Volume 32, Issue 2 (7-2024)                   www.ijcm.ir 2024, 32(2): 243-256 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimy cheshmegachi H, Yazdi M, Gholizadeh K. Mineralogy, Geochemistry, fluid inclusions of Karat iron Skarn deposit, Sangan, NE of Iran. www.ijcm.ir 2024; 32 (2) :243-256
URL: http://ijcm.ir/article-1-1862-en.html
1- Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
Abstract:   (1419 Views)
The ​​Karat iron deposit is located in the vicinity of Sangan mining district, in the Northeast of Iran. The basement rocks of the Karat area include hornfels, metamorphosed limestone, marble, sandstone, siltstone and red shale with interlayers of marl, shale and marl, thick-layered red conglomerate and alluvial deposits. The intrusion of a granite batholith in the sedimentary units of the Karat iron deposit has led to the formation of iron deposits in the margin of this batholith. The most important ore minerals include magnetite, hematite, goethite, limonite and a small amount of sulfide minerals such as pyrite and chalcopyrite. Geochemical data indicate a strong correlation between the Ni, Mg, and V to Fe in mineralization zone, which indicates the magmatic origin of the Karat iron deposit. In order to investigate the characteristics of the ore-forming fluid of the skarn Karat iron deposit fluid inclusions of quartz veins were analyzed. The results show that fluids are mainly (L+V) type, low to medium salinity (4.48 to 16.42% NaCl) and the homogenization temperature of 200 to 390 degrees Celsius. Mineralogical, geochemical, and fluid-inclusion data show that the magmatics, meteoric and metamorphic fluids are responsible for Fe-mineralization in the skarn and Isothermal mixing and surface fluid dilution are main evolution factors in mineralization fluids. It seems that the main phase of mineralization has been occurred during the retrograde stage skarn.
Full-Text [PDF 1292 kb]   (181 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Geological Survey of Iran, "Geological map of Iran at the scale 1/1000000", (2002).
2. [2] Geological Survey of Iran, "Report of Taybad geological map at the scale 1/250000", (1990) 150p.
3. [3] Karimpour M.H., Malekzadeh Shafaroudi A., Mazaheri S. A., "Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran", Ore Geology Reviews 65 (2015) 545-563. https://doi.org/10.1016/j.oregeorev.2014.07.005 [DOI:10.1016/j.oregeorev.2014.07.005.]
4. [4] Golmohammadi A., Karimpour M.H.,Malekzadeh Shafaroudi A., Mazaheri S.A.,"Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran", Ore Geology Reviews 65(2) (2015) 545-563. [DOI:10.1016/j.oregeorev.2014.07.005]
5. [5] Karimpour M.H., Malekzadeh Shafaroudi A.,"Geochemistry and mineralogy of skarn zones and petrology of source rock Sangan iron mine, Khorasan Razavi, Iran", Scientific Quarterly Journal, Geosciences 65 (2007) 108-125.
6. [6] Malekzadeh Shafaroudi A., Mazhari N.,Ghaderi M., "Geology, mineralogy, and chemistry of skarn zones and orebody in Ma'danjoo iron skarn prospect area, east of Sangan mine, Khaf, NE Iran", Iranian Journal of Crystallography and Mineralogy 24 (1) (2016) 83-98.
7. [7] Karimpour M.H., "Geochemisry and mineralogy of the Khorasan Sangan iron ore deposits", Iranian Journal of Crystallography and Mineralogy 2 (2) (1994) 145-156. http://dx.doi.org/10.29252/ijcm.26.4.871 [DOI:10.29252/ijcm.26.4.871]
8. [8] Kaheni Sh., Malekzadeh Shafaroudi A., Karimpour M.H., "The geochemistry and mineralogy of North C ore body and Baghak anomaly and determination of two Pyrrhotite generations which are different in composition in Sangan mine, eastern Iran", Iranian Journal of
9. Crystallography and Mineralogy 16 (2) (2008) 313-326. http://dx.doi.org/10.29252/ijcm.26.4.871 [DOI:10.29252/ijcm.26.4.871]
10. [9] Mazaheri S.A., "Classification of amphiboles from Iron ore deposits, Sangan area, Khaf", Iranian Journal of Crystallography and Mineralogy 10 (1) (2002) 67-80.
11. [10] Mazaheri N., Malekzadeh Shafaroudi A., Ghaderi M., "Geology, mineralogy and geochemistry of Ferezneh ferromanganese anomaly, east of Sangan mines complex, NE Iran", Iranian Journal of Economic Geology 7 (1) (2015) 23-37. [DOI:10.22067/econg.v7i1.44694]
12. [11] Malekzadeh Shafaroudi A., Karimpour M. H., Golmohammadi A., "Zircon U-Pb geochronology
13. and petrology of intrusive rocks in the C-north and Baghak districts, Sangan iron mine, NE Iran", Journal of Asian Earth Sciences 64 (2013) 256- 271. [DOI:10.1016/j.jseaes.2012.12.028]
14. [12] Mazaheri S. A., "Petrological studies of skarns from Marulan South, New South Wales Australia and Sangan, Khorasan, Iran", Ph. D. thesis, University of Wollongong, New South Wales Australia (1995).
15. [13] Mazhari N., Malekzadeh Shafaroudi A., Ghaderi M., Star Lackey J., Lang Farmer G., Karimpour M.H., "Geochronological and Geochemical Characteristics of Fractionated Itype Granites Associated with the Skarn Mineralization in the Sangan Mining Region, NE Iran", Ore Geology Reviews 84 (2017) 116-133. http://dx.doi.org/10.1016/j.oregeorev.2017.01.003 [DOI:10.1016/j.oregeorev.2017.01.003]
16. [14] Ghasemi Siani M., Mehrabi B., "Mineralogy and mineral chemistry of silicate mineral of Dardvay Fe skarn ore deposit (Sangan mining area, NE Iran)", Iranian Journal of Crystallography and Mineralogy 26 (4) (2019) 871-884. http://dx.doi.org/10.29252/ijcm.26.4.871 [DOI:10.29252/ijcm.26.4.871]
17. [15] Tale Fazel E., Mehrabi B., Khakzad A., Kianpour R., "Stages and Mineralization Conditions of Dardvey Iron Skarn Based on Mineralogy and Fluid Inclusion Evidences, Sangan Area (Khorasan Razavi)", Scientific Quarterly Journal, Geosciences 81 (2011) 349- 360.
18. [16] Boomeri M., "Petrography and geochemistry of the Sangan iron skarn deposit and related igneous rocks, northeastern Iran", Ph. D thesis, Akita Univ, Japan, (1998a) 226 p.
19. [17] Boomeri M., "Geochemical characteristics of halogen-bearing hastingsite, scapolite and phlogopite from the Sangan iron skarn deposits, northeastern Iran", Journal of Mineralogy and Petrology 92 (1998b) 481-501. [DOI:10.2465/ganko.92.481]
20. [18] Haynes D.W., Cross K.C., Bills R.T., Reed M.H., "Olympic Dam ore genesis: a fluid mixing model", Econ. Geol, 90(1995) 281-307. https://doi.org/10.2113/gsecongeo.90.2.281 [DOI:10.2113/GSECONGEO.90.2.281]
21. [19] Moore M., Deymar S., Taghipour B., "Geochemistry of Rare Earth Elements and mineral chemistry of garnet in Darreh Zerreshk skarns (Southwest of Yazd) ", Iranian Journal of Crystallography and Mineralogy, 3(2013) 431-444.
22. [20] Beane R.E., "The Magmatic-meteoric Transition", Geothermal Resources Council, Special Report 13, (1983) 245-253.
23. [21] Van den Kerkhof, A. M. and Hein, U. F., "Fluid inclusion petrography. Lithos", 55: 27-47. ‏ https://doi.org/10.1016/S0024-4937(00)00037-2 [DOI:10.1016/S0024-4937(00)00037-2 (2001).]
24. [22] Durieux C.G, Brown A.C., "Geological context, mineralization, and timing of the Juramento sediment-hosted stratiform copper-silver deposit, Salta district northwestern Argentina", Miner Deposita 42) 2007 (879-899.) [DOI:10.1007/s00126-007-0138-2]
25. [23] Nash J. T., "Fluid inclusion petrology-data from porphyry copper deposits and applications to exploration", US Geol. Survey. Prof. Paper 907 D16 p (1976). [DOI:10.3133/pp907D]
26. [24] Simmons S. F., "Geological characteristics of epithermal precious and base metal deposits", 100th anniversary volume, 485-522.
27. [25] Guilbert J.M., Park C.F., " The Geology of Ore Deposits. WH Freeman and Company", 985p. (1997).
28. [26] Roedder E., "Fluid inclusions" Reviews in Mineralogy 12", Mineralogical Society of America (1984) 646p. [DOI:10.1515/9781501508271]
29. [27] Potter R. W., Clynne M. A., Brown D. L., "Freezing Point Depression of Aqueous Sodium Chloride Solution", Economic Geology, 73: 284-285. https://doi.org/10.2113/gsecongeo.73.2.284 [DOI:10.2113/gsecongeo.73.2.284 (1978).]
30. [28] Shepherd T., Rankin A. H., Alderton D. H. M., "A Practical Guide to Fluid Inclusion Studies, Blackie, London", 239p (1985).
31. [29] Hall D.L., Sterner S.M., Bodnar R.J., "Freezing point depression of Nacl-KCl-H2O solutions", Economic Geology 93 (1988) 197-202. https://doi.org/10.2113/gsecongeo.83.1.197 [DOI:10.2113/gsecongeo.83.1.197.]
32. [30] Viti C., Frezzoti M. L., "Transmission electron microscopy applied to fluid inclusion investigations", Lithos 55 (2001) 125-138. https://doi.org/10.1016/S0024-4937(00)00042-6 [DOI:10.1016/S0024-4937(00)00042-6.]
33. [31] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits. Lithos", 55 (2001) 229- 272. https://doi.org/10.1016/S0024-4937(00)00047-5 [DOI:10.1016/S0024-4937(00)00047-5.]
34. [32] Borisenko A.S., "Studies of salinity of gas-liquid inclusions in minerals by the cryometric method", Soviet Geology and Geophysics 18 (1977) 11-19.
35. [33] Crawford M.L., "Phase equilibrium in aqueous fluid inclusions. In: Short course in Fluid Inclusions (Eds. Hollister L.S. and Crawford M.L.) application to Petrology", Mineralogical Association of Canada 6 (1981) 75-100.
36. [34] Kesler S. E., "Fluids in planetary systems: Ore-forming fluids. Elements" 1 (2005) 13-18. [DOI:10.2113/gselements.1.1.13]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb