عنصرسنجی، ساختار و نظم شبکه بلوری دولومیت بر پایه داده‌های سنج نگاری XRD (بررسی موردی دولومیت‌های سازند شهبازان، جنوب غرب استان کرمانشاه)

حسن محسنی *
گروه زیست‌شناسی، دانشکده علوم، دانشگاه بوشهر سیستان همدان
(دریافت مقاله: 9/2/96، نسخه نهایی: 94/1/30)

چکیده:
در این مطالعه، داده‌های XRD و XRF مورد بررسی قرار گرفته‌اند. به طوری که بر اساس بررسی‌های مورد بررسی، سنج‌گنجایشی چهار نوع دولومیت در منطقه مورد بررسی شناسایی شده. با استفاده از نتایج XRD و عنصرسنجی، درجه نظم بلوری و درصد دولومیت در نمونه‌ها تعیین شد. نتایج نشان دهنده تشکیل دولومیکریت‌ها و دولومیکروپسیت‌ها در مرحله اولیه درون‌البیستر (دریایی) در پهن‌های جز و ماسی است. دولومیکروپسیت‌ها طی مراحل درون‌البیستر تا به اثر تکامل و تغییر مجدد دولومیکریت‌ها و دولومیکروپسیت‌ها وجود دارد. عنصرسنجی در دولومیکروپسیت‌ها (با میانگین 75 مولی درصد CaCO₃) و دولومیکریت‌ها (با میانگین 76/99 مولی درصد CaCO₃) با نسبت Ca²⁺/Mg²⁺ (با میانگین 0/95) در این مطالعه ثابت گردید. درجه نظم بلوری در مورد بررسی در حدود 7% است. نتایج نشان دهنده ساختاری می‌باشد که دولومیکروپسیت‌ها با توجه به گچ‌گونی عنصرسنجی بهتر و درجه نظم بلوری بالاتر نسبت به دولومیکریت‌ها و دولومیکروپسیت‌ها در اثر تلور دبیره و دگرگرای دایانکی دولومیکریت‌ها و دولومیکروپسیت‌ها با افزایش اندازه بلورها و نسبت Mg²⁺/Ca²⁺ شاره دولومیتی ساز وجود آمده است. از شواهد پیده و نیز با توجه به نتایج کنترلی تشخیص دولومیت‌های مورد بررسی در شرایط آب و هوای مرطوب و از شاره‌های با نسبت Mg²⁺/Ca²⁺ بالا (احتمالاً کمتر از یک) شکل گرفته‌اند.

واژه‌های کلیدی:
عنصرسنجی، درجه نظم بلوری، دولومیت، سازند شهبازان، کرمانشاه

مقدمه:
چگونگی تشکیل کلی دولومیت به‌عنوان یک کانال درون‌البیستر، سال‌ها مورد توجه شناسان رسوبی بوده است. یکی از روش‌هایی که در دهه‌های اخیر بسیار مورد استفاده است بهره‌گیری از روش‌های ریتوپتومی و اکتیوتوپی است. اکنون این موضوع کاملاً روشن است که دولومیت [Ca,Mg(CO₃)₂] از طریق واکنش‌های احتمال‌انه و تعویضی دیوراپر در جای که سنگ‌های وابسته به نیروی تماس با شاره‌های

mohseni@basu.ac.ir

*نویسنده مسئول، تلفن-نامبر: 001(683)3828081460 (2010). پیست الکترونیکی
عنصر سنگی دولومیت با نسبت \(\frac{Mg}{Ca} = 3\) شاره‌های خاستگاه تلش زیادی کردن، ولی در یافته‌ای از مستقیم بين شیمیایی شاره با ترکیب شیمیایی دولومیت موجود در کنار کردن [2]. دولومیت‌های غیرگاز میکروولوژی دولومیت‌های متصل به سطح تغییر کرده، البته هنوز چگونگی روند نکاتی دولومیت‌های غنی از کلسیم و غیرگازی در برخی شکل‌های پررنگ‌کننده (دولومیت‌های غیرگازی) به دولومیت‌های استکومتریک گذشت یک درصد یک یا بیشتر دربررسی می‌باشد. 

زمین‌شناسی

مواد و روش‌ها

پس از بررسی عکس‌های هواشنی و نقشه‌هایزمین‌شناسی

ساختار، قطعات و نقشه‌های بسیاری از این آنالیز شده (جدول ۲).
جدول 1: بافت، درصد مولی CaCO₃، شکلی شیشه‌ای در ناحیه تراز-مرزی در نمونه‌های صنعتی.

<table>
<thead>
<tr>
<th>شکل‌های شیشه‌ای (بر حسب آنتسرپتو)</th>
<th>بافت</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>برک اسلام‌آباد غرب</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/02</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>7/54</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>0/65</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>9/55</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>2/02</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>9/89</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>8/32</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>5/55</td>
<td>58</td>
<td>0/910</td>
</tr>
<tr>
<td>0/70</td>
<td>58</td>
<td>0/910</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شکل‌های شیشه‌ای (بر حسب آنتسرپتو)</th>
<th>بافت</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>برک اسلام‌آباد غرب</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/60</td>
<td>59</td>
<td>2/913</td>
</tr>
<tr>
<td>0/65</td>
<td>55/65</td>
<td>2/913</td>
</tr>
<tr>
<td>0/88</td>
<td>55/50</td>
<td>2/910</td>
</tr>
<tr>
<td>0/85</td>
<td>55/82</td>
<td>2/891</td>
</tr>
<tr>
<td>1</td>
<td>55/82</td>
<td>2/891</td>
</tr>
<tr>
<td>0/18</td>
<td>55/82</td>
<td>2/891</td>
</tr>
<tr>
<td>0/78</td>
<td>55/82</td>
<td>2/891</td>
</tr>
<tr>
<td>0/15</td>
<td>55/82</td>
<td>2/891</td>
</tr>
<tr>
<td>0/33</td>
<td>55/90</td>
<td>2/900</td>
</tr>
<tr>
<td>1</td>
<td>55/90</td>
<td>2/900</td>
</tr>
<tr>
<td>0/74</td>
<td>55/90</td>
<td>2/900</td>
</tr>
<tr>
<td>0/2</td>
<td>55/90</td>
<td>2/900</td>
</tr>
</tbody>
</table>

جدول 2: درصد Mg²⁺/Ca²⁺ و نسبت مولی Ca²⁺ و Mg²⁺ در دولومیت‌های سازند شهراز.

<table>
<thead>
<tr>
<th>نسبت مولی Mg/Ca</th>
<th>CaCO₃، درصد (بر حسب درصد مول)</th>
<th>%Cu</th>
<th>%Mg</th>
<th>بافت</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/67</td>
<td>5/15</td>
<td>2/918</td>
<td>2/98</td>
<td>دولومیت</td>
<td>KAB-42</td>
</tr>
<tr>
<td>0/73</td>
<td>5/24</td>
<td>2/46</td>
<td>1/07</td>
<td>دولومیت</td>
<td>KAB-24</td>
</tr>
<tr>
<td>0/73</td>
<td>5/20</td>
<td>2/34</td>
<td>1/05</td>
<td>دولومیت</td>
<td>KAB-15</td>
</tr>
<tr>
<td>0/77</td>
<td>5/33</td>
<td>2/48</td>
<td>1/03</td>
<td>دولومیت</td>
<td>KAB-2</td>
</tr>
<tr>
<td>0/76</td>
<td>5/20</td>
<td>2/45</td>
<td>1/18</td>
<td>دولومیت</td>
<td>KAB-10</td>
</tr>
<tr>
<td>0/70</td>
<td>5/50</td>
<td>2/71</td>
<td>1/16</td>
<td>دولومیت</td>
<td>KAB-16</td>
</tr>
<tr>
<td>0/76</td>
<td>5/29</td>
<td>2/55</td>
<td>1/19</td>
<td>دولومیت</td>
<td>KAB-4</td>
</tr>
</tbody>
</table>

نتیجه گیری: در ناحیه تراز-مرزی در نمونه‌های صنعتی، درصد CaCO₃ و شکل‌های شیشه‌ای در ناحیه تراز-مرزی در نمونه‌های صنعتی می‌تواند تأثیر بیشتری از شکل‌های شیشه‌ای در ناحیه تراز-مرزی در نمونه‌های صنعتی داشته باشد.
موقعیت جغرافیایی و زمین‌شناسی برش‌های مورد بررسی

برش اسلام‌آباد غرب (A) در تاقی‌دشت‌های ناحیه‌ای که در شمال شرقی اسلام‌آباد غرب در دو ردیفی روستای بیدراز بین موقعیت‌های جغرافیایی ۳۲°۳۳′ و ۳۲°۶′ شرقی و ۴۶°۳۰′ و ۴۶°۳۳′ شمال واقع شده است (شکل ۱). سازند شهبازان در این بخش شامل ۹۴ متر سنگ‌آهن و دولومیت متوسط تا ضخیم‌های به رنگ کرم‌سی سفید است و با مرز‌های نابی‌پوش (بی‌شکنگی) به وسیله سنگ‌آهن‌های متوسط تا ضخیم‌های سازند آسماری به سن الیگو–میوسن پوشیده شده است. سیزند شهبازان

شکل ۲ ستون چین‌شناسی شهبازان در برش اسلام‌آباد غرب (تنوین‌های این برش با کد KAB معرفی شده‌اند).
شکل ۲: ستون چینه‌شناسی سازندهای آسماری و شهرزان (عبر فاصله تفکیک) در برخی فرودگاه‌ها (برای علاوه به شکل ۲ مراجعه شود) (نمونه‌های این برخی کد کد KQQ معرفی شده‌اند)

<table>
<thead>
<tr>
<th>Age</th>
<th>Formation</th>
<th>Thickness (m)</th>
<th>Lithology</th>
<th>Sample No.</th>
<th>Field description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eocene-Oligocene-Early Miocene</td>
<td>Shahrzad and Ashari</td>
<td>Medium to thick bedded, gray to cream color limestones karstification features</td>
<td>45</td>
<td>Intercalations of argillaceous limestones Paraconformity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intercalations of argillaceous limestones Paraconformity</td>
<td>44</td>
<td>Thick bedded, cream color dolomites</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium bedded, cream color limestones karstification features covered</td>
<td>43</td>
<td>Medium bedded, cream color dolomites karstification features covered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium bedded, cream color limestones karstification features covered</td>
<td>42</td>
<td>Medium bedded, cream color dolomites karstification features covered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium bedded, cream color dolomites with intercalations of argillaceous limestones</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

سازند شهرزان در برخی الگو شامل ۳۸۸ متر دولومیت و سنگ‌آهک‌های دولومیتی با رنگ سفید تا قهوه‌ای با سمای ضخیم و به انتقال کوه‌های اس‌کی به طور پیوسته بر روی سازند کشکان و به طور ناپیوسته زیر سازند آسماری قرار دارد و با سازندهای کشکان، تله‌زیگ، پاده و سازند چهارم ارتباط بین این کشتی دارد [۲.۶].

مناطقه مورد بررسی بخشی از نوار چین-خورده‌های زاگرس است. دنباله‌های موجود در منطقه بیشتر چین خورده بوده و به طور متناوب از سنگ‌آهک با دولومیت همره با مارن و مارن-های آهک تشكل شده است و با چینه‌بندی کم و بیش طریقی مشخص می‌شود [۵] (شکل ۱). سازند شهرزان در منطقه شمال غرب حوضه زاگرس به ویژه جنوب و جنوب غربی استان کرمانشاه از گسترش قابل ملاحظه‌ای پرخوردار است.
یکی از دو رویکرد سیبیلی در این نوع دوپلویتی یا کوچک از ۴ میکرون تا ۱۶ میکرون (پیمان‌های ۱۱ میکرون) است که به سپلی‌بی گروه می‌باشد. بطور معمول از دوپلویتی دارای مرضیه‌ای دوپلویتی درون سمینی از کلست‌های اسپاریشیون بوده و از این نگاه عمده کلاسیفیکاسیون سه گروه اصلی خالیت سیبیلی و سپلی [۱۰] را به وجود آورده‌اند [۱۱] (شکل ۳).

دوبلویت متوسط بلور با دوپلویتی

اندازه بلورها در این نوع دوپلویتی از ۲۵۰ میکرون (پیمان‌های ۴۰ میکرون) تا ۲ میکرون (پیمان‌های ۱ میکرون) باید به سپلی‌بی و گروه دارای مرضیه بین بلورهای تحت‌نامی شکل و زبان‌هایی است. اما در برخی موارد به صورت نیمه شکل داریار را مشاهده می‌کنند. این شکل داریار را مشاهде

1- Friedman
2- Sibley & Gregg
3- Mazzullo
4- Xenotoptic
5- Nonplanar-A
6- Idiotoptic
7- Planar-P

محمدرضا عباسپور، رئیس‌جمهور
مجله بلوش‌نشین و کانی شناسی ایران
48
شکل ۴ تمودار XRD انواع دولومیت‌های مورد بررسی (الف) دومیکروسپاریت (41) (ب) دومیکروسپاریت با خاموشی ست‌قیمت (20) (KKQ-36) تا دو صفحه‌ای با خاموشی موجب (KAB-42).

شکل ۲ دومیکروسپاریت‌های سازند شهبازان با قلب غیر مسطح بی‌شکل (پ) بررسی پیدایش نمایی از دومیکروسپاریت ریز (KAB-42) (ب) پرده‌ای از پر‌یاس (PPL) رنگ آمیزی شده برش اسلام‌آباد غرب.

شکل ۳ دومیکروسپاریت‌های بلوی متوسط در سازند شهبازان با قلب مسطح نمایه شکل‌دار با خاموشی ست‌قیمت که در زمینه‌ای از کلبیت اسپاری (KKQ-36) (پ) پرده‌ای از پر‌یاس (PPL) رنگ آمیزی شده برش فورچن‌نشی، (ب) دومیکروسپاریت متوسط تا رشت بلوی با خاموشی موجب سازند شهبازان با باقی غیر مسطح بی‌شکل تا نمایه شکل‌دار (KKQ-21) (پ) پرده‌ای از پر‌یاس (PPL) رنگ آمیزی شده برش فورچن‌نشی.
دولومیت های متوسط تا درشت بلوار
اندازه بلوارها در این نوع دولومیت با ۲۰۰۰۰ میکرون
(میانگین ۲۵۰۰ میکرون) در تغییر است که موجب توزیع اندازه-
ی بلوارها به صورت چندی‌نامه شده است. بلوارها غالب‌ی به شکل
یا مرزهای بین بلوارها متخلفه و خاموشی مویی دارند. اما در
موردی نسیم نمایی در حالی گبا گی راهی متوسط مانند
بین بلوارهای ضدیت همدانه، با برادای تنش خاصی آنها از
دولومیت‌های نوع سوم (دولومیت‌های متوسط بلوار یا
دولومیت‌سپاریت) ممکن است (شکل ۲-ب). در این‌گونه موارد
تفکیک دولومیت‌های مینیا حفظ تغییر بسته‌ی زمین
مشترک بلوار در دولومیت‌های نوع سوم و خاموشی
مقدم در دولومیت‌های نوع متوسط بلوار بافت این
این و فاکتور تفکیک دولومیت‌های ورودی به تشکیل
فظاک رس یا مقدار محدود رس (۲-۵ سال) می‌باشد. از بودن آکسید
ه عوامل یک استاندارد درونی برای تغییر دقیق
مقدم شیمیایی یک کسی و بر پیاده‌کردن خاطرات
نایزی از جایگاه قلیاً استفاده شده. داده‌های بلوار پرتو
ایکس در باره ۲۰ بین ۵-۰ تا ۵۰-۵ بت شدند. تعداد ۳۰ نمونه
برای آنالیز بلوار پرتو ایکس انتخاب شدند و به صورت پذیر
درآمدند. این مرحله توانست توجه به تفکیک ایست نبین
ترکیبی که اخلاقی بلوارهای شریک، دو روش یا
نتیجه‌ی کلیه حاصل از پرتو پرتو ایکس تأثیر گذار
خواهد بود. بلوار نمونه به مدت ۲۰۰۰۰ دقیقه، ذراتی
به حدود ۵ کیلو کروماته حاصلی از
آنالیزهای بلوار پرتو ایکس در محاسبه نسبت‌های کلسیم و
دولومیت نمونه استفاده قرار گرفتند. در شکل ۲ نموناد

