همیافتي تورمالین-فیلیک زر. جنوب سمنان

بتول نقی پور

گروه علوم زمین، دانشگاه علوم دانشگاه شیراز

چکیده: کمربند ماگمایی ترود-چاه شیرین در جنوب سمنان میزان سنگ‌های انیشنشانی-آروانی و توده‌های نفوذی سنتزیویک است. کانسر کوه زر در گستره‌ای محدودی با کانژایی Cu-Au و فیروزه منعی است. کانسر زاری در گستره‌ای دگراتسیاً های گرمایی منطقه صورت گرفته است. این دگراتسیاً ها می‌باشت شامل پروپتزنیک، فیلیک، آرژنیک، پیشرفته و سپسی‌های شنودی. همیافتی کمیاب تورمالین به شکل پراکنده تا رگه‌ای با فیروزه در دگراتسیاً فیلیک تا آرژنیک پیشرفته دیده می‌شود. پردارش داده‌های زمین شکل تورمالین به خرج مسکویته‌های زمینه از سنگ میزان شده است. پیدایش فیروزه ناشی از واکنش‌های اکسیایی، فرو پاشی کانی‌های سولفیدی و مس-دار در زون فیلیک و آیاک‌های اومینوسیلیک‌های میزان. (ب) مشاهدات شاره‌ای حاوی P به خرج فازهای کانی‌های سرشار از آلومینیم (ألوئینت) نیز امکان‌پذیر شده است. بدن گونه هم‌به‌سانی دو ربخدان دگراتسیاً آرژنیک پیشرفته دیگری ثابت شده است.

واژه‌های کلیدی: کوه زر تورمالین-فیلیک؛ شیمی کانی؛ دگراتسیاً

مدیر

نوبت‌نامه معدنی کوه زر ترود به مختصات طول جغرافیایی ۲۰۰۵ در تا ۲۰۰۳ و عرض جغرافیایی ۵۱°۳۵ ' تا ۵۱°۴۰ '، دامغان، قرار دارد. این کانسی در ۱۰۰ کیلومتر جنوب شرقی دامغان قرار دارد. و شسته‌ای است که با رودهای نفوذی معدنی در نوار ماگمایی ترود-چاه شیرین در جنوب دامغان قرار دارد. این دوره ماگمایی از رشته‌کوه‌های شمال ترود در شرق داده شده که با رودهای جنوب-غربی کوه‌های جنوب شیرین در غرب با رود شمال شرقی-جنوب غربی

Taghipour@shirazu.ac.ir
کانی‌هایی که در هیچ‌یک از شیمیایی‌های غیرت روبرو هستیم، مایر است. در این مدل، مایرها محل‌هایی هستند که داخلی یا خارجی از ساختار آنزیم‌ها قرار می‌گیرند.

روش بررسی

در این پژوهش، از بررسی‌های صحرایی و نمونه‌برداری برای مشاهده گرفتن در کوه‌های زمین ساخت از منطقه‌های مطالعه‌های داده‌ها شامل به‌طور گسترده‌ای که در شیمیایی‌های غیرت روبرو هستیم، مایر است. در این مدل، مایرها محل‌هایی هستند که داخلی یا خارجی از ساختار آنزیم‌ها قرار می‌گیرند.

روش بررسی

در این پژوهش، از بررسی‌های صحرایی و نمونه‌برداری برای مشاهده گرفتن در کوه‌های زمین ساخت از منطقه‌های مطالعه‌های داده‌ها شامل به‌طور گسترده‌ای که در شیمیایی‌های غیرت روبرو هستیم، مایر است. در این مدل، مایرها محل‌هایی هستند که داخلی یا خارجی از ساختار آنزیم‌ها قرار می‌گیرند.

روش بررسی

در این پژوهش، از بررسی‌های صحرایی و نمونه‌برداری برای مشاهده گرفتن در کوه‌های زمین ساخت از منطقه‌های مطالعه‌های داده‌ها شامل به‌طور گسترده‌ای که در شیمیایی‌های غیرت روبرو هستیم، مایر است. در این مدل، مایرها محل‌هایی هستند که داخلی یا خارجی از ساختار آنزیم‌ها قرار می‌گیرند.

