کانی شناسی، پارازن و شرایط تشکیل اسکارن سیاه کمر، غرب دسمل، شرق پهنه‌لوت

حیث بیابان‌گرد، راضیه‌نژلی پور، علی احمدی

گروه زمین شناسی، دانشگاه علوم، دانشگاه سیستان و بلوچستان (دریافت مقاله: 92/05/14 نهایه نهایی: 92/06/25)

چکیده: هورنفلس‌ها و اسکارن‌های سیاه کمر در ۵ کیلومتری غرب روستای دسمل و در فاصله ۸۵ کیلومتری شهرستان نیشتان، جنوب غربی استان خراسان جنوبی و حاشیه شهر قرآندار قرار دارند. نفوذ توده‌ای گرانیت‌نوردی معروف به کوربینگ ب، سیستم فومنی دخالت سیگه‌های آهنی و رسوبی کریستال‌های این اسکارن شده است. کوربینگ از طریق ترکیب غلبه‌گرایی و حاوی کالی کربنات بندان، کوارتز، ازنوک، هورنفلس و ریوتیت است. این اسکارن سیاه کمر هم‌سایه و در مسیر این توده نشان می‌دهد که دارای ماهیت آهن-کلسیم است. هورنفلس‌ها به‌طور مداوم در ماکائی و برخی‌های از اسکارن‌های سیاه کمر مایع گرانبها دیده می‌شود. حاوی کالی کربنات بندان، کوارتز، ازنوک، هورنفلس و ریوتیت است. این اسکارن سیاه کمر هم‌سایه و در مسیر این توده نشان می‌دهد که دارای ماهیت آهن-کلسیم است.

واژه‌های کلیدی: اسکارن سیاه کمر، دسمل، دگرنبها، دگرنبها پیشرفت و پیرونده.

مقدمه

واژه اسکارن (Skarn) اول‌بار توسط معدن‌دار کارل سوندره و برای توصیف مجموعه سنگ‌های غنی از آهن بکار رفته است [1]. در گذشته این مجموعه سنگ‌ها با سنتی‌گهانی بوده و در ترکیب سنگ‌های دیگری به‌دست آمده بودند اما امروزه می‌توان گفت که جهان سنگ‌های کلسیم، منیزیم و آهن اهمیت‌دهنده‌ی اصلی می‌باشد که در نتیجه سنگ‌های دیگری نیز ایجاد می‌شود که در ترکیب سنگ‌های بمعنی‌داری از این سنگ‌های طبیعی به‌دست آمده است. هورنفلس‌ها، کوارتز، ازنوک، هورنفلس و ریوتیت پیش روی این اسکارن‌های سیاه کمر مایع گرانبها دیده می‌شود.

h.biabangard@science.usb.ac.ir

نویسنده مسئول، تلفن-نامه: ۹۱۵۳۴۰۸۵۸۲۴، پست الکترونیکی: h.biabangard@science.usb.ac.ir
شیل و آهک‌های کرتانه سبب ایجاد هورغلس و اسکارن در این منطقه شده است. در این پروژه بررسی اسکارن‌های سیاه کمر برای نخستین بار انجام و تلاش برای شناخت شرایط تشکیل احتمالی اسکارن سیاه کمر شده است.

زمن شناسی
منطقه‌های مورد بررسی در منتهی به شیب جنوبی استان خراسان جنوبی و در حاشیه خاوری بلوک‌کاوت (ایران مرکزی) بین 65° تا 69° عرض شمالی و 31° تا 31° 18' طول شرقی و در فاصله 85 کیلومتری باشتر شهرستان نهین‌دان 5 کیلومتری باخر روستای دهلسم قرار دارد که بهترین راه دسترسی به توده‌های نامبرده، جاده آسفالته نهین‌دان- شهیداد است (شکل 1). از نظر تقسیم‌بندی ایالتی‌های ساختاری ایران، استوکلین، منطقه مورد بررسی جزئی از زون ایران مرکزی (پهناورد) است

شکل ۱ موقوفت و راه‌های دسترسی به توده‌های هورغلس و اسکارن‌های مورد بررسی کورگیک [۳].

شکل ۲ حدود تقریبی گرانتونیتی کوه ریگی و توده‌های اسکارنی مورد بررسی در رده‌بندی ساختاری زمین شناسی ایران [۴].
شکل ۲: نقشه‌ی زمین شناسی منطقه‌ی کوه گلیک برگرفته از نقشه‌ی ۱/۲۵۰۰۰۰ ده سلم با تصمیمات [۶].

شکل ۴: نمایی از توده‌ی گراندیتی کوه گلیک دیده بست شمال غرب.

گراندیتی کوه گلیک هستند، این سنگ‌ها در ارتفاع سیمایی خشن و زنگ‌سرپیچ مایل به سیباه هستند که سنگ‌هایی بسیار مستحکم بوده و بیشتر به دلیل رشدانه بودن و عملکرد فرسایش و نیز وجود جلای بیابان بر سطح آنها هیچ یک از کالی‌های آنها در نمودار دستی قابل تشخیص نیست. این سنگ‌ها در منطقه بیشتر در جنوب و باختن توده دید می‌شوند که قطعاتی از این سنگ‌ها نیز جدای از هم و از طریق عوامل طبیعی حمل و در اطراف ارتفاعات کورنگی پراکنده شدند. (شکل ۵، نفر). ابعاد قطعات هورنفلس‌ها در اطراف توده‌های نفوذی متفاوت و گاهی ۵ متر مربع و گاهی در پیش‌های بالایی توده‌های گراندیتی قرار دارند (شکل ۵، ب).
شکل ۵ ایندکس بلوک‌های حوزه‌های برکنده در اطراف گرانیت‌های ریگی، ب) سنگ‌های تیره‌های هرونفلسی در بخش فوتهای توده‌های گرانیتوپنی.

اسکارن‌ها به ویژه سبلیکات‌های آهکی در بخش شمالی و بااختیار تیهوهای سیاه‌کمر، در جوار توده‌های نفوذی گرانیتوپنی و میگروکاپیرونی در دارند (شکل ۴). این سنگ‌ها در نمونه‌های دستی در جای‌گاه روشن تنها نشانه‌های رشق‌پذیر است. سنگ‌ها در اثر درجه‌بندی توده‌های گرانیتوپنی نیز مقدار زیادی ابیدر سخت خوردند (شکل ۶). درون مجموعه‌های اسکارن‌های سنگ‌های سنگ‌هایی از توده‌های گرانیتوپنی را به روش مشاهده کرد.

روش بررسی نمونه‌برداری از منطقه مورد بررسی در بهمن ماه ۹۰ و فوروردین و آبان ۹۱ انجام شد و تعداد نمونه‌های جمع آوری شده ۶۵ نمونه بود که از نظر سالم کرده و نمونه‌های خشک در دسترس ارزیابی و بررسی شده بود. به منظور اجزای مختلف سنگ‌های برکنده در نمونه‌هایی از هر گونه توده در نظر گرفته شدند. برای تشخیص بنیاده‌های مختلف عنصر اصلی از روش XRF بر اساس درصد وزنی و بلای محاسبه ICP استفاده شد.

شکل ۶ ایندکس بلوک‌های حوزه‌های سیاه کمر، ب) نمونه دستی برش خودره از اسکارن‌های سیاه کمر با لکه‌های گرانیتوپنی در سطح نمونه.
سنگ‌شناسی توده نفوذی

نمونه‌گیری، کانی‌های ترکیب گرانودوریت، گرانیت، مونزونیت و کوارتز مونزونیت است. گرانودوریت در مقاطع میکروکسبی بایف ریسیدای اردن. کانی‌های اصلی آنها درشت باله‌های پلاژیوکلازین که حدود 40 درصد کانی‌های سازندگانی توده نفوذی، را تشکیل می‌دهند. همچنین در نمونه‌های این سنگ‌ها، این سنگ‌ها کانی‌های سازندگانی را تشکیل می‌دهند.

کوارتز در این نوع سنگ‌ها 25 درصد از کانی‌های سازندگان و کانی‌های ویژه این سنگ‌ها شامل درشت باله‌های هورنبلند و بیوئیت می‌شوند که حدود 10 درصد از کانی‌های سازندگان سنگ را تشکیل می‌دهند.

سنگ‌های گرانیتی در کویبوری از کانی‌های پلاژیوکلاز، فلدسپات و بیوئیت تشکیل شده‌اند. کانی‌های کوارتز در این سنگ‌ها در حدود 35 درصد از کانی‌های سازندگان و ابعادی در حدود 1.5 میلی‌متر دارند. کانی‌های

شکل 7: تصاویر میکروسکوپی از سنگ‌های گرانیتی کوارتزی، الکتریک (الف) پلاژیوکلاز نیمه شکل‌دار و دارای متاکت در سنگ‌های گرانیتی، پلاژیوکلاز و بیوئیت در سنگ‌های مونزونیت (ب) کوارتز، بیوئیت، هورنبلند، پلاژیوکلاز و فلدسپات.

کوارتز - Bio - فلدسپات - Kfs - بیوئیت - Horn - Pl - پلاژیوکلاز - Qz
سنگ شناسی سنگ‌های دکترگونی

هورنفلس‌ها: این سنگ‌ها که در اکثر نقاط همراه با مجموعه‌های اسکارای دیده می‌شوند در مناطق میکروسکوپی درای این مشخصاتی دارند. پلاژیوکلازها مهم‌ترین و اصلی‌ترین کاپی‌های این سنگ‌ها موجود در هورنفلس‌ها با ۵۰ درصد حجمی بوده و در ابعادی در حدود ۲/۵ میلیمترند و بیشتر فاقد ماکل و منطقه‌بندی هستند و به صورت یک تا ۴ نیم‌نشده شکل دارند. در برخی از پلاژیوکلازها ادخال‌هایی از کاتئ-هایی که وجود دارد و هیچ نوع شکستگی در آنها مشاهده نمی‌شود. دومین کاپی سازنده این سنگ‌ها کوارتز و در حدود ۲۰ درصد حجمی است و معمولاً ریزدانه و ابعادی کمتر از ۰/۳ میلیمتر دارند و اغلب به شکل و دارای خاموشی موجی هستند. کاپی‌های پیروسکی به صورت بسیار ریز و به شکل در این سنگ‌ها وجود دارند و کمتر از ۱۰ درصد حجمی کاپی‌های

شکل ۸ تفاوت میکروسکوپی از هورنفلس‌های کوریگی، اف) کاپی‌های پلاژیوکلاز بدون ماکل و ریز (ب) بهبود چربی پیروسک و پلاژیوکلاز در هورنفلس‌های کوریگی، (الف) کاپی‌های پلاژیوکلاز بدون ماکل و ریز (ب) بهبود چربی پیروسک و پلاژیوکلاز در

46
سیاه‌کردن شکل، سیاه‌کردن داده‌ها و چک کردن اسکارن سیاه کم ...
کانالزایی در اسکارن سیاه کم اکسیده‌ای آهن به ویژه مگنتیت و کم‌هم‌مانندی کالاهای بستنی که اغلب به صورت پراکنده، جاشیتی و بسیار کم به‌صورت رگه‌ای دیده می‌شوند. در برخی از نقاط اکسیده‌ای آهن و هیدرۆسیسیون‌ها آن به نظر حاصل اکسیداسیون کالاهای اولیه سیک سنگی ریزه، در برخی نقاط اسکارن سیاه مقدار بسیار کمی از مولفه‌های آهن، پیریت و کالکورپیت گاهی به جهش منقرض. این اسکارن‌ها به نظر احتمالاً اکسیده‌ای آهن به ویژه مگنتیت دارای اهمیت اقتصادی است که پهنه‌ای ده‌ و یا دو طبقه‌ای دیده می‌شود و کالاهای گرافیت مهدی انجام شده بر روی آنها نشان داد که دارای اهمیت اقتصادی هستند.

بحث و بررسی
بررسی سنج‌سنجاتی و زمین‌شناسی‌های پودری‌گریزی که از سمت‌های سازنده نورد در گستره‌های گرافیت بوده و در ترتیب بی‌روش‌های پودری‌گریزی، کوارتز، مونوزون‌ها و قروری به‌صورت قروری از نمودار نشان داد که این در استفاده از سنج‌سنجاتی به ویژه مگنتیت و کانالزایی دارای اهمیت است.

شکل 10 تصاویری از سنج‌سنجاتی تهیه کننده الگوی افزایش‌کننده کالاهای سیاه‌کم اکسیده‌ای آهن به ویژه مگنتیت و کانالزایی در سنج‌سنجاتی که اغلب به صورت پراکنده، جاشیتی و بسیار کم به‌صورت رگه‌ای دیده می‌شوند. در برخی از نقاط اکسیده‌ای آهن و هیدروسیسیون‌ها آن به نظر حاصل اکسیداسیون کالاهای اولیه سیک سنگی ریزه، در برخی نقاط اسکارن سیاه مقدار بسیار کمی از مولفه‌های آهن، پیریت و کالکورپیت گاهی به جهش منقرض. این اسکارن‌ها به نظر احتمالاً اکسیده‌ای آهن به ویژه مگنتیت دارای اهمیت اقتصادی است که پهنه‌ای ده‌ و یا دو طبقه‌ای دیده می‌شود و کالاهای گرافیت مهدی انجام شده بر روی آنها نشان داد که دارای اهمیت اقتصادی هستند.

بحث و بررسی
بررسی سنج‌سنجاتی و زمین‌شناسی‌های پودری‌گریزی که از سمت‌های سازنده نورد در گستره‌های گرافیت بوده و در ترتیب بی‌روش‌های پودری‌گریزی، کوارتز، مونوزون‌ها و قروری به‌صورت قروری از نمودار نشان داد که این در استفاده از سنج‌سنجاتی به ویژه مگنتیت و کانالزایی دارای اهمیت است.
دنبال آن فرآیندهای درگیری‌های وکالت‌های دیوبسید و گارنت
شکل می‌گردد. با تغذیه گرانیت‌های کوموری‌گی در سنگ‌های آمک تیه‌های سیال‌کمر سنگ‌های کراتنی ناحیه به
مرمر و اسکار و سنگ‌های شیلی و ماسه سنگی به‌هورنفلک
های تبدیل شده‌اند. به نظر می‌رسد تشکیل ولستونیت حاصل
و اکتشین سیلیس (مجموعه‌های ماسه سنگی) و کربناته‌ها
CaCO₃+SiO₂ → (آمک‌های کراتنی) طبق فرمول یابند. تشکیل ولستونیت در اسکاران یا نوازند
سنگ‌های غنی از کلسیم، SiO₂ بالا که یا از سنگ اویله و یا
پس سه‌های شار وارد می‌شودند. مرز بالا و اکتشینه‌ه
CO₂ گم می‌باشد که به سه حالت بیشتر تشکیل ولستونیت
لازم است. به‌چشم چه فعالیت گاز کربنیک بیشتر شود، می‌باشد نیز
پس سه‌های شار به سنگ‌های کراتنی کانی‌های گارنت (گروسولار
آندرادیت) نمایند و اکتشین زیر تشکیل شده‌است [15].

![شکل 12 نامگذاری سنگ‌های توده‌های گرانیت‌های کوموری‌گی با استفاده از نمودار تعیین درجه اشباع از اولویت سنگ‌های گرانیت‌های کوموری‌گی](image12)

CaCO₃+Fe₂O₃+3SiO₂ ↔ CaFe₂Si₃O₁₂+3CO₂
CaCO₃+Al₂O₃+3SiO₂ ↔ CaAl₂Si₃O₁₂+3CO₂

همچنین اگر سنگ اویله آهک مارنی باشد، کاتالوئت نیز
می‌تواند در شکل گرمسور موثر باشد [16].

Al₆[Si₁₀O₄(OH)₈]+6CaCO₃+2SO₂ → Al₆[Si₁₀O₄(OH)₈] +2Ca₃Al₂Si₃O₁₂+6CO₂+4H₂O

با چاپ‌ریز و شروع انجماد توده گرانیت‌های کوموری‌گی,
به نظر می‌رسد که حجم فازهای گرمسای غنی از مواد فرار
افزوده شده و درگیری‌های روندی کانی‌های تشکیل شده قبیل
شروع شد. همچنین در این مرحله شکستگی‌هایی که در
سنگ‌های میزبان در نتیجه نفوذ توده و فشار شارها ایجاد
شد، مجازی مناسب برای ورود شارها در گرن‌ساز گنبد به
داخل سنگ‌های میزبان فراهم گردید. این مرحله

![شکل 11 نامگذاری سنگ‌های توده‌های گرانیت‌های کوموری‌گی با استفاده از نمودار تعیین درجه اشباع از اولویت سنگ‌های گرانیت‌های کوموری‌گی](image11)

![شکل 12 ناحیه سنگ‌های توده‌های گرانیت‌های کوموری‌گی در فلمنگو شده](image12)

دانشپذیری باران ویژه تشکیل اسکاران سیاه کمر ...
کانی‌هایی که از گروسوئیل-اندرادیت و دیوپسید گسترش می‌یابند. مخلوط پروپونه، دگرسانی پسونده به سبب از اسکارن‌ها رابط است. در اسکارن‌های سیه کم مخلوط پسونده به خوبی از انتهای و باعث تشکیل کانی‌های اپیدوت، ترمولیت، اکتینولیت و کانی‌های ککسیده‌های، نظریه ملایمی، مشخص می‌شود، دگرسانی این مخلوط ناشی از ورود کربنات‌های به دلیل بایین و انجام فرایندهای ایکسکسیو که ریتی‌بکس کانی‌های مارحل قبل احتمالاً واکنش تشکیل پیدا می‌شود. قابلیت شدن کانی‌ها در تنیدی از انرژی گریزین‌گی اکسیژن است.

$\text{Ca}_3(\text{Fe,Al})_2\text{Si}_3\text{O}_{12+5/4} + \text{O}_2 + \text{HCO}_3^– \rightarrow \text{CaCO}_3 + \text{Ca}_2\text{Fe}\text{Al}_2\text{Si}_3\text{O}_{12} (\text{OH}) + 1/2\text{Fe}_2\text{O}_3$

به نظر می‌رسد تشکیل کوارتز-کلیست و کوارتز در طلاک و پلاژیوکلازها. اپیدوت ناشی از درکرسی شاره‌های با دمای پایین می‌باشد. با توجه به مجموعه کانی‌های اخر اسکارن‌های سیاه‌کمر، به نظر می‌رسد که مخلوط تشکیل کانی‌های این اسکارن بیشتر زیر است. در رابط اولیه کانی‌های سپیلکاتی اهمیت بیشتری در بوژ و وابستگی و البته در ترکیب آن در مخلوط بیشتر (در انتهای و در انتهای سیلیتهای دیوپسید، کوارتز و پسونده) به کانی‌های کوارتز، کلیست و مگنتیت و در دمای کنترل ۴۵۰ درجه سانتیگراد و درجه سانتیگراد ۲۴-۱۰-۲۱ درصد از انتهای انتهای سیلیتهای دیوپسید، کوارتز نظیر کوارتز و اپیدوت و در خلاصه سیلیتهای دیوپسید، آباد دستخوش دگرسانی شده و کانی‌های تائوپه کلریت، کلیست و کوارتز تشکیل شده‌اند (جدول ۱).
بانراین طی دوگانه پیشونده در اسکارن سیاه‌کمر مجموعه سیلیکات‌های بدون آب نظری آندرادیت، گروسوال و گارتن به کلکسیون‌های ایپیدوت، کوارتز، کاتیائی کربناتی درگرسان و با تریپسی‌های Ca۲+ سنگ‌سنگ‌هایی با شیوه‌های متغیر شده، در این مرحله به کلکسیون‌های آندرادیت و گروسوال مگنتیت و همانندی در اسکارن سیاه‌کمر حاکی از این گونه شرایط اکسیاسی (گریزندگی بالای اکسیژن) نسبت به شرایط سولفیدی است. در مرحله بعدی در شرایط سولفیدی و در دماهای بالا کالن آندرادیت‌های پایدار است (شکل ۱۵)، که در اسکارن سیاه‌کمر حضور این کالن در اکثر زون‌هایی با این نمایش می‌تواند است. برداشت

مهمت‌ترین نتایج حاصل از این پژوهش عبارتند از:

۱- توده‌های نفوذی گروسوال‌های کربنیکی از گریزندگی کوارتز و میتیت‌های دارند که گروسوال‌های پیکروزی اصلی توده‌ام که تشکیل می‌دهند مشخصات سنگ‌سنگی طبیعی و رنگی و شیشه‌های زمین شیشه‌های زمینی توده حاکی از شعره‌حالانه‌ای تا پرالومین با مشاهدات اوکلاینی است.

۲- گروسوال‌های گاربنوئز کالن‌های مهاربین سنج‌های درب‌گیرندی توده‌های کوارتزی و حاصل دوگانه مجارابی آن هستند این سنج‌ها به‌شیرازی‌دارای کالن‌های بلژیکال‌زکار، کوارتز، پیپ، کوارتز و کوارتز و بافت گرانولاسیک‌یکان.

منبع:

