بررسی شکل‌گیری رنیوم در مولیبدنیت و تأثیر محلول‌های درون‌زاد و برون‌زاد بر توزیع دوباره آن در سیستم‌های پورفیری

بانده امین‌زاده

گروه زمین‌شناسی، دانشکده علوم، دانشگاه شهید بهشتی ایران

(پیامک: 021/82076200، سایت‌های علمی: 1380/11/20)

چکیده: مولیبدنیت خاستگاه اصلی رنیوم در بوسته‌های زمین است. در این پژوهش از نتایج داده‌های کامپیوتری، آماری، شیمیایی و بررسی برخی از روش‌های مولیبدنیت نشانگر آن است که مولیبدنیت به‌صورت ساختار شش‌ضلعی‌اند. اگرچه برخی رنیوم در دانه‌های مولیبدنیت با‌انگار تتششینی رنیوم به‌صورت همزمان با مولیبدن طی رشده‌های محلولی است. سیال‌های رگی که تأخیر موجب شسته‌شدن رنیوم از مولیبدنیت در منطقه‌ی درون‌زاد می‌شوند. محلول‌های فایسی و همبسته به ریله‌های رسی در رابطه با ساختار کاهش رنیوم در مولیبدنیت، مولیبدنیت‌ها واسطه به منطقه‌ی برون‌زاد در مقایسه با مولیبدنیت‌های منطقه‌ی درون‌زاد می‌گردد. مقدار رنیوم کمتری برخوردارند.

واژه‌های کلیدی: توزیع رنیوم; سیستم‌پورفیری; مولیبدنیت

مقدمه

رئویم یک فلز سفید نقره‌ای درخشان با عدد آتمی 75، یکی از کمیاب‌ترین عنصر بوسته زمین (با فاقدای 10*10^{-8} درصد) است. این فلز در بسیاری کاربردهای کوتاه‌مدت نظیر استفاده از آن در تصفیه‌های نفت، صنایع الکترنیک، از مقدار بسیار کمی از آن برای تغییر شکل فلزات از جمله مولیبدن، تکنلنکت و نالیم، در ساخت سیستم‌های فضائی، هوابین، در ساخت اงาน‌العیب که در ساخت نیزس سایر و بدون Platinum-Rhenium در طیف‌سنج جرمی و Filament بعنوان اندازه‌گیری‌های بینی در ساخت لامپ‌های فلاش دوربین‌های معکوس و نیز سیستم رادیاکتیو Re-Os بعنوان یک زمان‌سنج زمین‌شناسی [1] و به عنوان یک ردیاب زنده‌شیمیاییبرای حل مسائل زمین‌شناسی کاربرد دارد [2-4] از آنجا

*نویستنده مسئول، تلفن: 0911361956889، پست الکترونیکی: Aminzadeh85@gmail.com
شده است. ترتیب لایه‌ها در پلی‌تپ 2H به صورت 12120000 در حالی که در پلی‌تپ 3R به صورت 12210000 است.
می‌توان 3R را ممکن است در طیبعت دارای ساختار 2H است. پلی‌تپ 3R در مقایسه با پلی‌تپ 2H در طیبعت از فرآیند کمتری برخوردار است.

با نبود [5] معنادست که ساختار پلی‌تپ 3R با جانشینی مولیبدن به‌وسیله‌ی نیوبیوم تا حد زیادی موانع شده است و رابطه مستقیمی بین عیار نیوبیوم در مولیبدنیت و فراوانی یک نوع پلی‌تپ بیشتر است که در مقایسه به مولیبدنیت 2H برخوردار است. رابطه دگرگونی این پلی‌تپ 3R به 2H می‌تواند تبدیل ساختار ساختاری مولیبدنیت که پدیدانده یک نیوبیوم (MoO4) باشد به 2H عیاری اورنجی در مواجهه با گرخش و تبدیل یک پلی‌تپ فاقد نیست.

چگونگی توزیع نیوبیوم در کاسه‌رهای پورفیری مولیبدنیت به عنوان کانالی اصلی دارای رعایت پلی‌تپ در سیستم‌های پورفیری شناخته شده است. از جمله عوامل موثر برای توزیع مولیبدنیت از یک محلول حاوی کمپلکس‌های مولیبدنیتی (مثلاً (SO4)2H2S) کاهش دما و فعالیت اکسیدساز (در گستره تا (V) تا (R) و همکاران واکنش محلول با شده است [V] معتقدند که موارد یاد شده دلیل برای همراهی مولیبدنیت با دگرگونی پنسیک و قیفیک در سیستم‌های پورفیری است.

شکل 1 مقایسه‌ی ساختار پلورهای مولیبدنیت شکوکشی (2H) و لوزی رخ (3R)
کاهش دما مخاطرات تنشیئی مولبندیت از محلول-
های گرمای شامل مولبندی در دو سیستم پورتری است
زینوم نیز مولبند می‌باشد در سیستم گرمای ماکلی‌های
با در محلول های در هیملوژی هیل‌کسیدی با کلرور اکسیدی بخش می‌شود و
ReCl3 نیز در شرایط فوق به محلول کمپلکس‌های
ReCl3 انتقال می‌یابد [110].

عوامل کلیلی ایندکس مولبندیت در مقایسه
کاربرد پورتری از نوای مختلف چنان در مقالات
متعددی بررسی شده است. برزین [12] مقایسه
مولبندیت های Cu-Mo از Cu-Mo پورتری را از دو، آسیا، آسیا، شما و جنوب آمریکا می‌کرد. با خدمات
پژوهشی مقایسه رنگی در مولبندیتی به‌وسیله چندین
فاکتور كنترل می‌تواند موجب بروز شیمیایی محلول-
های گرمای تشکیل دهنده کاله، خاستگاه سنگ میزان
میزان کل مولبندیت یک کاربرد شیپون‌کسیمی‌ها
بر کانآسی‌ها (فکتیسی‌ها) کروست، فعال کلر، دما و فشار.

مولبندیتی‌های پورتری در مقایسه با
Cu-Mo کاربردی Mo و Cu-i Mo و Cu-Mo
 poopورتری فقط رنگی وارد ساختار مولبندیت
می‌شود، لذا یکی از عوامل غیر بر رنگی طبیعی در
مولبندیتی‌های پورتری غیر از ساختار‌ها و
مولبندیتی‌های پورتری محدود می‌شود.

پورتری و همکاران [16] نشان داده که مقدار رنگی در
مولبندیتی‌های پورتری در همه پرچترین واسه است
مولبندیتی‌های کاربردی در شما و بخشنامه
به سیستم تبادل آن نیست و مولبندیتی‌ها به‌صورت شگوگی
متغیر می‌شود.

روش بررسی
برای بررسی مقدار رنگی محاسبه
مولبندیتی‌های مصنوعی سرد شده
از گرماهای داده‌ی مولبندیتی متنوع‌برداری شد. مقدار رنگی در
مولبندیتی‌های جاشاده از سنگ معدن [12] و
سیلیکات‌های آلوئیت‌دار نانوی همراه مولبندیتی [8]
Inductively coupled plasma (ICP-MS)
برای ابزار ابزار ابزار ابزار ابزار
اندازه‌گیری شد. برای شناسایی سیستم تبادل مولبندیتی روش
X-ray diffraction (XRD)
برای ساختار ایکس

نمونه‌های مولیبدنیت (14 عضد) انجام‌شده. از نمونه‌های حاوی مولیبدنیت مقاطع میکروسکوپی (60 عضد) تهیه و به‌منظور چگونگی توزیع رنیوم در مولیبدنیت بررسی میکروسکوپی الکترونی روبشی (SEM) انجام گرفت.

کانال‌های مولیبدنیت در کاسار سرچشمه معمولاً همراه با کوارتز، به‌صورت ریگه‌ای در مرحلهٔ گرمایی دگرگونی ِ پتاسیک و پتاسیک-فلاییک طی مرحلهٔ کانال‌سازی اولیه و اصلی سیس (کالکوپیریت) رخ داده است [19].

برای شناسایی چگونگی توزیع رنیوم در مولیبدنیت بررسی SEM (حای میکروسکوپی الکترونی روبشی) انجام‌شده. در شکل 2 پرایدکس رنیوم و گوگرد در 3 مولیبدنیت بلوری نشان داده شده‌اند. این نشان دهنده حضور براییدکس رنیوم در مولیبدنیت می‌باشد که تنش‌های رنیوم به‌صورت همزمان با مولیبدن

شکل 2 اف- تصاویر میکروسکوپی از بلور مولیبدنیت مورد بررسی، ب- تصاویر میکروسکوپی الکترونی روبشی (SEM) توزیع رنیوم و ب- توزیع گوگرد.
نتایج بررسی‌های مکانیالس و همکاران [232] روی ۲ سنت معنی‌های مولبدینیت بیشتر از منطقه کانسار درون زاد و نزدیک آن بر روی مولبدینیت‌های بیلینگ سخت‌نگی در منطقه کانسار درون زاد (آمریکا) نشان داده که یک درصد مولبدینیت‌های صاپ درون زاد ۸۰٪ درصد و غلظت رئیوم نیز در منطقه کانسار سخت یک درصد از مولبدینیت‌های گرّه‌پوش بر روی مولبدینیت‌های داده می‌شود [20].

اثر محلول‌های هگرامی درون زاد (هیپورژن) بر غلظت رئیوم در مولبدینیت بیشتر از ۵۰ ppm مقدار رئیوم در مولبدینیت‌های منطقه کانسار درون زاد سرچشمه بین ۲۰۰ ppm تا ۴۰0 ppm بوده و نتیجه انجام شده تا ۴۰0 ppm مولبدینیت‌های گرّه‌پوش و درون زاد (هیپورژن) هستند. لذا هر چه مولبدینیت بیشتر از ۴۰0 ppm تا ۶۰0 ppm مولبدینیت مولبدینیت درون زاد (هیپورژن) هستند و نیست. با این ترتیب محلول‌های گرّه‌پوش مولبدینیت‌ها با گرّه‌پوش باید در داده‌های پیش‌بینی و در مولبدینیت است. این مقدار رئیوم در مولبدینیت و بررسی‌های مکانیالس و همکاران [232] روی ۲ سنت معنی‌های مولبدینیت‌های بیشتر از منطقه کانسار درون زاد (آمریکا) نشان داده که یک درصد مولبدینیت‌های صاپ درون زاد ۸۰٪ درصد و غلظت رئیوم نیز در منطقه کانسار سخت یک درصد از مولبدینیت‌های گرّه‌پوش بر روی مولبدینیت‌های داده می‌شود [20].

نتایج فرآیندهای بر، پون زاد بر عبارت نیمودن مولبدینیت نتایج حاصل از بررسی‌های کامپیوتری در منطقه کانسار درون زاد (آمریکا) نشان داده که یک درصد مولبدینیت‌های صاپ درون زاد ۸۰٪ درصد و غلظت رئیوم نیز در منطقه کانسار سخت یک درصد از مولبدینیت‌های گرّه‌پوش بر روی مولبدینیت‌های داده می‌شود [20].
در ساختار نمونه‌های سنگ معدن درای مولیدنیت از کانسار سرچشمه، می‌توان نتیجه گرفت که مولیدنیت‌هایی که از عبارت پایین‌تری از رنگ برخوردارند (۲۴۰ ppm) با مولیدنیت‌های سنگ معدن با عبارت بالاتر رنگ (۴۵۰ ppm) در مقایسه با مولیدنیت‌های سنگ معدن یا عبارت بالاتر رنگ (۴۴۰ ppm) دارای درصد حجم بیشتری از رس هستند. از آنجا که درگذشته آژرلیک در کانسار سرچشمه پس از کانسار، مولیدنیت‌های نسبتاً مفتخر رنگ می‌باشند. مولیدنیت‌های نسبتاً مفتخر رنگ در کانسار رخ داده‌اند، که تأثیر محلول‌های پروانز و رنگشگویی یا تأثیر محلول‌های پروانز را در نظر گرفته‌اند. مولیدنیت‌های نسبتاً مفتخر رنگ در کانسار رخ داده‌اند، که تأثیر محلول‌های پروانز و رنگشگویی یا تأثیر محلول‌های پروانز را در نظر گرفته‌اند.

مولیدنیت‌های منطقه‌ای درون‌زاد و مولیدنیت‌های تحت تأثیر فرآیندهای پروانز (نمایان آنها به‌صورت شش‌گوش (۲H) هستند) می‌توان نتیجه گرفت که تأثیر محلول‌های پروانز موجب آزادشدن رنگی پوستی تغییر در ساختار مولیدنیت‌ها است. نمونه‌های معنی‌داری از محلول‌های پروانز در سنگ‌آهک‌های سه‌گوشی پیرامون رنگ در این مقاله، می‌توان نتیجه گرفت که پیش‌بینی شده است. تأثیر مولیدنیت‌ها در این ساختار رخ داده‌اند، که تأثیر محلول‌های پروانز از نظر تاریکی رنگ را یافته‌اند. مولیدنیت‌ها در این ساختار رخ داده‌اند، که تأثیر محلول‌های پروانز از نظر تاریکی رنگ را یافته‌اند.

نتایج آنالیز شیمیایی باکو و میلر [۲۳] روی کانسی فرآیند مولیدنیت (Fe۲۰۰۰p.ppm MoO۴۲H۲O) از بیانگر آن است که کانسی‌های پایین‌تری در تغییر نکردند. در این مقاله می‌توان نتیجه گرفت که تأثیر محلول‌های پروانز از نظر تاریکی رنگ را یافته‌اند. مولیدنیت‌های تحت تأثیر فرآیندهای پروانز در سنگ‌آهک‌های سه‌گوشی پیرامون رنگ در این مقاله، می‌توان نتیجه گرفت که پیش‌بینی شده است. تأثیر مولیدنیت‌ها در این ساختار رخ داده‌اند، که تأثیر محلول‌های پروانز از نظر تاریکی رنگ را یافته‌اند.


[19] [ارنگ‌زاده B, "مطالعه کنترل موشکی و زاویه‌سنجی سیالات درگیر در ارتباط با کاسماستاری مولبدین در معدن مس سرچمیه و کاربرد آن در باریاتی اسپر مولبدین. پایان‌نامه کارشناسی ارشد دانشگاه شهید باهنر کرمان (1385)]


[4] Xiong Y., wood S., Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200 °C) in light of experimental studies” Econ. Geol. 96 (2001) 1429-1444.