روش بررسی

در این پژوهش، از بررسی‌های صحرایی و نمونه‌برداری برای مشاهده گرفتن در کوه‌های زمین ساخت از منطقه‌های مطالعه‌های داده‌ها شامل به‌طور گسترده‌ای که در شیمیایی‌های غیرت روبرو هستیم، مایر است. در این مدل، مایرها محل‌هایی هستند که داخلی یا خارجی از ساختار آنزیم‌ها قرار می‌گیرند.
زمین شناسی عمومی منطقه
کانسار کوه زر در میان بروندهای آتش‌نشانی-نفوذی شمالی کوه ترود-چاه شیرین به سن انوی میانی تا میلیون سال است. شده است [۱۰۰]. شکل جبری ماکم‌های و راه طالب و فیروزه‌ای منطقه باعث توسیع رشد نژاد عمران [۲۱۱] بررسی شده است.
کوه‌های ترود-چاه شیرین با ترکیب غلیق سبزه‌های انرژی به سن پالتوزن هستند. بیشترین فعالیت‌های ماکم‌های در دوره‌ای انوی میانی تا بالایی رخ داده است. فعالیت ماکم‌های از قدیم به جدید به سه مرحله تقسیم وسیده می‌شود [۲۲۲].
- فعالیت آتش‌نشانی شامل گدازه‌های زیرین، روبات، آنزیم‌های هموار با مانند و گاهی ماسه سبز سبزه‌های منطقه

شکل ۱ موقعیت رنشته کوه‌های ترود-چاه شیرین بین دو گسل انجیل-ترود و منطقه کوه زر [اقتباس از ۱۰۰].

شکل ۲ نقشه زمین‌شناسی منطقه‌ی ترود و موقعیت کانسار‌های موجود در منطقه، [اقتباس از ۱۰۱].
شکل‌های آنی‌شیمیایی سنگ‌های آدی‌نزین

در بخش اول بحثی در مورد سنگ‌های آدی‌نزین، سبک کریستال‌سازی، توزیع و ترشحات مورد بررسی قرار گرفته است. در این بخش، از نظر ابتکاری و از نظر اقتصادی، اهمیت سنگ‌های آدی‌نزین به‌طور کلی به‌عنوان سنگ‌های پایه‌ریزی شده به‌دست می‌آید. در بخش دوم، در مورد سنگ‌های آدی‌نزین و منطقه‌های آن توضیحاتی در مورد موقعیت جغرافیایی و توزیع مکانی ارائه گردیده است. در پایان بخش اخیر، محاسباتی نیز مربوط به سنگ‌های آدی‌نزین در منطقه‌های مختلف ارائه شد.

جدول 1: ترکیب شیمیایی سنگ‌های آدی‌نزین نفوذی و آنی‌شیمیایی منطقه‌ای کوه زر

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>Ku.1</th>
<th>Ku.4</th>
<th>Ku.7</th>
<th>Ku.8</th>
<th>Ku.9</th>
<th>Ku.20</th>
<th>Ku.25</th>
<th>Ku.27</th>
<th>Ku.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>54.1</td>
<td>56.4</td>
<td>58.6</td>
<td>58.4</td>
<td>58.3</td>
<td>58.2</td>
<td>58.0</td>
<td>57.7</td>
<td>57.3</td>
</tr>
<tr>
<td>TiO₂</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.0</td>
<td>14.8</td>
<td>14.7</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Fe₂O₂</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>MgO</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>CaO</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>L.O.I</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Total (wt%)</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
</tr>
</tbody>
</table>
روایت صحرایی و سنگ‌نگاری درسانتی‌های گریمی

یوزیت‌های مفصوص صحرایی نشان داد که تقریباً تمام سنگ‌های منطقه تحت تأثیر درسانتی گریمی قرار گرفته‌اند. درسانتی پروپیلیتیک بیشتر به صورت پراکنده و پیشین در سنگ‌های برخی انواع سنگ‌های پایه‌نظامی نشان داده می‌شود. در زون درسانتی پایه‌نظامی سنگ‌های بیشتر به صورت رده‌ای و یا اجماعی در زون درسانتی زمانی وقت گردیده است. راه‌های قابل توجهی که در این منطقه گزارش می‌شود، همانند کمیابی نمایی و قطعات سنگ‌های فیلیک می‌باشد. شاهد صحرایی رخداد فیلیک‌ها در سنگ‌های درسانتی می‌باشد که به صورت نشان‌دهنده می‌باشد.

بر اساس بررسی‌های سنگ‌نگاری، کلیه‌ها اصلی سنگ‌های درسانتی شده در منطقه کوه زیر مارونز از کوارتز (40-80)، فلدسبار (10-20)، فیلم‌ها (5-10)، بیتونیت (5), سرپینیت (5), آلوتین (5), کلریت (5), اپیدوت (5), کلسیت (3), پیریت (5), پروپیلیتیک (5), پروپیلیتیک (3), آلفابول، اپیدوت سنگ و گل‌های کریستالی سنگ است. زون فیلیک به عنوان گستردن تیرین زون درسانتی‌های رده‌ای کانی‌های اصلی کوارتز، سرپینیت و پیوپول است. در این رده‌ها، پیوپول درون زون فیلیک‌ها نگهداری دارد که با پیوپول کانی‌های اصلی کوارتز، سرپینیت و پیوپول است. در این رده‌ها، پیوپول درون زون فیلیک‌ها نگهداری دارد که با پیوپول کانی‌های اصلی کوارتز، سرپینیت و پیوپول است.

در این رده‌ها، پیوپول درون زون فیلیک‌ها نگهداری دارد که با پیوپول کانی‌های اصلی کوارتز، سرپینیت و پیوپول است.
هبیه دارگسی عادی است. در بیشتر موارد کوارتز با حواسی
نیمه گرد شده به شکل درشت بلور قابل مشاهده است. درشت
بلورهای فلزی که به مطابقت کامل به وسیله سیستم جانشین
شده‌اند نیز در زون فیلیک به خوبی دیده می‌شود (شکل 4-3).
دوم سیلسیس شدن بلور به جانشینی کوارتز بریدگانه در
منت یا رخزد رگچه‌ای به شکل پوششی روی کوارتزهای
dرشت بلور دیده می‌شود (شکل 4-2). در زون دگرسانی فیلیک
جانشینی کامل کانی فرومیت‌زین اولیه دشت بلور توسط
مسکویت کامل مشهود است (شکل 4-1). دگرسانی هم‌مان
دشت بلورهای فلزی توانست بررسی توسط سیستم گاهنوازی نیز دیده
می‌شود (شکل 4-1). تورمالین با فراوانی کمتر از 10 درصد,
به اشکال زیر در زون فیلیک قابل مشاهده است.

الف اشکال نیمه شفاف که بیشتر به نظر می‌رسند، پر
کننده

فصل 6: فعالیت شیمیایی در خالی تورمالین

ب: تورمالین به شکل تقویفی‌های زینه‌ای کانی‌های فلزیک
(کوارتز سیستم) که زیر گزار شده این کانی به ناحیه
های زینه است، این گونه تورمالین‌ها در نهایت اشکال آمیخت
به دلیل می‌گردد و مزرا نابی‌دار با زینه‌نیان می‌دهند
(شکل 4-4).

ج: تورمالین‌های منفرد در برخی موارد دارای ساختار زونه

د: اگر در همین موارد تورمالین‌هایی یافت شد، گره‌های
فوروزه همرف تدرییسی فیلیک است. فوروزه با فراوانی کمتر از
5 رخزد رگچه‌ای دارد و پر شدگی فضای داخلی تورمالین
به فوروزه نیز گیاهی است (شکل 3-4). بررسی دقیق رگچه‌ها نشان
می‌دهد که بعد از نشکل تورمالین‌ها فضای خالی به وسیله
فوروزه پر شده است (شکل 3-4). رویت پارزانتیکی کانی‌ها
و دنباله تشکیل زونهای دگرسانی در جدول 2 نشان داده شده.

است.

بررسی‌های XRD نیز مجموعه کانی‌های کلاستیک، ایبودت،
کوارتز، سیلسیس، پیریت، تورمالین، آلینت و فوروزه را در
گستره دگرسانی نشان می‌دهد (جدول 3).

بحث و بررسی

الف: خاصیت‌های تورمالین
کانی‌های اصلی زانداری دگرسانی آزیلیک پیشرفته (اسید-سولفات) شامل آلینت، کانولینت، کوارتز و پیریت‌اند. این
کانی‌ها تحت تأثیر گرم‌های سولفاتی اسیدی تشکیل

شده‌اند. شاره‌های اسیدی به چندین صورت در محیط ای ترمال

بینال تفی‌بیور
جدول ۲ روابط پارازناتکی کانه‌ها در زون‌های دگرسانی منطقه کوه‌ز

پراته کانه‌ها	فندرسی پایه	پلاتوکلاژوسورپسی	حورنک	پورپت	کلولینی شدن	ایدودت	کریت	کپیت	سرسیت	تورمالین	پیرت	آلوئین	زاژوئت	فیروزه	X
---------------	-------------	-------------------	--------	-------	-------------	--------	------	-------	--------	--------	------	--------	-------	--------	
کانه‌ها	کریت	کانه‌ها													
کوارتز															
فلزدهنده															
بورپالی															
بورپالی															
بورپالی															
بورپالی															
بورپالی															
بورپالی															
بورپالی															
بورپالی															
بورپالی															

فرومینین سنگ میزانی (هونلبند، بینویت) یا یکاپش پریت-برسی‌های زمین شیمیایی روی تورمالین‌های همبیفت با

فیروزه ترکیب شیمیایی آنها را در گستره‌های شوریت-دراییت (متوسط به قطب دراییت) نشان داده است (جدول ۳) (شکل ۵) Al-Al50Fe50Si/Alkali، Alkali/Alkali که همچنین بر اساس نمودین سه تایی ۵۰-۵۰ که یک سایه‌گیری تورمالین Al50Mg50Si/Alkali، Alkali/Alkali می‌تواند در آنها به‌نفع از آلومینیوم است (شکل ۶). برای شکل‌گیری تورمالین‌های سازه‌های عنصری ضروری سیلیس-آلومینیم، بر اهم و مناسبی سیلیس و آلومینیم در محتوی ساختاری که در اثر گرفت‌شروع درون‌گستردگی تورمالین برای ۳ تعمین کرده‌اند. این که در آلیاژ‌های بیومهاری مانند آلومینیوم (کوارتز-سکوپسیت، پریت) در دسترس قرار گرفته‌اند. آهن و منیزیم یا می‌توانند از فرآیندهای کانی‌های

(XRD)
میکروسکوپی (شکل‌گیری تورمالین در بهینه سرمایه و عدم تعادل بافتی سرمایه با تورمالین) واکنش زیر را پیشنهاد کرد:
\[\text{Na}_2 \text{B}_4 \text{O}_5 (\text{OH})_4 + \text{KAl}_3 \text{Si}_3 \text{O}_{10} (\text{OH})_2 + \text{Fe}_3 \text{O}_4 + \text{Mg} \]

Muscovite magnetite (OH)\text{2}\text{(aq) = Na(FeMg)}_2 \text{Al}_2 (\text{BO}_3)_3 \text{Si}_6 \text{O}_{18} (\text{OH})_4 \text{ "hab" }}

همچنین می‌توان واکنش زیر را در نظر گرفت [۳۱]

12 albite + 6 magnetite + boric acid (aq) = 2 schorl + 24 quartz + hematite +10 H₂O + 10Na⁺

آب باقیمانده از واکنش فوق می‌تواند در اثر یک فرایند بازخور (feed back) دگرگرایی بیشتر را موجب شود.

است و برای پایداری
ASI یا به ۱.۳ تا ۱.۴ آفزایش

یابد. بنابراین درجه اشباع از آلومینیم محیط برای پایداری
تورمالین از پارامترهای مهم محسوب می‌شود.

لندن [۳۱] برای شکل‌گیری تورمالین در انباشتهای کنی- های گرانه‌ها، کانی بریوفیل را به عنوان یکی از سازه‌های
اسلام آلومینیوم‌دار در نظر گرفته است. همچنین ترکیب بر

hydrox alkali مورد نیاز را به شکل برای قلب‌پرای آیند ()

پیشنهاد کرده است.

برای بهبودی دگرگرایی کوه زر ترک زاده فاصله آلومینیوم‌دار قابل واکنش مسکوئیت است، لذا می‌توان با استفاده به شواده

![Diagram](image-url)

شکل‌های نیروی (Fe + Mg) نسبت به Ca (Ca + Fe) برای تخمین‌بندی تورمالین، چنین که نمودار نشان می‌دهد نمونه‌ها در گستره
Al, Al50Fe50, Ca, Mg نسبت به Fe (Fe + Mg) درایت قرار گرفته‌اند [۳۱]. ب. نمودار تخمین‌بندی تورمالین بر اساس نسبت Fe, Mg نسبت به Ca (Ca + Mg) برای تعیین خاسیت تورمالین [۱۹].
جدول ۴ نتایج میانگین داده‌های ریزبرداری‌های تورمالین‌های منطقه کو و محاسبه کانویون آن

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>B₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>ZnO</th>
<th>BaO</th>
<th>Na₂O</th>
<th>F</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-T-1</td>
<td>44.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.7</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-2</td>
<td>44.6</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-3</td>
<td>44.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-4</td>
<td>44.2</td>
<td>0.6</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-5</td>
<td>44.1</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-6</td>
<td>44.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-7</td>
<td>43.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Zr-T-8</td>
<td>43.8</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>

تعداد اثنیات بر پایه‌بود ۲۲۰

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si</th>
<th>Ti</th>
<th>Al³⁺</th>
<th>Al²⁺</th>
<th>B</th>
<th>Y</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-T-1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Zr-T-2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Zr-T-3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Zr-T-4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Zr-T-5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Zr-T-6</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Zr-T-7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Zr-T-8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>0.8</td>
<td>0.9</td>
</tr>
</tbody>
</table>

گچه‌گیری‌ها

همیافی تورمالین-فیروزه در زون دگرگویی فیلیک، کاسار...
ربنواخت
رخند تونر تورمالین و فیروزه در گروه از موارد کمیاب
پیدا می‌گردد. در این منطقه، هموشی دو گونه
دگرگونی رخ داده است. که بیان بندی را این دو گونه در
یک هم‌تئیست است (شکل 8).
الف: دگرگونی کوارتز-سرسیت-پیریت (فیلیک گری به عنوان
پیشین دگرگونی اصلی منطقه وجود داشته است. دگرگونی ری
از خاکسازی دگرگونی اکثریت شده به وسیله توده‌های نفوذی
منجر به تبدیل زیادی بر به همه دگرگونی فیلیک شده
است. رخند تورمالین که یک فاز سرشار از آومینیمی است، می-
تواند شاخه‌ای درگرگونی آژینیک بیشتر فرته نیز باشد.
د: دگرگونی آژینیک، پیشرفته با شاخه کانادای،
فیروزه، تریتز، مسکوئیت، کالیبرمیت. در سطح طبیعی
این دگرگونی از خاکسازی اکسیک، پیریت و سولفوئیدی‌های مس
یوند که با ایجاد یک محیط فرورشش استبداد بر پنه ی
فیلیک قابل سازگاری تشكیل فیروزه (Al3O8، P2O5، CuO)
را فراهم کرده‌اند.

CuAl6(PO4)4 (OH)8 .4H2O + 5K2SO4 + 8H+
توپوزیت
در اینجا متوازن ترکیب آلیت را با (Fe3+) (Al3+)
یون در فرمان‌بندی به طاقت فیروزه (KFe3(SO4)2(OH)6
حاوی اینغی امر استند (جدول 8). در رابطه با اینعالن،
چالی و ژنتیکی آهن در تیزکه زاوست، شرکت
می‌کند. رخند تورمالین با رنگ صنعتی و جالی ویژه در بیشتر
موارد فیروزه را همراه می‌کند.

2K2SO4 + 3FeOOH + 3H+ = KFe3(SO4)2(OH)6 + 3K+
و ترکیب
برای رختند رگه‌های این کانالی می‌توان چنین پیشنهاد کرد که
فیروزه ممکن است به چرخ فسفر آرد شده در محیط یسی و
مستقل از آلیت با حضور فاز کاتیایی سالانه از آومینیم
در زمینه مطالعه واقعی زیر شکل گرده در
6Al(OH)3 + 4H3PO4 + CuSO4 = CuAl6(PO4)4
فاز غنی از آومینیم
(Oh)8 .4H2O + 2H2SO4 + H2O

جدول 5 تراکمی داده‌های ریزپردازی فیروزه منطقه کر گ ز و محدوده کانیون آن.

<table>
<thead>
<tr>
<th>OXIDE%</th>
<th>Tu-1</th>
<th>Tu-2</th>
<th>Tu-3</th>
<th>Tu-4</th>
<th>Tu-5</th>
<th>Tu-6</th>
<th>Tu-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2O5</td>
<td>34.0</td>
<td>34.1</td>
<td>34.3</td>
<td>34.2</td>
<td>34.4</td>
<td>34.3</td>
<td>34.5</td>
</tr>
<tr>
<td>SiO2</td>
<td>34.1</td>
<td>34.2</td>
<td>34.3</td>
<td>34.4</td>
<td>34.5</td>
<td>34.6</td>
<td>34.7</td>
</tr>
<tr>
<td>Al2O3</td>
<td>34.4</td>
<td>34.5</td>
<td>34.6</td>
<td>34.7</td>
<td>34.8</td>
<td>34.7</td>
<td>34.9</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>34.7</td>
<td>34.8</td>
<td>34.9</td>
<td>35.0</td>
<td>35.1</td>
<td>35.2</td>
<td>35.3</td>
</tr>
<tr>
<td>CuO</td>
<td>34.8</td>
<td>34.9</td>
<td>35.0</td>
<td>35.1</td>
<td>35.2</td>
<td>35.3</td>
<td>35.4</td>
</tr>
<tr>
<td>ZnO</td>
<td>35.0</td>
<td>35.1</td>
<td>35.2</td>
<td>35.3</td>
<td>35.4</td>
<td>35.5</td>
<td>35.6</td>
</tr>
<tr>
<td>CaO</td>
<td>35.2</td>
<td>35.3</td>
<td>35.4</td>
<td>35.5</td>
<td>35.6</td>
<td>35.7</td>
<td>35.8</td>
</tr>
<tr>
<td>K2O</td>
<td>35.4</td>
<td>35.5</td>
<td>35.6</td>
<td>35.7</td>
<td>35.8</td>
<td>35.9</td>
<td>36.0</td>
</tr>
<tr>
<td>BaO</td>
<td>35.6</td>
<td>35.7</td>
<td>35.8</td>
<td>35.9</td>
<td>36.0</td>
<td>36.1</td>
<td>36.2</td>
</tr>
<tr>
<td>Na2O</td>
<td>35.8</td>
<td>35.9</td>
<td>36.0</td>
<td>36.1</td>
<td>36.2</td>
<td>36.3</td>
<td>36.4</td>
</tr>
<tr>
<td>K2O</td>
<td>36.0</td>
<td>36.1</td>
<td>36.2</td>
<td>36.3</td>
<td>36.4</td>
<td>36.4</td>
<td>36.5</td>
</tr>
<tr>
<td>H2O+</td>
<td>143.7</td>
<td>143.8</td>
<td>143.9</td>
<td>144.0</td>
<td>144.1</td>
<td>144.2</td>
<td>144.3</td>
</tr>
<tr>
<td>F</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Cl</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>O=F</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>O=Cl</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Number of cations on the basis of the 12 O

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Si</th>
<th>Al</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Ca</th>
<th>K</th>
<th>F</th>
<th>Cl</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>3.94</td>
<td>3.91</td>
<td>3.94</td>
<td>3.96</td>
<td>3.94</td>
<td>3.97</td>
<td>3.99</td>
<td>3.97</td>
<td>3.95</td>
<td>3.95</td>
<td>3.98</td>
</tr>
<tr>
<td>Si</td>
<td>1.0</td>
</tr>
<tr>
<td>Al</td>
<td>0.55</td>
</tr>
<tr>
<td>Fe</td>
<td>0.98</td>
</tr>
<tr>
<td>Cu</td>
<td>0.25</td>
</tr>
<tr>
<td>Zn</td>
<td>0.04</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>0.03</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
</tr>
<tr>
<td>OH</td>
<td>15.10</td>
</tr>
</tbody>
</table>
شکل ۱ مدل طرح گونه پیشنهادی برای پیدایش نورالمالین-فیروزه کوهرز. این مدل توسط تریالهای استاندارد به‌عنوان مناسب و قابل قبول بررسی شده است.

قدرتمندی نوشته‌ای این مقاله از حمایت‌های مالی خانه‌ی پژوهشی دانشگاه شیراز برای انجام اجرای این پژوهش تشرک می‌گردد.

مراجع
[۱] زاده‌پور، ن. امیری، ع. و دیگران، ن. مقایسه اثرات جهانی و واقعیت بر روی ساختار و هماهنگی قطعات در این مطالعه است. در حال حاضر، ع. و دیگران نیز در این زمینه کار می‌کنند.
[۴] جعفری‌پور، ع. و دیگران، ن. مقایسه اثرات جهانی و واقعیت بر روی ساختار و هماهنگی قطعات در این مطالعه است. در حال حاضر، ع. و دیگران نیز در این زمینه کار می‌کنند.

