Volume 32, Issue 4 (12-2024)                   www.ijcm.ir 2024, 32(4): 711-724 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami M, Ghaemi F, Homam S M. Neoproterozoic Microstructural study of Fariman Torbat Jam shear zone, Northeast of Iran. www.ijcm.ir 2024; 32 (4) :711-724
URL: http://ijcm.ir/article-1-1893-en.html
1- Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract:   (488 Views)
The studied area is located on the border of Alborz and Central Iran structural zones in North-East of Iran. At the outcrops,several strata units of granite and volcanic rocks (about 630-680 m.a) along with the structural elongation of northwest-southeast are present. The studied microstructures are in a narrow range along the Fariman-Torbat-e Jam shear zone, which seems to be the result of structural functions. Brittle and ductile structures and microstructures in Proterozoic intrusive and volcanic rocks of the Fariman-Torbat-e Jam orogenic belt and various types of metamorphic behaviours have been investigated in detail in this research. The results show the diverse performance of deformation mechanisms, especially recrystallization of the bulge type and recrystallization with grain boundary migration (BLG, GBM). According to the detection of malleable structures in the deformation zone of the Fariman-Torbat-e Jam, brittle density increased with irregular intervals, moving away from the centre of the shear zone, which indicates the characteristics of the core and cover of the mentioned brittle zone. Various microcrystalline structures, especially microfractures and microcracks, wave quenching of quartz crystals, core and cover structures in porphyroblasts, recrystallization of protrusions and grain boundary migration at high temperatures can be seen in many and varied along the entire length of this deformed shear zone.
Full-Text [PDF 1636 kb]   (162 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Aghanabati A., "Geology of Iran", Geological Survey (2004).
2. [2] Gramont XBaG Y., "Geological map of Kariznow", Geological Survey of Iran (1979).
3. [3] Homam S.M., "Petrology and geochemistry of Late Proterozoic hornblende gabbros from southeast of Fariman, Khorasan Razavi province, Iran", Journal of Economic Geology 7 (2015) 91-109. doi:10.22067/econg.v7i1.33610.
4. [4] Moghadam Ranjbar F., Fariborz M, Corfu F., Homam S.M., "Ordovician mafic magmatism in an Ediacaran arc complex, Sibak, northeastern Iran: the eastern tip of the Rheic Ocean", Canadian Journal of Earth Sciences 55 (2018) 1173-1182 doi:10.1139/cjes-2018-0072. [DOI:10.1139/cjes-2018-0072]
5. [5] Moghadam H. S., Li Q. L., Griffin W. L., Stern R. J., Santos., J. F., Lucci F., Beyarslan M., Ghorbani G., Ravankhah A., Tilhac R., O'Reilly S. Y., "Prolonged magmatism and growth of the Iran-Anatolia Cadomian continental arc segment in Northern Gondwana", Lithos 384-385 (2021) 105940 doi: https://doi.org/10.1016/j.lithos.2020.105940 [DOI:10.1016/j.lithos.2020.105940.]
6. [6] Ranjbar Moghadam F., Ebrahimi H.S.M., Nasr Abad K., Rahimi B., "Mineralogy, metamorphism and geothermobarometry of the Ghandab metamorphic Complex, SE Fariman, NE Iran", Iranian Journal of Crystallography and Mineralogy 22 (2015)115-126.
7. [7] Sepidbar F., Homam S.M., Ghaemi F., Stern R.J., Jun H., Karsli O., Gholami M., "Cadomian tectonic evolution of Iran: records of an unusually hot and broad extensional convergent margin on the northern margin of Gondwana", International Geology Review:1-21(2023) doi:10.1080/00206814.2023.2238219. [DOI:10.1080/00206814.2023.2238219]
8. [8] Ramsay J.G., Huber M.I., "The techniques of modern structural geology", Vol. 1, Strain analysis. Academic Press London, London (1983)
9. [9] Passchier C., Trouw R.A., "Microtectonics", (1996) doi:10.1007/3-540-29359-0 [DOI:10.1007/3-540-29359-0]
10. [10] Vernon R.H., "A Practical Guide to Rock Microstructure", Cambridge University Press, Cambridge, (2004) doi:DOI: 10.1017/CBO9780511807206 [DOI:10.1017/CBO9780511807206]
11. [11] Ribeiro B., Kirkland C., Finch M., Faleiros F., Reddy S., Rickard W., Hartnady M., "Microstructures, geochemistry, and geochronology of mica fish: Review and advances", Journal of Structural Geology 175(2023)104947 doi:10.1016/j.jsg.2023.104947. [DOI:10.1016/j.jsg.2023.104947]
12. [12] Hirth G., Tullis J., "Dislocation creep regimes in quartz aggregates", Journal of Structural Geology (1992). 14:145-159 doi: https://doi.org/10.1016/0191-8141(92)90053-Y [DOI:10.1016/0191-8141(92)90053-Y.]
13. [13] Stipp M., Stünitz H., Heilbronner R., Schmid S., "The eastern Tonale fault zone: A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C", Journal of Structural Geology 24 (2002) 1861-1884. doi:10.1016/S0191-8141(02)00035-4. [DOI:10.1016/S0191-8141(02)00035-4]
14. [14] Putnis A., McConnell J.D.C., "Principles of mineral behaviour", Blackwell, Elsevier, Oxford (1980).
15. [15] Trimby P.W., Prior D.J., Wheeler J., "Grain boundary hierarchy development in a quartz mylonite", Journal of Structural Geology 20 (1998) 917-935. doi:10.1016/s0191-8141(98)00026-1. [DOI:10.1016/S0191-8141(98)00026-1]
16. [16] White J.C. B.R., "Microstructural signatures and glide twins in microcline, Hemlo, Ontario, Microstructural signatures and glide twins in microcline", Hemlo, Ontario 28 (1990) 757-769.
17. [17] Poirier J.P., Guillope M., "Deformation induced recrystallization of minerals", B Mineral 102 (1979) 67-74. [DOI:10.3406/bulmi.1979.7256]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb