرض‌های جغرافیایی شمالی ۵۳و و ۵۳و قرار دارد. این مجموعه‌گران‌توثیقی شامل، توده‌های با ترکیب حذفی است که بر خش مركب کرمون مگماتیک کربناته‌ای گروهی و درکردن شبه زیرکن (1) سن ۱۸ میلیون سال باید توده‌های نیاز به جایگزینی است. در ادامه به حذف در مورد تاکان آتشف‌های مربوط به درد کدام از کانی‌های یاد شده و استفاده از آن‌ها برای تعیین شرایط تشکیل و تبیز توده‌های منطقه، برداشت می‌شد.

روش بررسی
برای بررسی شیمی کانی‌ها، ۱۱ نقطه قلات خاصی از واحدهای نفوذی مورد بررسی انتخاب و در آزمایشگاه رژیزیداری شناسایی سالزبورگ (Salzburg)، آماده، به‌وسیله EOL ۸۶۰۰ superprobe تجهیز شدند. آنالیزها برای کانی‌های مختلف در شرایط ولتاژ تولید ۱۰۰ nA و جریان پرتو ۱۵ kV در قلعه انجام شدند.

زمین‌شناسی منطقه
مجموعه‌گران‌توثیقی نیاز به بافت‌های تکاملی خاصی از چین. زمین‌شناسی ماجراجویی از این نظر به لحاظ وارد حوزه توده‌های مورد بررسی تولید شد. کارترژوریزی و دیورتیزی در سه کنار سنگه‌های رسوبی و آتشفیه‌ای آتشف‌های چین حوزه، مربوط به حوزه اوسن نفوذی کردند. سنگ‌های زیرکنی توده کامل مواد بررسی شد. توده‌های تاکان برای تشخیص اسیدی و حدس‌های همراه با میان لایه‌ای شیل و میان‌مستند که بیشترین گستردگی را بین واحدهای سنگه‌های منطقه نشان می‌دهد. (شکل ۱). واژه‌های آنزیدنی و به مقادیر کمتر رودسایت، نمی‌آید. این ناحیه وجود بهره‌برداری محصولی برای تولید نفوذی منطقه دارد. مجموعه‌گران‌توثیقی نیاز از توده‌های مجزا برای ترکیب تولید توده‌های مارفیون و
سنگ‌ها از نظر کانی‌شناسی و یافتی شیب‌هی به سنگ‌های توده‌ای قال‌ریز (انواع فاقد بیوتیت) هستند. با این تفاوت که کانی کوارتز در توده‌ی کوه به‌طور کم است. در حالی که در توده‌ی قالریز در حدود ۱۵ درصد حجمی سنگ‌ها را کوارتز اشغال می‌کند. لازم به یادآوری است که، نمونه‌ای که از نظر کانی‌شناسی

شکل ۱: نقشه‌ی زمین‌شناسی توده‌های نفوذی‌ی نیاسر در مقیاس ۱/۵۰۰۰۰ [۱].
شکل 2 (الف) تصویر میکروسکوپی (در نور XPL) از تونالیت مارفیون (ب) تصویر میکروسکوپی (در نور XPL) کوارتزدیوريت قافله، (ت) تصویر میکروسکوپی (در نور) کوارتزدیوريت قافله.

شیمی کانی‌ها

امفیبول مهم‌ترین کانی مافیک در مجموعه‌های نفوذی نیاسر است. نتایج حاصل از آنالیز‌های ریزپدوارشی آمفیبول در همه واحدهای سنگی محله، در جدول ۱ ارائه شده. آمفیبول‌های منطقه بر اساس رده‌بندی [۴] از نوع کلسیکاند. این کانی در رده‌بندی [۴] نیز در گروه آمفیبول‌های کلسیک (منوکلسیک‌های) با پارامترهای ۱ < (Ca + Na₂O) و ۱.۵ و Na₂O < ۰.۵ و Ca > ۰.۵ Ti و Srei Na + K )A ≥ ۰.۵ و Ca > ۰.۵ < قرار می‌گیرد (شکل ۲-الف و ب) که محله‌ای آن، آمفیبول‌های آنتاریا شده در زیرده‌های مگنزیوم‌هوبنن، هورنبلند اکتینولیتی و اکتینولیتی قرار می‌گیرد. به این ترتیب که، آمفیبول‌های موجود در تونالیت مارفیون به‌صورت
جدول 1: نتایج ریپیداری تعدادی از آمفیبول‌های آنانیز شده در توده‌های نفوذی نیاس نام تونالیت مارفیون (Ton-Ma) و تونالیت پودالگ (Ton-Po) 

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ton-Ma.2</th>
<th>Ton-Ma.3</th>
<th>Ton-Ma.4</th>
<th>Ton-Ma.5</th>
<th>Ton-Po.1</th>
<th>Ton-Po.2</th>
<th>Ton-Po.3</th>
<th>Ton-Po.4</th>
<th>Q.dio1</th>
<th>Q.dio2</th>
<th>Q.dio3</th>
<th>Dio1</th>
<th>Dio2</th>
<th>Dio3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>Amp</td>
</tr>
<tr>
<td>SiO2</td>
<td>49.2</td>
<td>49.7</td>
<td>49.8</td>
<td>49.8</td>
<td>28.5</td>
<td>5.15</td>
<td>0.5</td>
<td>0.5</td>
<td>49.9</td>
<td>5.52</td>
<td>0.27</td>
<td>0.5</td>
<td>5.54</td>
<td>5.54</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.8</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.8</td>
</tr>
<tr>
<td>FeO</td>
<td>15.0</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>11.8</td>
</tr>
<tr>
<td>CaO</td>
<td>10.7</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>95.5</td>
</tr>
<tr>
<td>TSi</td>
<td>8.8</td>
</tr>
<tr>
<td>TAl</td>
<td>1.8</td>
</tr>
<tr>
<td>TFe2</td>
<td>0.0</td>
</tr>
<tr>
<td>Sum_T</td>
<td>8</td>
</tr>
<tr>
<td>CAI</td>
<td>0</td>
</tr>
<tr>
<td>CrC</td>
<td>0</td>
</tr>
<tr>
<td>CF2</td>
<td>0</td>
</tr>
<tr>
<td>TiC</td>
<td>0</td>
</tr>
<tr>
<td>CMg</td>
<td>2.8</td>
</tr>
<tr>
<td>CF2</td>
<td>0</td>
</tr>
<tr>
<td>CMn</td>
<td>0</td>
</tr>
<tr>
<td>Sum_C</td>
<td>6</td>
</tr>
<tr>
<td>BCa</td>
<td>1.3</td>
</tr>
<tr>
<td>BNa</td>
<td>0</td>
</tr>
<tr>
<td>Sum_B</td>
<td>2</td>
</tr>
<tr>
<td>ANa</td>
<td>0</td>
</tr>
<tr>
<td>AK</td>
<td>0</td>
</tr>
<tr>
<td>Sum_A</td>
<td>2</td>
</tr>
<tr>
<td>Sum_cat</td>
<td>10</td>
</tr>
</tbody>
</table>

فلدسیار


بلندی مسکن‌های تستی گچ‌یافی با فاکتور آب موجود در ماک‌ما دراد [5] به عبارت دیگر، اشاعه یا غیر اشاعه بودن ماکما از آب می‌تواند اثر زیادی روی انتشار آهن بین گذره و بلورها داشته باشد [6].

جدول ۲ نتایج رزین‌دوزش تعدادی از این‌سانه‌های آنالیز شده در توده‌های نفوذی نیاز. حروف اختصاصی استفاده شده در جدول بیش از جدول ۱

<table>
<thead>
<tr>
<th>می‌شود</th>
<th>می‌شود</th>
<th>می‌شود</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>FeO</td>
<td>MnO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>Na₂O</td>
<td>K₂O</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>Total</td>
<td>Si</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Ti</td>
<td>Fe</td>
</tr>
<tr>
<td>Mn</td>
<td>Mg</td>
<td>Ca</td>
</tr>
<tr>
<td>Na</td>
<td>K</td>
<td>Cations</td>
</tr>
<tr>
<td>Ab</td>
<td>An</td>
<td>Or</td>
</tr>
</tbody>
</table>

ساختار توزیعی پلاژوکلارها در توده‌های نفوذی می‌تواند ترکیب پلاژوکلار تا بیشتر، در تونلی و یا توپیک ترکیب الی‌گرستی نشان دهد.
تعدادین می‌تواند تکنولوژی‌های تونده‌ها
امیفیولی‌ها به عنوان معابن برای تعدادین شرایط
فیزیکی‌شیمی‌ای در سیستم‌های ماکمالی سنتزه‌دیده. 
به طوری که
برای تعدادین زن و می‌تواند تکنولوژی‌های تونده‌ها
استقلال‌گردد. آمیفیولی‌های که در می‌تواند فشار
تشکل شده‌اند، سنت به می‌تواند فورایش، (intraplate)
پیش‌ترین آن [A] در شکل‌های ۵ موقعیت نمونه‌های
Na2O
منطقه‌روی نمونه‌های Na2O نسبت به SiO2، کلیه نمونه‌های منطقه در گستره
تغییر‌تهیه‌ای ویژه با پیش‌ترین قرار می‌گیرد.
نیز
استفاده از آن می‌تواند، با عنوان فاکتوری جهت برای
تشخیص می‌تواند زمین ساختمان، پیش‌ترین کردن، به این
سیرت می‌تواند آمیفیولی‌های می‌تواند شده در حوادث فعال
در حالت که این نوعی می‌تواند در جیب
قوسی با 1.5 همکثای دانست. کلیه نمونه‌های منطقه
مورد بررسی دارای AlIV كمتر از ۱.۵ هستند.

تعدادین شرایط فیزیکی‌شیمی‌ای تبلور تونده‌ها
مجموعی کاتیون‌شناسی و ترکیب آن‌ها در سطح‌های آذرین،
راپرت نورتکنگی با شکل‌گیری و تبلور ماکما دارد. با استفاده
به این آن‌ها، می‌توان با استفاده از ترکیب شیمی‌ای کاتیون‌ها
به ازای پارامترهای ترمودینامیکی تبلور از جمله فشار، دما و
گریزندگی آب‌سیز پرداخت.

محتواهای آه‌پلاژیک‌لزاز می‌تواند با مقدار سلیس و آب در
مقدار و مقدار اکسیدنت‌ها، افزایش و با استفاده
کاهش می‌یابد [۷]. مقایسه مقدار Fe2O3 در پلاژیک‌حالی
موجود در تونده‌های اوراسیا (جدول ۲) نشان می‌دهد که مقدار
آه‌پلاژیک‌حالی تونده می‌تواند سبب به تونده‌های قاپ‌ر
و پودرندر انگیست بیشتر است. بنابراین، افزایش نسبی درصد
انورتن دیگر پلاژیک‌حالی تونده می‌تواند که در مواردی به
صورت پیوسته است می‌تواند مربوط به درصد آب بیشتر در
ماگما تونده‌ها باشد. با استفاده از آن می‌تواند
پیش‌ترین قرار گیرد و پودرندر نیز می‌تواند
دلیل دیگری بر مقدار آب بیشتر در ماگما تونده می‌تواند باشد.
فیزیک‌دان‌های پاسیسی در تمامی واحدهای منطقه كمر
پلاژیک‌حالی است. نتایج آنالیزهای رایج‌ترین این کاتی در
جدول ۲ و روز نمونه‌های [۷] شکل ۴ نشان داده شدند.

فیلدرودهی پاسیسی در گستره‌ی اوراسیا (۹۴۶ رصد)
قرار می‌گیرد. این کاتی‌ها همانند کوراتن بیشتر به صورت پی-
شكل تانه شکل‌دار بین کاتی‌های سنگ‌ساز دیگر قرار می-
گیرند که نشان دهنده تشكل این کاتی‌ها در محیط‌های
تبلور توده‌هاست. از طرف دیگر در پلاژیک‌حالی کوچک
پلاژیک‌حالی در داخل شکل‌های آمفیبول و پودرندر
دیده می‌شود. تبلور این کاتی‌ها در محیط ای، نشان دهنده
کاتی‌های پلاژیک‌حالی است.
افمبیولا "کاربردی ترین کالی" با تعیین دما و فشار، در سنجش آذرین اهمیتی دارد. این دلیل ترکیب این ها است. این روش برای دسترسی به دما و فشار و استفاده در طراحی ترکیب افمبیولا استفاده می‌شود. این‌ها اشتلال‌ها به دما و فشار و استفاده در طراحی ترکیب افمبیولا استفاده می‌شود. این‌ها اشتلال‌ها به دما و فشار و استفاده در طراحی ترکیب افمبیولا استفاده می‌شود.
برارود گریزیدگی اکسیژن

کانی شناسی و شیمی کانی ها توانایی برای شناخت چگونگی اکسایش مکانی و آخرین بازی الکترونی که داشتند که در این زمینه به دو روش نیمه کمی که در فهم می‌کنیم گریزیدگی اکسیژن استفاده گردید. در روش نیمه کمی با استفاده از ترکیب شیمیایی اکسی‌بندی ها [18]. می‌توان با استفاده از روش نیمه کمی که در این کانی برای کد کردن شکل 6-پ. برای کنترل قبل از شیرای بدن است.

[27NaM4bSiT1XAnplg]/[64XCaM4bAIT1XAnplg]

محصول می‌باشد [1]. برای برآورده دما با این روش باید شیمی‌کاتیون آمفیلول و قلیسیار در باورت پیژش‌های...
بیان نفوذی می‌شود که 
فشار و P

در این پژوهش، ترتیب کانی‌های آمفیبول و فلدسپار، در توده-

های گرانیتپیودی‌های آهکی- قلبی‌های منطقه‌ای نیاز، برای برآورد

پارامترهای فیزیکی‌شیمیایی وابسته به تئور مالگامولد، مورد

 استفاده قرار گرفت. روش زوج کانی

هوری‌النگ- پلاژیوکلاز و جمع‌‌میکرو- دولومیت- حمایت

به ترتیب دارای فشار جسمانی، دامن و برآورد گرندی‌نگ

اهکسیز، در توده‌های نیاز، مورد استفاده قرار گرفتند. میانگین

فسح حاکم در زمان تئور هوری‌النگ، در تئور مورد بررسی

1.5 تا 3 کیلوبار به‌دست آمد که به توجه به چگالی میانگین

سنگ‌های پست‌های زمینی نواحی جاجبزی-توده‌های نیاز در

عمق 6 تا 12 کیلوبار. میانگین مدل می‌تواند کانی‌های

هوری‌النگ- پلاژیوکلاز نیز 2600°C تا 2650°C از گرفتار شد.

اساس ترتیب آمفیبول، به نظر می‌رسد که میزان گرندی‌نگ

اهکسیز در مالگامولد تئور مدوله‌اند. نسبتاً بالا بودن است.

از سوی دیگر، با مقایسه نتایج فشار و ظرفیت برآورد، به نظر می‌رسد توده‌های م besar از توده‌های نیاز، به نظر

سازندگی آن را در مدل. نتایج به دست آمده در دما - فشار

سنگی و برآورد گرندی‌نگ اهکسیز واپسین به تئوری نیاز،

شبه به نتایج به دست آمده از بررسی شیمی کانی‌ها در توده-
ارومیه- دختر بیشتر فشارهای کمتر از 3 کیلولتر (بیشتر در اعماق کمتر از 9 کیلومتر) جایگذاری شدهاند. گره، نتیجه‌گیری جامع‌تر این مورد نیاز به بررسی‌های فشار- دماسنجی بیشتر در سایر نودهای الگوگیری در کمربند ارومیه- دختر، دارد.

قهردانی
این کار پژوهشی حاضر طرح پژوهشی بررسی سنتشنازی و زئوسمی مجتمع نفوذی ناسار، عرب کاشان است که با حمایت مالی معاونت مهندس پژوهشی دانشگاه تربیت مدرس انجام شده است. لذا به‌نوسیله همکاری ارزیده آن معاونت قهردانی می‌شود.

مراجع


