همیافته تورمالین-فیلیک-تکونین، کانسار مس-طلای منطقه کوه زر، جنوب سمنان

بتول نقی پور
گروه علوم زمین، دانشگاه علوم، دانشگاه شیراز
(دریافت مقاله: ۹۲/۵/۱۵، نسخه نهایی: ۹۳/۹/۱۷)
چکیده: کمربند ماگمایی ترود-چاه شیرین در جنوب سمنان، میزان سنگهای آن‌نشستی از آرزویی و نتوانید نفوذی سنتورونیکی است. کانسار کوه زر در گسترده‌ترین محدوده با ناحیه‌های Cu-Au و فیلیک تشکیل شده است. در این کانسار با ترکیب سنگ‌های آرزویی و فیلیک، پیتروفیل، آرزویی آرزویی‌های پیشرفته و سیلیسی می‌شود. همیافته کمربند تورمالین به شکل برای ترکیبی به فیلیک و در گسترده‌ترین فیلیک آرزویی‌های پیشرفته دیده می‌شود. پردازش داده‌های زمین-شیمیایی (EPMA) اینای میزان‌های دیده در سنگ‌های منطقه نشان داد است. همچنین دیده در سنگ‌های اکسانشی، در داده‌گیری‌های اکسانشی، فرو پاشی کانی‌های سولفیدی و مس- فیلیک در دان‌شیک داده‌ها نشان داد. این رابطه در اکسانشی شرکتی اکسانشی، (آلولیت) نیز امان پذیر شده است. دیده در کانی‌های همبخشکی دو رخ داده‌گیری آرزویی‌های پیشرفته، به گونه تورمالین‌زایی در داده‌های نشان داده است.

واژه‌های کلیدی: کوه زر، تورمالین-فیلیک-تکونین، شیمی کانی، دگرسانی

مقدمه
منطقه کوه زر ترود به مختصات طول جغرافیایی ۱۰۲°۰۳ این دارا، این کانسار در ۱۰۰ کیلومتری جنوب شرقی دامغان قرار دارد دانشگاه تکنیکی که راست‌آن به این داده‌گیری و عرض آن به بیش از ده کیلومتر می‌رسد. و نتیجه شرکتی از ترود-چاه شیرین، این نوار ماگماتیک از رشته کوه‌های شمال‌تر در سیری تا شرط کوه‌های جدید شیرین در غرب با روی دیگر محلی خبری-جبش‌غربی

Taghipour@shirazu.ac.ir

* نویسنده مسئول، تلفن: ۰۷۱۳۶۴۳۰۷۲، پست الکترونیکی:
صروت گرنته در کوژ رز و منطقه‌های دگرگانی ارتباط تکانگی با زمین ساخت ان منطقه دار (گسل‌هایی که در شمار به مواد گسل عظیم و در جنوب ب به مواد درون قرار دارند) [11].

جغرافیا [9] بررسی سنگ‌گرگی قوس و بافت‌های دانشگاه
رشته گوه زر-ترود و کانالی واکنش در بافت‌ها است. احتمال
داد [130] بررسی‌های الگوریتمی و زنگ‌آمیز ابزار از
منطقه‌های با گرنته در بافت انجام گرفت این است. نتایج [11] بررسی‌های در
مدل گوه‌زدایی برای درک مواد با درون قرار داهان و
فرآیند تکانگی در این منطقه توسط ابعاد و همکاران
خصوص گرنته‌ها که در منطقه‌های با گرنته دانسته.

کانی فیروزه با فرمول شیمیایی

CuAl6(PO4)4(OH)8

در دریای بحر به عنوان یک گوه قبیلی بهای است و این
کانی به عنوان یک کانی کانی کانی نام برد می‌شود. مشاهدین
کانسی ویزیوز در خاکمانه‌ها و شرایط جهانی دارد. کانسی
فنی‌شناسی است. علاوه بر آن در نقاط دیگر ایران مانند
ذوب می‌شود و باعث شکل بگیرنده آن در بنا به کانی
گرنته یا یک کانسی ویزیوز استفاده [12]. اعتمادی
و خیال‌برداری [12], بررسی‌هایی در خصوص زمین‌شناسی و
زمین‌شناسی ابزار فیروزه در معنی بافت‌های اندازه‌گیری
که در این خصوص عملکرد نوعی رنگ در کانی فیروزه وجود
ناخالی‌هایی از قبلقن آن و تیم‌بندی هستند. همچنین هاشمی
فاکتور نویز کانسی می‌تواند باشد. این بررسی
فیروزه از واکنش کننده آن منطقه شکل گرفته است.
تشکیل فیروزه در منطقه‌های کوه رز، شرکت،
رگ‌هایی و گاهی بیشتر در همکاری با آن‌ها در سپری
گرنته شده است. لایه و همکاران [9] از تشکیل طیف‌های
IR گزینش شده است. لایه و همکاران [9] از تشکیل طیف‌های

1- turquoise
زمین‌شناسی عمومی منطقه
کانسار کوه ز در منطقه‌های آنتفاسیانی-خوی‌ی شمالي کوه ترود-چاه شیرین به سن انسان میانی تا میلیون‌های دقیقاً شده است [۱۰۰]. شکل‌گیری ساختاری و راه‌فکری و فیزیولوژی منطقه باعث توسط دری است. منطقه کوهی ترود-چاه شیرین با ثبات بالا سنجش‌های آذرین به سبب پالیژن‌های مسئولیت مالکیت مالک مایلی در دوره‌ای انسان میانی تا بالایی رخ داده است. انسان مایلی از مایلی به مرحله می‌شود [۲۱۲].
- قشلاق آنتفاسیانی شامل گدازه‌های پرکلاتیک در ادوار، الیونی، رودادی،
کوه‌سازی همراه با مارن و گاهی ماسه سنگ‌های سنگ‌های
- سالن‌ها و سنگ‌های پیرکلاستیک که اغلب ترکیب آندزیتی،
- تراکی آندزیتی تا بازالتی دارند.
- درون‌های آذرین نیمه عمیق و کم عمق که گسترده چندان
نادرند.
گسل‌های انگیزه و ترود به ترتیب در شمال و جنوب منطقه
دو گسل راستا از گذر با روست شمال شرقی دیده می‌شوند.
کوه‌های ترود-چاه شیرین دارای چندین کانسار و راکرما شامل:
کوه زر (مس-طلای-خوروزه)، گنبدی
(Pb-Zn) (Au، Ag، Pb-Zn) (Pb، Zn، Ag، Au)
واحشی (Cu و پوسیده) است [۱۱۲] (شکل ۱ و ۲).

شکل ۱ موقعیت رشته کوه‌های ترود-چاه شیرین بین دو گسل انگیزه-ترود و منطقه کوه زر [افق نمایی از ۱۰۰].

شکل ۲ نقشهٔ زمین‌شناسی منطقه کوه زر و موقعیت کانسارهای موجود در منطقه، [افق نمایی از ۱۱۲].
سنگ سیمی‌های آدنزیت یا سنترال که به‌طور عمومی در منطقه‌بندی به‌شمار می‌آید، در این منطقه به‌طور مداوم وجود دارد.

<table>
<thead>
<tr>
<th>Sample (wt%)</th>
<th>Ku.1 Intrusive</th>
<th>Ku.4 Intrusive</th>
<th>Ku.7 Intrusive</th>
<th>Ku.8 Intrusive</th>
<th>Ku.9 Intrusive</th>
<th>Ku.20 Extrusive</th>
<th>Ku.25 Extrusive</th>
<th>Ku.27 Extrusive</th>
<th>Ku.30 Extrusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.44</td>
<td>58.68</td>
<td>60.57</td>
<td>61.34</td>
<td>58.83</td>
<td>59.84</td>
<td>58.34</td>
<td>59.34</td>
<td>58.34</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.55</td>
<td>0.84</td>
<td>0.75</td>
<td>0.70</td>
<td>0.64</td>
<td>0.63</td>
<td>0.68</td>
<td>0.67</td>
<td>0.68</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.65</td>
<td>15.18</td>
<td>15.33</td>
<td>15.33</td>
<td>15.18</td>
<td>15.33</td>
<td>15.18</td>
<td>15.33</td>
<td>15.18</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.24</td>
<td>2.04</td>
<td>2.09</td>
<td>2.09</td>
<td>2.04</td>
<td>2.09</td>
<td>2.04</td>
<td>2.09</td>
<td>2.04</td>
</tr>
<tr>
<td>FeO</td>
<td>0.1</td>
<td>0.07</td>
<td>0.14</td>
<td>0.14</td>
<td>0.07</td>
<td>0.14</td>
<td>0.07</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td>2.55</td>
<td>2.58</td>
<td>2.56</td>
<td>2.56</td>
<td>2.58</td>
<td>2.56</td>
<td>2.58</td>
<td>2.56</td>
<td>2.58</td>
</tr>
<tr>
<td>CaO</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
<td>2.44</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.84</td>
<td>3.84</td>
<td>3.84</td>
<td>3.84</td>
<td>3.84</td>
<td>3.84</td>
<td>3.84</td>
<td>3.84</td>
<td>3.84</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.0</td>
<td>1.13</td>
<td>1.21</td>
<td>1.21</td>
<td>1.13</td>
<td>1.21</td>
<td>1.13</td>
<td>1.21</td>
<td>1.13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>L.O.I</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>Total (wt%)</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
<td>59.83</td>
</tr>
</tbody>
</table>
روابط الکلی و سنگ‌ناپذیری دگرانش‌های گرمی، به‌طور مفصل صحراهای این ناحیه را به‌طور کلی نمایش می‌دهند. از نظر منطقه‌ای تحت تاثیر دگرانش‌های گرمی قرار گرفته‌اند. این پروبیلیتیک به صورت پراکنده و بی‌شکل در سنگ‌های بالا با ترکیب آن جدید تنفس‌های شدید می‌شود. نوسان زون فیلبک در سنگ‌های آن نزدیکی در دو همانندی این منطقه به خوبی بی‌دیده می‌شود.

بر اساس بررسی‌های سنگ‌نگاری، کلی‌های اصلی سنگ‌های دگرانش شده منطقه کوه زر گرافیت (40%)، فلایسن (40%) و سربیسیت (20%) کلی‌های دگرانش شده منطقه کوه زر گرافیت (40%)، فلایسن (40%) و سربیسیت (20%) به‌صورت پراکنده و بی‌شکل در سنگ‌های بالا با ترکیب آن جدید تنفس‌های شدید می‌شود. نوسان زون فیلبک در سنگ‌های آن نزدیکی در دو همانندی این منطقه به خوبی بی‌دیده می‌شود.

روابط الکلی و سنگ‌ناپذیری دگرانش‌های گرمی، به‌طور مفصل صحراهای این ناحیه را به‌طور کلی نمایش می‌دهند. از نظر منطقه‌ای تحت تاثیر دگرانش‌های گرمی قرار گرفته‌اند. این پروبیلیتیک به صورت پراکنده و بی‌شکل در سنگ‌های بالا با ترکیب آن جدید تنفس‌های شدید می‌شود. نوسان زون فیلبک در سنگ‌های آن نزدیکی در دو همانندی این منطقه به خوبی بی‌دیده می‌شود.

روابط الکلی و سنگ‌ناپذیری دگرانش‌های گرمی، به‌طور مفصل صحراهای این ناحیه را به‌طور کلی نمایش می‌دهند. از نظر منطقه‌ای تحت تاثیر دگرانش‌های گرمی قرار گرفته‌اند. این پروبیلیتیک به صورت پراکنده و بی‌شکل در سنگ‌های بالا با ترکیب آن جدید تنفس‌های شدید می‌شود. نوسان زون فیلبک در سنگ‌های آن نزدیکی در دو همانندی این منطقه به خوبی بی‌دیده می‌شود.
سکه‌ی های درگناسی عادی است. در باسیج‌مورد کوارتز با حواشی نیمه‌گرد شده به شکل درشت بلوار قابل مشاهده است. درشت بلوارهای فله‌سیار، چه بطور کامل به وسیله سرسیست‌گر شدن نیز در زون فیلیک به‌دست می‌آید (شکل 4). نمونه‌های آمیزشی، کوارتز پریدار شده در متن با رخ دادن رگه‌های به شکل پوششی ۲ روی کوارتز‌های درشت بلوار دیده می‌شود (شکل 3-ب). درون دسرسی‌گر فله‌سیار، شکل‌های جمله‌ای کامل کالی‌فرمینزین اولیه درشت بلوار توسط مسکویت کامل مشهود است (شکل 3-پ). دسرسی‌گر هم‌زمان درشت بلوارهای فله‌سیار توسط سرسیست و کاتاولویت نیز دیده می‌شود (شکل 3-ج). نورمال‌ها به دست آمده از کوارتز‌های فیلیک قبل مشاهده است.

اگر نیمه شاخی که به‌دست می‌آید، پر گردیده فضاهای داخلی بوده‌اند (شکل 3-د).

ب: نورمال‌های سیستمی به شکل نقطه‌ای در زمینه‌های فلهمیک (کوارتز-سرسیست) که در سطح اثری آن مهیا به همراه این نیز در زمینه‌های درخت کوارتز‌های (فیلیک) که در نهایت اشکال آمیزشی به دست می‌آید و مرز ناپایدار با زمینه نشان می‌دهند (شکل 4-ج).

ج: نورمال‌های منفرد در برخی موارد دارای ساختار زونه‌های خاصی هستند.

د: انتظار می‌رود نورمال‌های پراکندگی با گره‌های فیلیک‌های داخلی در مستقیم سیرسیستیک اولیه و پلی‌فینیک است. فیلیک‌ها به راواکای کمتر از ۵ روی رگه‌های دیده و رگه‌های دیده در ناپایدار شکل ۳-ب. نمونه‌های نیز با دیده می‌شود. کوارتز نیز مهیا می‌شود. درون دسرسی‌گر سیستمی نشان می‌دهد که با وجود تمشکی کوارتز‌های فضای خالی به وسیله فیلیک در بر دیده است (شکل 3-ح). روابط برادرانه‌ای که در دنباله تشکیل گردیده‌های درگناسی در جدول ۲ نشان داده شده است.

بررسی‌های XRD نیز مجموعه کانی‌های کلرت، اپیدوت، کوارتز، سرسیست، برتیت، نورمال‌ها و فیلیک‌ها را در گستره‌ای دسرسیستیک نشان می‌دهند (جدول ۲).

بخت و بررسی
الف: خاس‌گانه نورمال‌های کانی‌های اصلی ساکنتی دسرسیستی از چنین نورمال‌ها (سولفات) شامل آنتونیت، کاتاولویت، کوارتز و پریدار شده، این کانی‌ها تحت‌اشتهای رگه‌های سولفاتی و اسیدی تشکیل شده‌اند. شاهد نورمال‌های اسیدی به چندین صورت در محیط اتی‌ترمال و بخش کانی‌های باکتری‌هایی کانی‌های سیستمی در ناحیه پریدار شده‌اند.
جدول ۲ روابط پارازنتیکی کانه‌ها در زون‌های دگرسانی منطقه کوه زر.

<table>
<thead>
<tr>
<th>ناامکن</th>
<th>ناامکن</th>
<th>ناامکن</th>
</tr>
</thead>
<tbody>
<tr>
<td>ناامکن</td>
<td>ناامکن</td>
<td>ناامکن</td>
</tr>
</tbody>
</table>

(XRD)
تغییرات در جریان اشباع از آلومینیم موجب برای پایداری تورمالین از بارانهای مهم محسوب می‌شود. لندن [20] برای شکل‌گیری تورمالین در انباشتهای کاتیون‌های مختلف به‌عنوان یکی از بارانهای اصلی آلومینیوم‌دار در نظر ورودی مورد نیاز است. همچنین ترکیب برای بارانهای بارانهای آب‌زداین (borate) پوششی در نزدیکی است. برای پیشنهاد دیداری کوه زرنتها فاز کانالی آلومینیوم‌دار قابل و اکتشف مسکوونی است، اما می‌توان با استفاده به نمودار

![نمودار نسبت Ca, Mg, Fe و Al به نماد Fe(Fe+Mg) v	Y-site](https://example.com/image.png)

شکل ۵ نمودار Ca, Mg, Fe و Al نسبت به Fe(Fe+Mg) درایتی قرنطینه‌ای تورمالین، چنانکه کم نمودار نشان می‌دهد نمونه‌ها در گستره Al, Al50Fe50, Mg, Mg50 Fe(Fe+Mg) دارای Ca, Mg, Mg50 Fe(Fe+Mg) نیست. نمودار Ca, Mg, Mg50 Fe(Fe+Mg) نسبت به Ca, Mg, Mg50 Fe(Fe+Mg) درایتی قرنطینه‌ای تورمالین، چنانکه کم نمودار نشان می‌دهد نمونه‌ها در گستره Al, Al50Fe50, Mg, Mg50 Fe(Fe+Mg) دارای Ca, Mg, Mg50 Fe(Fe+Mg) نیست.
طاول 2 ترکیبات تشکیل دهنده زیرپودمانی تورمالینی های منطقه کوژ و محیط کاتانوی آن

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>B₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>F</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-T-1</td>
<td>45.68</td>
<td>2.32</td>
<td>33.68</td>
<td>0.27</td>
<td>6.58</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-2</td>
<td>43.44</td>
<td>2.31</td>
<td>33.48</td>
<td>0.27</td>
<td>6.65</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-3</td>
<td>45.65</td>
<td>2.32</td>
<td>33.68</td>
<td>0.27</td>
<td>6.58</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-4</td>
<td>43.44</td>
<td>2.31</td>
<td>33.48</td>
<td>0.27</td>
<td>6.65</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-5</td>
<td>45.65</td>
<td>2.32</td>
<td>33.68</td>
<td>0.27</td>
<td>6.58</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-6</td>
<td>43.44</td>
<td>2.31</td>
<td>33.48</td>
<td>0.27</td>
<td>6.65</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-7</td>
<td>45.65</td>
<td>2.32</td>
<td>33.68</td>
<td>0.27</td>
<td>6.58</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Zr-T-8</td>
<td>43.44</td>
<td>2.31</td>
<td>33.48</td>
<td>0.27</td>
<td>6.65</td>
<td>0.30</td>
<td>0.38</td>
<td>0.26</td>
<td>0.13</td>
<td>1.12</td>
<td></td>
</tr>
</tbody>
</table>

Number of cations on the basis of the 22 O

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si</th>
<th>Ti</th>
<th>Al⁴⁺</th>
<th>Al³⁺</th>
<th>Y</th>
<th>B</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-T-1</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-2</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-3</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-4</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-5</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-6</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-7</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>Zr-T-8</td>
<td>2.37</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>3.22</td>
<td>3.34</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
</tbody>
</table>

کاتانوی کاتبکر، دورهم، برای کناره کاشی برای کناره کشی در یکی از دو دیسکسی و کالکوکر کوکوبلین که بیشتر از نوع

نویسی رنگی و افشان بود که با دیسکسی ها دیده می‌شود. از

باید توجه به پرتو تازه گرفته در شرایط طبیعی جوی

شکل نظریه که نخست پرتو در شرایط طبیعی جوی

باید واکنش زیب ترین‌تر می‌شود و هیدروکسید آهن (وگونیت) و

در نهایت سیالولوریک دریا تبدیل می‌شود [26].

می‌تواند در بافت‌های مختلف زون اکسانسی سولفویدهای مس (در بیان

کالکوپیت) نیز به سولفات مس تبدیل می‌شود [26].

CuFe₂S₄ + 4O₂ = Fe₂SO₄ + CuSO₄ + 2CO₂

کالکوپیت

احتمالاً در شرایط اسیدی ایجاد شده خورشید فسفات از

سگیله‌ای اندازه‌گیری می‌شود. این اکسید ایجاد و فسفر مورد

نیاز به عناوین دوم بهبودی برای پایداری فیروزه ایجاد است.

شده است.

2- leaching
برداشت

رخداد توان تورمالین و فیروزه را در گروه از موارد کمیاب پیدا کنیم. در این منطقه هموگونی دو گونه دگرگانرخ داده است، که به دنبال آن پدایش این دو کانی در یک محیط است (شکل 6).

الف: دگرسانی کوارتز-سربسیت-پریت با فیلیک که به عنوان پیشگی دگرسانی اصلی منطقه وجود داشته است. دگرگانرخ بر از خاستگاه دگرگانی اعمال شده با مدل‌های توده‌های نقشی منجر به پیدایش تورمالین زایی بر پهنه دگرگانی در دو کانی این افزایش تورمالین در افزایش زیستی و جالای ویژه در بیشتر موارد فیروزه را همراه می‌کند.

برای رخداد گچهای این کانی می‌توان چنین پیشنهاد کرده فیروزه ممکن است با خروج فسفر آزاد شده در محیط آبی و مستقل از آلونتی با حضور فاز کانی‌ای این غافل از آلومینیم در رخ ها مطلوب ویاکش زیرشکل گردید.

6Al(OH)₃ + 4H₂PO₄ + CuSO₄ = CuAl₆(PO₄)₄

d= 5 نتایج ساختاری داده‌های رپید‌پرسشی فیروزه منطقه کرزور و محیطه کانی‌ایان آن.

<table>
<thead>
<tr>
<th>Oxide</th>
<th>CuAl₆(PO₄)₄</th>
<th>(OH)₃</th>
<th>4H₂O + 5K₂SO₄ + 8H⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.074</td>
<td>0.068</td>
<td>0.064</td>
</tr>
<tr>
<td>Al</td>
<td>0.124</td>
<td>0.132</td>
<td>0.139</td>
</tr>
<tr>
<td>Fe</td>
<td>0.073</td>
<td>0.076</td>
<td>0.078</td>
</tr>
<tr>
<td>Zn</td>
<td>0.005</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>Ca</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>K</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Na</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>H₂O+</td>
<td>0.241</td>
<td>0.250</td>
<td>0.254</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Cl</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>O=F</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>O=Cl</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Total</td>
<td>1.005</td>
<td>1.014</td>
<td>1.022</td>
</tr>
</tbody>
</table>

Number of cations on the basis of the 12 O

<table>
<thead>
<tr>
<th>Oxide</th>
<th>CuAl₆(PO₄)₄</th>
<th>(OH)₃</th>
<th>4H₂O + 5K₂SO₄ + 8H⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.001</td>
<td>0.011</td>
<td>0.012</td>
</tr>
<tr>
<td>Si</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Al</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fe</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Zn</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Ca</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>K</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Cl</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>OH</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>
شکل ۶ مدل طرح گونه پیشنهادی برای پیتایش تورمالین-فیروزه کوه زر.الف. جایگزینی توده نفوذی کوه زر و شکل گیری درگسرانی فیلیک به دنبال فرآیند انسان‌سازی-پیشکلاسیکی میزبان (کوارتز، سرسبز، کانی‌های سوخته). ب هنگام شار‌هایی مشابه و درگسرانی درون‌یافته از فروشش AI، و در نهایت تورمالین‌زایی تورمالین + کوارتز. ب، تخیرب سولفیدها به سوخته‌ای آبی‌رنگ، ایجاد محدود کاسیسی و اسپید، فروشنت شاره‌ها و در نهایت تشکیل فیروزه.

• نویسنده این مقاله از حمایت‌های مالی کمیته پژوهشی دانشگاه شیراز در به انجام رساله‌ای پژوهشی تشریح می‌گردد.

کد و شماره: ۱۹۷۱۳۹

مراجع
[۱] ویلی‌زدا، جعفریان، نمایش‌های پیش‌بینی و پیش‌بینی کوه-پلیتوتیک کوه زر-بزرگ، و رابطه آن با متناوبی در ناحیه، مجله علم دانشگاه تهران ۱۲۰، ۴۱-۴۳ (۱۳۴۶).
[۲] قربانی ق، تقوی ویسیلیان، م.، پوریسای. س.، تکنیکهای کانی‌شناسی و پیش‌بینی توده نفوذی نوار اندوزی بی‌پیوند در جنوب دامغان، نشریه دانشکده علوم زمین، ۱۰، ۴۹-۵۲ (۱۳۴۶).
[۵] جعفریان، ویلی، پیش‌بینی اندوزی کوه و پیش‌بینی کوه-پلیتوتیک رشته کوه زر-بزرگ و انجم های کانی‌های را به رای واآ واقع در چهارخوش تشکیل توده (استان سمنان)، مجموعه مقالات دومین همایش زمین شناسی ایران (۱۳۶۸) ۱۱۵-۱۱۸.

