1. [1] Herzberg C., "Identification of source lithology in the Hawaiian and Canary islands: implication for origins", Journal of Petrology 52.1 (2011) 113-146. [
DOI:10.1093/petrology/egq075]
2. [2] Yang Z.F., and Zhou J.H., "Can we identify source lithology of basalt?", Scientific Reports 3.1 (2013) 1856. [
DOI:10.1038/srep01856]
3. [3] Yang Z.F., Li J., Liang W.F., Luo Z.H., "On the chemical markers of pyroxenite contributions in continental basalts in eastern China: implication for source lithology and the origin of basalts", Earth-Science Reviews 157 (2016): 18-31. [
DOI:10.1016/j.earscirev.2016.04.001]
4. [4] Yang Z., Lai S.C., Qin J.F., Zhu R.Z., Liu M., Zhang F.Y., Yang H., Zhu Y., "Petrogenesis of Early Cretaceous alkaline basalts in the West Qinling: Constraints from olivine chemistry", Geological Journal 58.2 (2023) 780-794. [
DOI:10.1002/gj.4623]
5. [5] Hu, Q.W., Mei, S.W., Zhang, L. and Ren, Z.Y., "Mantle source heterogeneity for Hainan basalts revealed by Pb and Sr isotopic compositions in olivine-hosted melt inclusions", Lithos 438 (2023) 106991. [
DOI:10.1016/j.lithos.2022.106991]
6. [6] Blondes M. S., Brandon M. T., Reiners P. W., Page F. Z., Kita N. T., "Generation of forsteritic olivine (Fo 99•8) by subsolidus oxidation in basaltic flows", Journal of Petrology 53 (2012). 971-984. [
DOI:10.1093/petrology/egs006]
7. [7] Howarth G.H., Harris C., "Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry", Earth and Planetary Science Letters 475(2017)143-151. [
DOI:10.1016/j.epsl.2017.07.043]
8. [8] Cao G., Tong Y., Li X., Wang L., "Insights from olivine chemistry into crustal magmatic processes and the mantle source lithology of basalts from Hainan Island, China", Lithos 430-431(2022) 106852. [
DOI:10.1016/j.lithos.2022.106852]
9. [9] Oeser M., Ruprecht P., Stefan W., "Combined Fe-Mg chemical and isotopic zoning in olivine constraining magma mixing-to-eruption timescales for the continental arcvolcano Irazú (Costa Rica) and Cr diffusion in olivine", American Mineralogist 103 (4) (2018) 582-599. [
DOI:10.2138/am-2018-6258]
10. [10] Jung D., Keller J., Khorasani R., Marcks Chr., Baumann A., Horn P., "Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran", Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, No. 51(1983) 285-336.
11. [11] Pang K.N., Chung S.L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H. Y., Chu C.H., Lee H.Y., Lo, C.H., "Eocene- Oligocene post- collisional magmatism in the Lut- Sistan region, eastern Iran: Magma genesis and tectonic implications", Lithos 180-181(2013) 234- 251. [
DOI:10.1016/j.lithos.2013.05.009]
12. [12] Ghorbani Q., "Petrogenetic investigation of Quaternary basalts in east of Iran (Khorasan)", M.Sc. thesis, Shahid Beheshti university, (1993) 250p.
13. [13] Vosoughi Abedini M., "Petrologic and tectonomaagmatic aspects of Cenozoic basalts in east of Iran (Khorasan)", Geosciences 6(23-24) (1997) 16-31.
14. [14] Taghribi M., "Neogene-Quaternary volcanism in east of Iran (Birjand-Moud-Sarbisheh area)", M.Sc. thesis, Shahid Bahonar university of Kerman, (1997) 150p.
15. [15] Yari F., "Petrology and geochemistry of volcanic rocks of Fanood area (southeast of Birjand) east of Iran". M.Sc. thesis, university of Birjand (2011) 113p.
16. [16] Parsaei M., "The study of geology, alteration and petrology of igneous rocks in east of Moud (southeast of Birjand)". M.Sc. thesis, university of Birjand, (2012) 115p.
17. [17] Nazari H., Salamati R., "Geological map of Sarbisheh, scale 1:100000", Geological survey of Iran(1999).
18. [18] Eftekhar nezhad J., Stocklin J., "Geological map of Birjand, scale 1:250000", Geological survey of Iran (1991).
19. [19] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock forming minerals", Longman Scientific and Technical. Hong Kong (1991) 528pp.
20. [20] Hall A., "Igneous petrology", Longman, Newyork (1996)551pp.
21. [21] Gunnlaugsson H.P., Helgason, O., Kristansson L., Nornberg P., Rasmussen H., Steinporsson S., Weyer G., "Magnetic properties of olivine basalt: Application to Mars", Physics of the Earth and Planetary Interiors, 154(3) (2006) 276-289 [
DOI:10.1016/j.pepi.2005.09.012]
22. [22] Whitney D., Evans B.D., "Abbreviations for names of rock-forming minerals", American Mineralogist 95(2010)185-187. [
DOI:10.2138/am.2010.3371]
23. [23] Wager L.R., Deer W.A., "The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland", Meddelelser om Gronland 105(4) (1939) 1-352
24. [24] Cox K.G., Bell J.D., Pankhurst R.J., "The interpretation of igneous rocks", Allen and Unwin, London (1979) 450p [
DOI:10.1007/978-94-017-3373-1]
25. [25] Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., "A chemical classification of volcanic rocks based on the total alkali-Silica diagram", Journal of Petrology 27(3) (1986) 745-750. [
DOI:10.1093/petrology/27.3.745]
26. [26] Christoph B., Karsten M.H., Philipp A.B., Stefan H.K., "Primitive andesites from the Taupo Volcanic Zone formed by magma mixing". Contributions to Mineralogy and Petrology172 (2017) 33. [
DOI:10.1007/s00410-017-1354-0]
27. [27] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of ocean basalts: implications for mantle composition and process". In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society London Special Publications 42(1) (1989)313-345. [
DOI:10.1144/GSL.SP.1989.042.01.19]
28. [28] Boynton W.V., "Cosmochemistry of rare earth elements: meteorite studies". In: P. Henderson (Editor), Rare Earth Element Geochemistry, Elsevier, Amsterdam (1984) 63-114. [
DOI:10.1016/B978-0-444-42148-7.50008-3]
29. [29]Prelevic D., Wehrheim S., Reutter M., Romer R. L., Boev B., Bozovic M., van den Bogaard P., Cvetkovic V., Schmid S. M., "The late cretaceous Klepa basalts in Macedonia (FYROM) constraints on the final stage of Tethys closure in the Balkans", Terra Nova 29(2017) 145-153. [
DOI:10.1111/ter.12264]
30. [30] Wilson M., "Igneous Petrogenesis", Springer Verlag, London (2007) 466 pp.
31. [31] Kuscu G.G., Geneli F., "Review of post-collisional volcanism in the central Anatolian volcanic province (Turkey), with special reference to the Tepekoy volcanic complex", International Journal of Earth Sciences 99(2010)593-621. [
DOI:10.1007/s00531-008-0402-4]
32. [32] Kampunzo A. B., Tombale A. R., Zhai M., Bagai Z., Majaule T., Modisi M. P., "Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton", Lithos, 71(2-4) (2003) 431-460. [
DOI:10.1016/S0024-4937(03)00125-7]
33. [33]Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T., Chung S.L.,Danyushevsky L.V., Elliott T., Frey F.A., Garcia M.O., Gurenko A.A., Kamenetsky V.S., Kerr A.C., Krivolutskaya N.A., Matvienkov V.V., Nikogosian I.K., Rocholl A., Sigurdsson I.A., Sushchevskaya N.M., Teklay M., "The amount of recycledcrust in sources of mantle-derived melts" Science 316(2007)412-417. [
DOI:10.1126/science.1138113]
34. [34] Gleeson M.L.M., Gibson S.A., "Crustal controls on apparent mantle pyroxenite signals in ocean-island basalts", Geology 47 (4) (2019) 321-324. [
DOI:10.1130/G45759.1]
35. [35] Rasmussen M.B., Halldórsson S.A., Gibson S.A., Guðfinnsson G.H., "Olivine chemistry reveals compositional source heterogeneities within a tilted mantle plume beneath Iceland", Earth and Planetary Science Letters 531(2020). [
DOI:10.1016/j.epsl.2019.116008]
36. [36] Matzen A.K., Baker M.B., Beckett J.R., Stolper E.M., "The temperature and pressure dependence of nickel partitioning between olivine and silicate melt", Journal of Petrology54 (12) (2013) 2521-2545. [
DOI:10.1093/petrology/egt055]
37. [36] Humayun M., Qin L., Norman M. D., "Geochemical evidence for excess iron in the mantle beneath Hawaii", Science 306(5693) (2004) 91-94. [
DOI:10.1126/science.1101050]
38. [38] Liu Z., Shea J.J., Foley S.F., Bussweiler Y., Rohrbach A., Klemme S., Berndt J., "Clarifying source assemblages and metasomatic agents for basaltic rocksin eastern Australia using olivine phenocryst compositions", Lithos 390-391(2021) 106122. [
DOI:10.1016/j.lithos.2021.106122]
39. [39] Kim S., Choi S.H., "Geochemical studies on the mantle source lithologies of late Cenozoic alkali basalts from Baengnyeong, Pyeongtaek, and Asan in the Korean Peninsula", Lithos 404-405(2021) 106434. [
DOI:10.1016/j.lithos.2021.106434]
40. [40] Dai L. Q., Zhao Z.F., Zheng, Y.F., "Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts", Geochemistry, Geophysics, Geosystems 15 (2014)3762-3779. [
DOI:10.1002/2014GC005486]
41. [41] Lambart S., stolper E., Baker M., "The role of pyroxenite in basalt genesis: Melt-px, a melting parameterzation for mantle pyroxenite between 0.9 and 5gpa", Journal of Geophysical Research. Solid Earth 121(2016) (80: 5708-5735. [
DOI:10.1002/2015JB012762]
42. [42] Liu J.Q., Ren Z.Y., "Diversity of source lithology and its identification for basalts; A case study of the Hainan basalts", Geotectonica et Metallogenia 37(3) (2013) 18 (in Chinese with English abstract).
43. [43] Zindler A., Hart S., "Chemical geodynamics", Annual Review of Earth and Planetary Sciences14(1986)493-571. [
DOI:10.1146/annurev.ea.14.050186.002425]
44. [44] Sobolev A.V., Hofmann A.W., Nikogosian I.K., "Recycled oceanic crust observed in 'ghost plagioclase' within the source of Mauna Loa lavas" Nature 404(2000)986-990. [
DOI:10.1038/35010098]
45. [45] Altunkaynak Ş., Ünal A., Howarth G.H., Aldanmaz E., Nývlt D., "The origin of low-Ca olivine from ultramafic xenoliths and host basaltic lavas in a back-arc setting, James Ross Island, Antarctic Peninsula" Lithos 342-343(2019)276-287. [
DOI:10.1016/j.lithos.2019.05.039]
46. [46] An A.R., Choi S.C., Yu Y., Le D.C., "petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam", Lithos272-273(2017)192-204. [
DOI:10.1016/j.lithos.2016.12.008]
47. [47] Pertermann M., Hirschmann M.M., Hametner K., Günther D., "Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite", Geochemistry, Geophysics, Gyosystems (2004) 5. [
DOI:10.1029/2003GC000638]
48. [48] Smith E.I., Sánchez A., Walker J.D., Wang K., "Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle", Journal of Geology 107(1999)433-448. [
DOI:10.1086/314355]
49. [49] Aydin F., Karsli O., Chen B., "Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey", Lithos 104 (2008) 249-266 [
DOI:10.1016/j.lithos.2007.12.010]
50. [50] Sui J., Fan Q., Xu Y., "Discovery of peridotite xenoliths from the Nuomin river Quaternary volcanic field, the Great Xing'an Range, and its geological significance", Acta Petrologica Sinica 28(2012)1130-1138.
51. [51] Ellam R.M., "Lithospheric thickness as a control on basalt geochemistry" Geology 20(2) (1992)153-156.
https://doi.org/10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2 [
DOI:10.1130/0091-7613(1992)0202.3.CO;2]
52. [52] Ross P.-S., Bedard J.H., "Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams", Canadian Journal of Earth Sciences 46(2009)823-839. [
DOI:10.1139/E09-054]
53. [53] Pearce J.A., "Immobile elements fingerprinting of ophiolites", Elements 10(2) (2014)101-108. [
DOI:10.2113/gselements.10.2.101]
54. [54] Li C.S., Arndt N.T., Tang Q.Y., Ripley E.M., "Trace element indiscrimination diagrams",
56. [55] Saccani E., "A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics", Geoscience Frontiers 6(4) (2015) 481-501. [
DOI:10.1016/j.gsf.2014.03.006]
57. [56] Xia L., a Li, X., "Basalt geochemistry as a diagnostic indicator of tectonic setting", Gondwana Research 65(2019)43-67. [
DOI:10.1016/j.gr.2018.08.006]
58. [57] Pearce J.A., Cann J.R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and Planetary Science Letters 19 (2) (1973)290-300. [
DOI:10.1016/0012-821X(73)90129-5]
59. [58] Wang P., Glover III L., "A tectonics test of themost commonly used geochemical discriminant diagrams and patterns", Earth-Science Reviews 33(2) (1992)111-131. [
DOI:10.1016/0012-8252(92)90022-L]
60. [59] Xia L.Q., "The geochemical criteria to distinguish continental basalts from arc related ones", Earth-Science Reviews 139(2014)195-212. [
DOI:10.1016/j.earscirev.2014.09.006]
61. [60]Condie K.C., O'Neill C., "The Archean-Proterozoic boundary: 500 my of tec-tonic transition in Earth history", American Journal of Science 310(9) (2010)775-790. [
DOI:10.2475/09.2010.01]
62. [61] He J., Zhang Y., Wang Y., Qian X., Sun L., "Late Paleozoic post-collisional setting of the North Tianshan, NWChina: New insights from geochronology, geochemistry and Sr-Nd isotopic compositions of the Permian Nileke volcanic rocks", Lithos 318-319 (2018) 314-325. [
DOI:10.1016/j.lithos.2018.08.013]
63. [62] Teng F. Z., McDonough W. F., Rudnick R. L., Dalpé C., Tomascak P. B., Chappell B. W., Gao S., "Lithium isotopic composition and concentration of the upper continental crust", Geochimica et Cosmochimica Acta 68(2004) 4167-4178. [
DOI:10.1016/j.gca.2004.03.031]
64. [63] Rudnick R. L., Gao S., "Composition of the continental crust", Treatise on geochemistry4. In: Reference Module in Earth Systems and Environmental Sciences(Ed. Elias, S.A.) 2nd edition, (2014) 1-51. Elsevier, Amsterdam. [
DOI:10.1016/B978-0-08-095975-7.00301-6]
65. [64] Khorasani R., "Petrographie und geochemie spatkretazisch-alttertiarer laven und subvulcanite der nordlichen Lut ost-Iran", (1982) Dissertation, Universitat Hamburg.
66. [65] Ghasemi H., Barahmand M., Sadeghian M., "The Oligocene basaltic lavas of east and southeast of Shahroud: Implication for back-arc basin setting of Central Iran Oligo-Miocene basin", Petrology 2(7)(2011) 77-94.
67. [66] Ghasemi H., Rostami Hossuri M., Ssadeghian M., Kadkhodaye Arab F., "Back-arc extensional magmatism in the Oligo-Miocene basin of the Northern edge of Central Iran", Scientific Quarterly Journal, Geosciences25(99)(2016)239-252.
68. [67] Ramos V. A., Kay S. M., "Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°-39°S latitude). In: Kay, S. M. and Ramos, V. A. (Eds.): Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén basin (35°-39°S Lat)", Geological Society of America, Special Paper 407(2006)1-17. [
DOI:10.1130/2006.2407(01)]