1. [1] https://www.vedantu.com/geography/red-soil
2. [2] Mukiza, E.; Zhang, L.; Liu, X.; Zhang, N. Utilization of red mud in road base and subgrade materials: A review. Resour. Conserv. Recycl. 2019, 141, 187-199. [
DOI:10.1016/j.resconrec.2018.10.031]
3. [3] Minerals 2020, 10, 773; doi:10.3390/min10090773, www.mdpi.com/journal/minerals, Progress on the Industrial Applications of Red Mud with a Focus on China Hua Zeng, Fei Lyu, Wei Sun, Hai Zhang, Li Wang and Yanxiu Wang [
DOI:10.3390/min10090773]
4. [4] Liu, X.; Zhang, N.; Sun, H.; Zhang, J.; Li, L. Structural investigation relating to the cementitious activity of bauxite residue-Red mud. Cem. Concr. Res. 2011, 41, 847-853. [
DOI:10.1016/j.cemconres.2011.04.004]
5. [5] Snars, K.; Gilkes, R.J. Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl. Clay Sci. 2009, 46, 13-20. [
DOI:10.1016/j.clay.2009.06.014]
6. [6] Samal, S.; Ray, A. K.; Bandopadhyay, A. Proposal for resources, utilization and processes of red mud in India, A review. Int. J. Miner. Process. 2013, 118, 43-55. [
DOI:10.1016/j.minpro.2012.11.001]
7. [7] Pérez-Villarejo, L.; Corpas-Iglesias, F.A.; Martínez-Martínez, S.; Artiaga, R.; Pascual-Cosp, J. Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Constr. Build. Mater. 2012, 35, 656-665. [
DOI:10.1016/j.conbuildmat.2012.04.133]
8. [8] Sutar, H.; Mishra, S. C.; Sahoo, S. K.; Chakraverty, A. P.; Maharana, H.S. Progress of Red Mud Utilization: An Overview. Am. Chem. Sci. J. 2014, 4, 255-279. [
DOI:10.9734/ACSJ/2014/7258]
9. [9] Red mud Project. Available: http://www.redmud.org/Characteristics.html.
10. [10] Zhu, T. Study on is produced from industrial waste residue of alumina application of solid waste red mud in treatment of sulfur dioxide in industrial waste gas of aluminum plant. Nonferrous Met. Eng. 2019, 9, 109-114. (In Chinese)
11. [11] Puran Singh Rathore, Rajesh Patidar and Sonal Thakore, Nanoparticle-supported and magnetically recoverable organic-inorganic hybrid copper (II) nanocatalyst: a selective and sustainable oxidation protocol with a high turnover number, RSC Adv., 2014, 4, 41111, DOI: 10.1039/c4ra06599a [
DOI:10.1039/C4RA06599A]
12. [12] Hongtao Cui, Yan Liu, Wanzhong Ren, Structure switch between -Fe2O3, -Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles, Advanced Powder Technology 24 (2013) 93-97 http://dx.doi.org/10.1016/j.apt.2012.03.001 [
DOI:10.1016/j.apt.2012.03.001]
13. [13] Wang, W.; Pranolo, Y.; Cheng, C. Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with d2ehpa. Sep. Purif. Technol. 2013, 108, 96-102. [
DOI:10.1016/j.seppur.2013.02.001]
14. [14] Taghdisi Samira; Rezaei Peyman; Yaghoub Nasiri; Ameri Siahoei, Seddigeh, Geochemistry of Hormoz Island Red Soil Deposit Using XRF and Their Origin, 22nd Crystallography and Mineralogy Conference of Iran, Shiraz University.
15. [15] Eray S., Keskinkilic E., Topkaya Y.A., Geveci A., Reduction behavior of iron in the red mud , J. Min. Metall. Sect. B-Metall. 57 (3) (2021) 431 - 437 [
DOI:10.2298/JMMB210227039E]
16. [16] Harekrushna Sutar, Subash Chandra Mishra, Santosh Kumar Sahoo, Ananta Prasad chakraverty, and Himanshu Sekhar Maharana, Progress of Red Mud Utilization: An Overview, American Chemical Science Journal, 4(3): 255-279, 2014 [
DOI:10.9734/ACSJ/2014/7258]
17. [17] Che R.C.; Peng L.-M.; Duan X.F.; Chen Q.; Liang X.L., Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes. Adv. Mater. 2004, 16, 401-405. [
DOI:10.1002/adma.200306460]
18. [18] Zecchi S. Ruscillo F. Cristoforo G. Bartoli M. Loebsack G. Kang K. Piatti E., Torsello D. Ghigo G. Gerbaldo R. et al. Effect of Red Mud Addition on Electrical and Magnetic Properties of Hemp-Derived-Biochar-Containing Epoxy Composites. Micromachines 2023,14,429. https://doi.org/ 10.3390/mi14020429.
https://doi.org/10.3390/mi14020429 [
DOI:10.3390/mi14020429.]