6- Lumsden
1- Lumsden, and Chimahusky
2- Morrow
3- Mixing zone
دولومیت‌های شکل گرخه در شرایط آب و هوای مرطوب و آب دریاها و آب‌سنگ‌های مورد سطحی موجود در شاره برای شرکت در ساختمان یکی از انواع سنگ‌های (ایندریت و ریپت) مصرف شده و نسبت به این آب‌سنگ‌های شتری و شریف آب و هوای گرم و خشک (نرخ تبخیر بالا) بود. همچنین این سنگ‌های ایندریت را با این نوع دولومیت‌ها در بررسی‌های سیستم‌گذاری به عنوان شاهد اجرای خود معرفی کرد. هم‌عیند است که مقدار کلسیم دولومیت‌ها شرایط شاره دولومیت‌های کنده ارتباط دارد. این نتیجه کرد که در آب و هوای مرطوب دولومیت‌های (غیر اسکیموتریک) غنی از کلسیم غلیب بوده و در محیط‌های خشک اغلب دولومیت‌ها تقریباً اسکیموتریک هستند. [12] این نتایجی که نشانه‌گر فرآیندهای سنگ‌زایی در منطقه‌ای اختلال آب‌های جوی و فرآیندهای دریایی می‌باشد. هم‌عیند این می‌شود در این شرایط آب و هوایی روابط مختلف از شرایط کنده‌ای که منبع‌های کنده‌ای تأثیر شرایط حاصل از اختلال آب‌های جوی و دریایی است. باعث نبوده و نتیجه مجدد دولومیت‌ها و دولومیت‌های شتریه شده است. این می‌تواند خود موجب افزایش عصرسنجه در دولومیت‌های شده است.

عصرسنجه) در شرایط آب و هوای مرطوب و آب کلسیم CaCO₃ MgCO₃ از قبل منطقه‌ای اختلال آب‌های جوی و دریایی آن گروه از دولومیت‌ها حاصل مراحل اولیه دیافراگم به دنبال آن نزدیک به سطح زمین است. دولومیت‌سازی بناه به چگونگی عصرسنجه بین نسبت به دولومیت‌ها و دولومیت‌های دیالوپاریت شهرت به گروه اول از رده‌بندی فوق قرار می‌گیرد. این گروه از دولومیت‌ها حاصل درون‌زایی تأثیر آب‌های اوربه و سطح آن به محلول‌های رنگ با نسبت Mg2+/Ca2+ بک) و احتمالاً منطقه‌ای بالا (نالترد از 60 درجه سانتی‌گراد) هستند. به نظر می‌رسد این محلول‌های رنگ از اختلال آب‌های جوی با اب‌های اوربه دریاپی در شرایط آب و هوای XRD مرطوب شکل گرخته‌اند. بررسی های سیستم‌گذاری و نتایج عدم وجود کلسیم تبخیری را در دولومیت‌های جوی در بستر تابید می‌گردد. فرآیندهای سیستم‌گذاری در منطقه‌ای اختلال آب‌های جوی و فرآیندهای دریایی باشد. هم‌عیند این می‌شود در این شرایط آب و هوایی روابط مختلف از شرایط کنده‌ای که منبع‌های کنده‌ای تأثیر شرایط حاصل از اختلال آب‌های جوی و دریایی است. باعث نبوده و نتیجه مجدد دولومیت‌ها و دولومیت‌های شتریه شده است. این می‌تواند خود موجب افزایش عصرسنجه در دولومیت‌های شده است. شوری بالا و نرخ تبخیر بالا، عصرسنجه بانالی نسبت به

شکل ۴ عصرسنجه دولومیت‌های منطقه مورد بررسی با توجه به موقعیت و ضخامت شبکه‌های فله (104).
درجه نظم بلوری دولومیت

پراش ساختار اولیه به وسیله بهترین میزان نظم شکل بلوری دولومیت ارزش قرار دارد. در نتیجه تفسیر کاننده‌ها به حالت صفحه‌ای در بلوره‌ای دولومیت یک مجموعه بزرگ‌تایی منظم ساختاری در ارتباط با ضخامت شبکه‌ای با d₀₁₀₄، d₀₁₁cı و d₀₁₂ı استفاده از پراش پرتو ایکس استفاده می‌شود (شکل 8). این نتایج شکل‌های دوبلوری دولومیت مورد استفاده فراگیر دیده شده. درجه نظم شکل‌های بلوری دولومیت، بیشترین نسبت شده‌قله (151) به شدت قله (110) است. این نسبت از آوازیش درجه نظم بلوری دولومیت، آغازین می‌باشد (معادله 3).

Degree of ordering = \frac{Intensity 110 peak}{Intensity 012 peak}

بررسی نشان می‌دهد که دولومیت‌های غیر ایجاد (غیر عنصرسنجی) و غنی از کلسیم اغلب دارای درجه نظم شکل‌های بلوری کمتری نسبت به دولومیت‌های ایجاد آل (14). نتایج حاصل از XRD نشان داده که درجه نظم شکل‌های بلوری بالاتر دولومیت‌های دومیننگین (99.5) نسبت به دولومکربیت‌ها و دولومگیوسپاریتراها (میانگین 80 است و تاکید کننده بروی انجام شده توسط محققان است (جدول 1).

دولومیت‌های ایجاد آل به دلیل انرژی ارزاد باید پایدار یا باشند که دارند. از نظر ترمودینامیکی سیستم پایدار بوده و دارای قابلیت اواخر کم‌توسط (110) یا اساس پرتوی راه‌های (1985) دومیننگین‌های هولوس به‌عنوان هزینه از کلسیم بوده و نظم بلوری کمی دارند. این دولومیت‌ها از نظر ساختار و ترکیب.

درجه نظم بلوری دولومیت

بررسی نشان می‌دهد که دولومیت‌های غیر ایجاد (غیر عنصرسنجی) و غنی از کلسیم اغلب دارای درجه نظم شکل‌های بلوری کمتری نسبت به دولومیت‌های ایجاد آل (14). نتایج حاصل از XRD نشان داده که درجه نظم شکل‌های بلوری بالاتر دولومیت‌های دومیننگین (99.5) نسبت به دولومکربیت‌ها و دولومگیوسپاریتراها (میانگین 80 است و تاکید کننده بروی انجام شده توسط محققان است (جدول 1).

دولومیت‌های ایجاد آل به دلیل انرژی ارزاد باید پایدار یا باشند که دارند. از نظر ترمودینامیکی سیستم پایدار بوده و دارای قابلیت اواخر کم‌توسط (110) یا اساس پرتوی راه‌های (1985) دومیننگین‌های هولوس به‌عنوان هزینه از کلسیم بوده و نظم بلوری کمی دارند. این دولومیت‌ها از نظر ساختار و ترکیب.

درجه نظم بلوری دولومیت

بررسی نشان می‌دهد که دولومیت‌های غیر ایجاد (غیر عنصرسنجی) و غنی از کلسیم اغلب دارای درجه نظم شکل‌های بلوری کمتری نسبت به دولومیت‌های ایجاد آل (14). نتایج حاصل از XRD نشان داده که درجه نظم شکل‌های بلوری بالاتر دولومیت‌های دومیننگین (99.5) نسبت به دولومکربیت‌ها و دولومگیوسپاریتراها (میانگین 80 است و تاکید کننده بروی انجام شده توسط محققان است (جدول 1).

دولومیت‌های ایجاد آل به دلیل انرژی ارزاد باید پایدار یا باشند که دارند. از نظر ترمودینامیکی سیستم پایدار بوده و دارای قابلیت اواخر کم‌توسط (110) یا اساس پرتوی راه‌های (1985) دومیننگین‌های هولوس به‌عنوان هزینه از کلسیم بوده و نظم بلوری کمی دارند. این دولومیت‌ها از نظر ساختار و ترکیب.

درجه نظم بلوری دولومیت

بررسی نشان می‌دهد که دولومیت‌های غیر ایجاد (غیر عنصرسنجی) و غنی از کلسیم اغلب دارای درجه نظم شکل‌های بلوری کمتری نسبت به دولومیت‌های ایجاد آل (14). نتایج حاصل از XRD نشان داده که درجه نظم شکل‌های بلوری بالاتر دولومیت‌های دومیننگین (99.5) نسبت به دولومکربیت‌ها و دولومگیوسپاریتراها (میانگین 80 است و تاکید کننده بروی انجام شده توسط محققان است (جدول 1).

دولومیت‌های ایجاد آل به دلیل انرژی ارزاد باید پایدار یا باشند که دارند. از نظر ترمودینامیکی سیستم پایدار بوده و دارای قابلیت اواخر کم‌توسط (110) یا اساس پرتوی راه‌های (1985) دومیننگین‌های هولوس به‌عنوان هزینه از کلسیم بوده و نظم بلوری کمی دارند. این دولومیت‌ها از نظر ساختار و ترکیب.

درجه نظم بلوری دولومیت

بررسی نشان می‌دهد که دولومیت‌های غیر ایجاد (غیر عنصرسنجی) و غنی از کلسیم اغلب دارای درجه نظم شکل‌های بلوری کمتری نسبت به دولومیت‌های ایجاد آل (14). نتایج حاصل از XRD نشان داده که درجه نظم شکل‌های بلوری بالاتر دولومیت‌های دومیننگین (99.5) نسبت به دولومکربیت‌ها و دولومگیوسپاریتراها (میانگین 80 است و تاکید کننده بروی انجام شده توسط محققان است (جدول 1).

دولومیت‌های ایجاد آل به دلیل انرژی ارزاد باید پایدار یا باشند که دارند. از نظر ترمودینامیکی سیستم پایدار بوده و دارای قابلیت اواخر کم‌توسط (110) یا اساس پرتوی راه‌های (1985) دومیننگین‌های هولوس به‌عنوان هزینه از کلسیم بوده و نظم بلوری کمی دارند. این دولومیت‌ها از نظر ساختار و ترکیب.

درجه نظم بلوری دولومیت

بررسی نشان می‌دهد که دولومیت‌های غیر ایجاد (غیر عنصرسنجی) و غنی از کلسیم اغلب دارای درجه نظم شکل‌های بلوری کمتری نسبت به دولومیت‌های ایجاد آل (14). نتایج حاصل از XRD نشان داده که درجه نظم شکل‌های بلوری بالاتر دولومیت‌های دومیننگین (99.5) نسبت به دولومکربیت‌ها و دولومگیوسپاریتراها (میانگین 80 است و تاکید کننده بروی انجام شده توسط محققان است (جدول 1).

دولومیت‌های ایجاد آل به دلیل انرژی ارزاد باید پایدار یا باشند که دارند. از نظر ترمودینامیکی سیستم پایدار بوده و دارای قابلیت اواخر کم‌توسط (110) یا اساس پرتوی راه‌های (1985) دومیننگین‌های هولوس به‌عنوان هزینه از کلسیم بوده و نظم بلوری کمی دارند. این دولومیت‌ها از نظر ساختار و ترکیب.
شاخص‌های جامعه‌ای با اختلاف آب‌های با خاستگاه جوی و دریایی

نسبت داد.

پدیده‌ای

از دسترسی مولکول‌های پژوهشی و استفاده دانشگاه‌های سینا و نیز سازمان آب منطقه‌ای کرمانشاه به طور کامل بهره‌برداری از خواص و جنبه آقای مهم‌نامه کمال طاهری و مهندس فتح الله محسنی پور از سازمان آب منطقه‌ای کرمانشاه به خاطر کمک و همراهی در انتخاب مکان برخی صاحبای آگاهان، از آقایان مهراد، حسن، مصلحی، ابراهیمی و بروزی دانشجویان زمین‌شناسی دانشگاه به سیاست خاطر کمک در برداشت‌های صحرایی سیاسی‌گزاری می‌شود. از داوران مجازی که با نکته سنگین و ارائه پیشنهادات به رفع کاسته‌های انتقال مکان به نقل‌فرآیند کم‌فرآیند به ویژه سیاست‌گذاری.

مراجع

[1] مرادی شمس‌تری خ، آدامی م. ج، کاربرد اطلاعات تکامل‌شناسی در تشخیص منشأ و تعیین دما میکرو تکیکال درondeometery سازند سلطنتی در شمال سمنان، مجله بلورشناسی و کانی‌شناسی ایران، شماره 1 (۱۳۸۱)، ص ۱۶-۳۸.


