Volume 32, Issue 1 (4-2024)                   www.ijcm.ir 2024, 32(1): 99-112 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani G, Mardani F, Shafaii Moghadam H. Geothermobarometry of Late Neoproterozoic gabbroic bodies from Shotor-Kuh area, N Torud (SE Shahrood) based on pyroxene and amphibole chemistry. www.ijcm.ir 2024; 32 (1) :99-112
URL: http://ijcm.ir/article-1-1830-en.html
1- School of Earth Sciences, Damghan University, Damghan, Iran
Abstract:   (1202 Views)
The studied area is located in the southeast of Shahrood, north Torud, and northeast of the Central Iran structural zone. The area is one of the Iranian basement terrains which include a wide variety of igneous and metamorphic rocks. The study gabbroic bodies form a small part of this complex and their essential minerals are Plagioclase (labradorite, bytownite), pyroxene (calcic group and augite and clinoenstatite composition), olivine, biotite, and amphibole (calcic group and pargasite and pargasite hornblende composition). Based on the chemical composition of minerals, the magma forming of these rocks has calc-alkaline nature and during their crystallization, the fugacity of oxygen has been high. Geothermometry of pyroxene and amphibole suggest crystallization equilibrium temperatures at gabbroic rocks, for pyro,xene are  900-1200°C and for amphiboles are 820-990°C‑ respectively. Geobarometry calculation of these rocks, using an amount of total amphibole aluminum (Alt is between 2-2.5), estimated between 6.52 to 8.9 kbar and for pyroxene between 5 to 7 Kbar. These conditions are equivalent to the formation and final equilibrium at depth of 23 to 27 km of the lower crust.
Full-Text [PDF 1362 kb]   (159 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Hassanzadeh J., Stockli D., Horton B., Axen G., Stockli L., Grove, M., Shmitt A., Walker D., "U-Pb zircon geochronology of late Neoprotrozoic -Early Cambrian granitoids in Iran: Implications for paleogeographym magmatism, and exhumation history of Iranian basement"و Tectonophysics, (2008) 451: 71- 96. [DOI:10.1016/j.tecto.2007.11.062]
2. [2] Hosseini S. H., Sadeghian M., Zhai M., Ghasemi H., "Petrology, geochemistry and zircon U-Pb dating of Band-e-Hezarchah metabasites (NE Iran): An evidence for back-arc magmatism along the northern active margin of Gondwana", Chemie der Erde 75, (2015) 207-218. [DOI:10.1016/j.chemer.2015.02.002]
3. [3] Balaghi Z., Sadeghian M., Ghasemi H., Zhai M.G., Mohajjel M., "Zircon U-Pbages, Hf isotopes and geochemistry of the schists, gneisses and granites inDelbar Metamorphic-Igneous Complex, SE of Shahrood (Iran): implicationsfor Neoproterozoic geodynamic evolutions of central Iran", J. Asian Earth Sci., (2014).06.011. 10.1016/j.jseaes.
4. [4] Aghanabati S.A., "Geology of Iran", Geological Survey of Iran Press, p 586.
5. [5] Shekari S., Sadeghian M., Ghasemi H., Zaki M.G., "Mineral chemistry, Petrogenesis of metapelitic rocks of metamorphic-hgneous Shotor-Kuh complex (SE Shahrood)", Iranian Journal of Crystallography and Mineralogy, 26 (1), (2018), 179-194. doi: 1029252/ijcm.26.1179. [DOI:10.29252/ijcm.26.1.179]
6. [6] Shekari S., Sadeghian M., Zhai M., Ghasemi H., Zou Y., " Mineral chemistry and petrogenesis of metabasites of Shotor-Kuh metamorphic -igneous complex (SE Shahrood) as an indicator for evolution of intracontinental extensional basins of late Neoproterozoic", Scientific Quarterly Journal,
7. GEOSCIENCES, Vol. 27, No.105, (2017), 167- 182. [DOI:10.1177/0959354317690455]
8. [7] Shekari S., "Petrology and geochemistry of Shotor-Kuh metamorphic complex (SE Shahrood)", Ph.D. thesis, Shahrood University of Technology, Shahrood, Iran (2018), (in Persian).
9. [8] ShafaiiMoghadam H., Li Q.L., Griffin W.L., Stern R.J., Ishizuka O., Henry H., Lucci F., O'Reilly S.Y., Ghorbani G., 2020, "Repeated magmatic buildup and deep "hot zones" in continental evolution: The Cadomian crust of Iran", Earth and Planetary Science Letters Volume 531, 1 February 2020, 115989 [DOI:10.1016/j.epsl.2019.115989]
10. [9] Shafaii Moghadam H., Li H. X., Stern R. J., Ghorbani G., Bakhshizad F., "Zircon U-Pb ages and Hf-O isotopic composition of migmatites from the Zanjan - Takab complex, NW Iran: Constraints on partial melting of metasediments", Lithos (240 -243) (2016), 34-48. [DOI:10.1016/j.lithos.2015.11.004]
11. [10] Sadeghian M., Hosseini S. H., Hemmati A., Shekari S., "Petrology, geochemistry and geochronology of SW Mayamey granitoids", Scientific Quarterly journal, Geosciences, 26, 103, (2017) 61-72.
12. [11] Sadeghian M., "Typical geological characteristics of Late Neoprterozoic- early Cambrian Iranian Gondwanan terranes as indicators for better and faster their uderstanding", 24th Symposium of Crystallography and Mineralogy of Iran (2016).
13. [13] ShafaiiMoghadam H., Li X.H., Santos J.F,, Stern R.J., Griffin W.L., Ghorbani Gh, Sarebani N., "Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran", Earth and Planetary Science letters, 474, 2017, 83-96. [DOI:10.1016/j.epsl.2017.06.028]
14. [14] Bakhshizad F., Ghorbani Gh., "Geochemistry, Geochronology and tectonic setting of metamorphic rocks from Zanjan-Takab region", Scientific Quarterly Journal, Geosiences, vol 25, N 97, 2015, p361-374.
15. [15] Mardani F., "Geothermobarometry and petrology of gabbroic bodies from Shotor-Kuh (SE Shahrood)", N Iran. M.Sc. Thesis In Geology (Petrology), 2021, Damghan University, Damghan, Iran. In Persian.
16. [16] Hawthorne F.C., Oberti R., Harlow G., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D., "Nomenclature of amphibole supergroup", American Mineralogist v.97, 2012, 2031-2048. doi.org/ 10.2138/am.2012.4276 [DOI:10.2138/am.2012.4276]
17. [17] Leake B., et al., "Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association,s amphibole nomenclature", American Mineralogist v.89, 2004, 883-887. doi.org/10.1127/0935-1221/2004/0016-0191
18. [18] Leake B.E., et al., "Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association", American Mineralogist 83, 1997. 1019-1037. doi.org/10.1016/j.cageo.2004.05.007
19. [19] Leake B.E., et al., "On aluminous and edenitic hornblendes", Mineralogical magazine, v. 38, N. 296, 1971, p.389-407. [DOI:10.1180/minmag.1971.038.296.01]
20. [20] Ernst W. G., "Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains", eastern California. Am.Mineral. 87, 2002, 478-490. doi: 10.2138/am-2002-0411 [DOI:10.2138/am-2002-0411]
21. [21] Anderson J. L., Smith D. R., ʻThe effect of temperature and fo2 on the Al-in-hornblende barometerʼ, American Mineralogist. 80, (1995) 549-559. [DOI:10.2138/am-1995-5-614]
22. [22] Morimoto N., "Nomenclature of pyroxenes", Bull. Mineral., 111, 1988, 535-550. [DOI:10.3406/bulmi.1988.8099]
23. [23] Berger J., Femenlas O., J . C. C. Mercier J.C.C., Demaiffe D., "Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker", J. metamorphic Geol., 23, 2005, 795-812. doi:10.1111/j.1525-1314.2005.00610.x. [DOI:10.1111/j.1525-1314.2005.00610.x]
24. [24] Le Bas N.J., "The role of aluminous in igneous clinopyroxenes with relation to their parentage", Am.J.Sci. 260, 1962, 267-288. [DOI:10.2475/ajs.260.4.267]
25. [25] Schweitzer E. L., Papike, J. J., Bence A. E., "Clinopyroxenes from deep sea basalts: A statistical analysis", Geophysical Research Letters, 5(7), 1978, 573-576. doi.org/10.1029/ GL005i007p00573 [DOI:10.1029/GL005i007p00573]
26. [26] Aydin F., Karsli O., Sadiklar M.B., "Compositional Variations, Zoning Types and Petrogenetic Implications of Low-pressure Clinopyroxenes in the Neogene Alkaline Volcanic Rocks of Northeastern Turkey", Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 18, 2009, pp. 163-186. doi:10.3906/yer-0802-2 [DOI:10.3906/yer-0802-2]
27. [27] Deer W.A., Howie R.A., Sussman J., "An introduction to the rock forming minerals", Longman Ltd (1992) 528p.
28. [28] Johannes W., "Melting of plagioclase in the system Ab-An-H2O at P H2O = 5Kbar an equilibrium problem", Contrib. Mineral. Petrol. 66, 1978, 295-303. [DOI:10.1007/BF00373413]
29. [29] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT-estimations", GFF, Vol. 119 1997, (Pt. 1, March), pp. 55-60. Stockholm. ISSN 1103-5897 [DOI:10.1080/11035899709546454]
30. [30] Leterrier J., Maury R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59, 1982, 139-154. [DOI:10.1016/0012-821X(82)90122-4]
31. [31] Nisbet F.G., Pearce J.A., "Clinopyroxene composition in mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63, 1977, 149-160. [DOI:10.1007/BF00398776]
32. [32] Coltori M., Bonadiman C., Faccini B., Gregoire M., O, Reilly S.Y., Powell W., "Amphiboles from suprasubduction and intraplate lithospheric mantle", Lithos, 99, 2007, 68-84. [DOI:10.1016/j.lithos.2007.05.009]
33. [33] Aoki K., Shiba, I., "Pyroxenes from lherzolite inclusions of Itinomegata", Japan. Lithos 6, 1973, 41-51. [DOI:10.1016/0024-4937(73)90078-9]
34. [34] Dawson J.B., "Metasomatized harzburgites in kimberlite and alkaline magmas: enriched restites and 'flushed' lherzolites. In: MENZIES, M.A. & HAWKESWORTH, C.J. (eds), Mantle Metasomatism. Academic Press, London, 1987, 125-144.
35. [35] Simonetti A., Shore M., Bell K., "Diopside phenocrysts from nephelinite lavas, Napak Volcano", Eastern Uganda: Evidence for magma mixing. Canadian Mineralogist 34, 1996, 411-421.
36. [36] Stein E., Dietl C., "Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of Odenwald", Mineralogy and Petrology, 72, 1-3, 2001, pp 185-207. doi: 10.1007/s007100170033 [DOI:10.1007/s007100170033]
37. [37] Schmidt M .W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al - in hornblende barometer". Contrib. Mineral. Petrol. 110, 1992, 304 - 310. doi.org/10.1007/BF00310745. [DOI:10.1007/BF00310745]
38. [38] Vyhnal C.R., MCSween H.Y., Jr., "Hornblende chemistry in southern Appalachian granitoids Implications for aluminum hornblende thermobarometry and magmatic epidote stability", Am.Mineral. 1991, 76, 176.
39. [39] Putirka K., "Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes", American Mineralogist, Volume 101, 2016, pages 841-858. [DOI:10.2138/am-2016-5506]
40. [40] Ernst W. G., Liu J., "Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB- A semiquantitative thermobarometer", Am. Mineral. 83, 1998, 952-969. [DOI:10.2138/am-1998-9-1004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb