Volume 31, Issue 4 (12-2023)                   www.ijcm.ir 2023, 31(4): 697-708 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghani Dashtabi S, rahgoshay M, Mohammadi S. Geochemistry of biotite and its formation conditions in Hararan granitoid. www.ijcm.ir 2023; 31 (4) :697-708
URL: http://ijcm.ir/article-1-1847-en.html
1- Department of Petrology, Faculty of Earth Sciences, Shahid Beheshti university
2- Department of Geochemistry, Faculty of Earth Science, Kharazmi University, Tehran, Iran
Abstract:   (1257 Views)
Biotite is usually formed as a rock-forming mineral in a wide range of felsic to intermediate intrusive rocks. Due to complex crystal structure of biotite, different elements can substitute in this rock-forming mineral; therefore can record the physicochemical conditions of the source magma. Based on the chemical classification of mica, the biotites of the igneous rocks, investigated in the Hararan area, can be placed between the poles of phlogopite and annite, and are magnesium type, which indicates their formation in high oxygen fugacity, and according to the amounts of Mg, TiO2 and FeO oxides, these biotites are primary type. These biotites belong to the calc-alkaline magmatic series formed in the subduction environment. Based on the chemistry of biotites, oxygen fugacity in the source magma of Hararan granitoid is in the range of iron oxide. Geothermometry of biotites shows that these biotites formed at temperature ranging between 680 to 780 degrees Celsius and pressure of 2 (1-2) Kbars.
Full-Text [PDF 1198 kb]   (299 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Taghavi A., Maanijou M., Lentz D.R., Sepahi-Gerow A.A., Maruoka T., Fujisaki W., Suzuki K., 'Biotite compositions and geochemistry of porphyry-related systems from the central Urumieh Dokhtar Magmatic Belt, western Yazd, Iran: Insights into mineralization potential', Lithos, 2022, 412, pp. 106593 [DOI:10.1016/j.lithos.2022.106593]
2. [2] Speer J.A., '9. Micas in igneous rocks', 'Micas' (De Gruyter, 2018), pp. 299-356 [DOI:10.1515/9781501508820-013]
3. [3] Dubosq R., Schneider D.A., Camacho A., Lawley C.J., 'Geochemical and geochronological discrimination of biotite types at the Detour Lake gold deposit, Canada', Minerals, 2019, 9, (10), pp. 596 [DOI:10.3390/min9100596]
4. [4] Henry D., Guidotti C., 'Tourmaline in the staurolite grade metapelites of NW Maine: a petrogenetic indicator mineral', American Mineralogist, 1985, 70, pp. 1-15.
5. [5] Abdel-Rahman A.-F.M., 'Discussion on the comment on nature of biotites in alkaline, calc-alkaline and peraluminous magmas', Journal of Petrology, 1996, 37, (5), pp. 1031-1035 [DOI:10.1093/petrology/37.5.1031]
6. [6] Bell E.A., Boehnke P., Harrison T.M., 'Applications of biotite inclusion composition to zircon provenance determination', Earth and Planetary Science Letters, 2017, 473, pp. 237-246 [DOI:10.1016/j.epsl.2017.06.012]
7. [7] Nachit H., Ibhi A., Ohoud M.B., 'Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites', Comptes Rendus Geoscience, 2005, 337, (16), pp. 1415-1420 [DOI:10.1016/j.crte.2005.09.002]
8. [8] Hoisch T.D., 'A muscovite-biotite geothermometer', American Mineralogist, 1989, 74, (5-6), pp. 565-572
9. [9] Holdaway M., 'Application of new experimental and garnet Margules data to the garnet-biotite geothermometer', American mineralogist, 2000, 85, (7-8), pp. 881-892 [DOI:10.2138/am-2000-0701]
10. [10] Wu C.-M., Cheng B.-H., 'Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks', Lithos, 2006, 89,(1-2)), pp. 1-23 [DOI:10.1016/j.lithos.2005.09.002]
11. [11] Rimšaite J., 'On micas from magmatic and metamorphic rocks', Beiträge zur Mineralogie und Petrographie, 1964, 10, (2), pp. 152-183 [DOI:10.1007/BF02652613]
12. [12] Gorbatschev R., 'Biotites in granites, biotites in gneisses, and the status of biotite as a one-mineral environment indicator', Bull. Geol. Soc. Finland, 1970, 42, pp. 23-32 [DOI:10.17741/bgsf/42.003]
13. [13] Lovering T.G., 'Distribution of minor elements in biotite samples from felsic intrusive rocks as a tool for correlation', (US Government Printing Office, 1972. 1972)
14. [14] Stussi J., Cuney M., 'Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M. Abdel-Rahman: a comment', Journal of Petrology, 1996, 37, (5), pp. 1025-1029 [DOI:10.1093/petrology/37.5.1025]
15. [15] Deer W.A., Howie R.A., Zussman J., ' An Introduction to the Rock-Forming Minerals (3rd Edition)', (2013, Berforts Information Press, Stevenage, Hertforshire, UK edn. 2013) [DOI:10.1180/DHZ]
16. [16] Dimitrijevic M., Dimitrijevic M., Djordjevic M., Djokovic I., 'Geological Survey of Iran, 1: 100,000 Series: Sheet 7250', in Editor (Ed.)^(Eds.): 'Book Geological Survey of Iran, 1: 100,000 Series: Sheet 7250' (Anar, 1971, edn.), pp.
17. [17] Berberian M., 'The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust', Canadian journal of earth sciences, 1983, 20, (2), pp. 163-183 [DOI:10.1139/e83-015]
18. [18] Verdel C., Wernicke B.P., Hassanzadeh J., Guest B., 'A Paleogene extensional arc flare‐up in Iran', Tectonics, 2011, 30, (3) [DOI:10.1029/2010TC002809]
19. [19] Chiu H.Y., Chung S.L., Zarrinkoub M.H., Mohammadi S.S., Khatib M.M., Iizuka Y., 'Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny', Lithos, 2013, 162, pp. 70-87 [DOI:10.1016/j.lithos.2013.01.006]
20. [20] Berberian M., King G., 'Towards a paleogeography and tectonic evolution of Iran: Reply', Canadian Journal of Earth Sciences, 1981, 18, (11), pp. 1764-1766 [DOI:10.1139/e81-163]
21. [21] Babazadeh S., Ghorbani M.R., Cottle J.M., Bröcker M., 'Multistage tectono‐magmatic evolution of the central Urumieh-Dokhtar magmatic arc, south Ardestan, Iran: Insights from zircon geochronology and geochemistry', Geological Journal, 2019, 54, (4), pp. 2447-2471 [DOI:10.1002/gj.3306]
22. [22] Sepidbar F., Ao S., Palin R.M., Li Q.-L., Zhang Z., 'Origin, age and petrogenesis of barren (low-grade) granitoids from the Bezenjan-Bardsir magmatic complex, southeast of the Urumieh-Dokhtar magmatic belt, Iran', Ore Geology Reviews, 2019, 104, pp. 132-147 [DOI:10.1016/j.oregeorev.2018.10.008]
23. [23] Topuz G., Candan O., Zack T., Chen F., Li, Q.-L., 'Origin and significance of Early Miocene high‑potassium I-type granite plutonism in the East Anatolian plateau (the Taşlıçay intrusion)', Lithos, 2019, 348, pp. 105210 [DOI:10.1016/j.lithos.2019.105210]
24. [24] Chekani Moghadam M., Tahmasbi Z., Ahmadi-khalaji A., 'Petrogenesis of adakitic and calc-alkaline granitoids in Rabor-Lalehzar region, SE of Kerman: Constraints from geochemical and Sr-Nd isotopes results', Scientific Quarterly Journal of Geosciences, 2018, 27, (108), pp. 13-26
25. [25] Li X., Zhang C., Behrens H., Holtz F., 'Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression', Lithos, 2020, 356, pp. 105371 [DOI:10.1016/j.lithos.2020.105371]
26. [26] Deer W.A., Howie R.A., Zussman J., 'Rock-forming minerals: disilicates and ring silicates, volume 1B', in Editor (Ed.)^(Eds.): 'Book Rock-forming minerals: disilicates and ring silicates, volume 1B', (Geological Society of London, 1997, edn.), pp.
27. [27] Deer W.A., 'Rock-forming minerals', in Editor (Ed.)^(Eds.): 'Book Rock-forming minerals', (Geological Society of London, 2011, edn.), pp.
28. [28] Foster M.D., 'Interpretation of the composition of trioctahedral micas', US Geol. Surv. Prof. Pap., B, 1960, 354, pp. 1-49 [DOI:10.3133/pp354B]
29. [29] Abdel-Rahman A.F.M., 'Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas', Journal of petrology, 1994, 35, (2), pp. 525-541 [DOI:10.1093/petrology/35.2.525]
30. [30] Tischendorf G., Förster H.J., Gottesmann B., 'Minor-and trace-element composition of trioctahedral micas: a review', Mineralogical Magazine, 2001, 65, (2), pp. 249-276 [DOI:10.1180/002646101550244]
31. [31] De Pieri R., Jobstraibizer P., 'Crystal chemistry of biotites from dioritic to granodioritic rock-types of Adamello Massif (Northern Italy)', Neues Jahrbuch für Mineralogie. Abhandlungen, 1983, 148, (1), pp. 58-82
32. [32] Afshooni S., Mirnejad H., Esmaeily D., Haroni H.A., 'Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran', Ore Geology Reviews, 2013, 54, pp. 214-232 [DOI:10.1016/j.oregeorev.2013.04.004]
33. [33] Dymek R.F., 'Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland', American mineralogist, 1983, 68, (9-10), pp. 880-899
34. [34] Henry D.J., Guidotti C.V., Thomson J.A., 'The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms', American Mineralogist, 2005, 90, (2-3), pp. 316-328 [DOI:10.2138/am.2005.1498]
35. [35] Wones D.R., 'Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks', American Mineralogist, 1989, 74, (7-8), pp. 744-749
36. [36] Ishihara S., 'The magnetite-series and ilmenite-series granitic rocks", Mining geology, 1977, 27, (145), pp. 293-305
37. [37] Wones D.R., 'Stability of biotite: a reply',, American Mineralogist: Journal of Earth and Planetary Materials, 1972, 57, (1-2), pp. 316-317
38. [38] Castro A., Stephens W.E., 'Amphibole-rich polycrystalline clots in calc-alkaline granitic rocks and their enclaves', The Canadian Mineralogist, 1992, 30, (4), pp. 1093-1112
39. [39] Uchida E., Endo S., Makino M., 'Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits', Resource Geology, 2007, 57, (1), pp. 47-56 [DOI:10.1111/j.1751-3928.2006.00004.x]
40. [40] Mutch E., Blundy J., Tattitch B., Cooper F., Brooker R., 'An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer', Contributions to Mineralogy and Petrology, 2016, 171, (10), pp. 1-27. [DOI:10.1007/s00410-016-1298-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb