Volume 30, Issue 4 (12-2022)                   www.ijcm.ir 2022, 30(4): 4-4 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tale Fazel E. Investigation of the formation mechanism of gold nanoparticles in arsenian pyrite crystal structure of the Zarshuran deposit by advanced electronic technologies. www.ijcm.ir 2022; 30 (4) :4-4
URL: http://ijcm.ir/article-1-1811-en.html
Abstract:   (903 Views)
A significant characteristic distinguishing sediment-hosted disseminated gold deposits (i.e. Carlin-style) from other Au deposits is the abundance of invisible Au-nanoparticles in the Fe-As-S ores (e.g., arsenian pyrite). In this study, we used the focused ion beam combined with scanning electron microscope (FIB-SEM) techniques, and a high-resolution transmission electron microscope (HR-TEM) to examine invisible Au and how it evolved through later geologic events that eventually led to the formation of Zarshuran gold deposit. This electron examination was performed on auriferous arsenian pyrite (Py4) of Zarshuran deposit with colloform texture and average content of Au (21 ppm) and As (2.4 wt%). Results concluded that the post-ore magmatic-hydrothermal events after configuration of main orebody of the Zarshuran initiated the annealing of the ionic Au-bearing arsenian pyrite, leading to the redistribution of trace elements and specially formation of Au-bearing nanoparticles. High-angle annular dark field (HAADF) images show gold ions present in a undersaturated hydrothermal fluid, resulting in a gradual annealing process of gold nanoparticles (<100 nm in size) in the nanopores and stacking faults of arsenian pyrite crystals, which have taken place and the occurrence of this continuous cycle has led to the formation of Zarshuran world-class ore deposit.
 
Full-Text [PDF 5306 kb]   (309 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Palenik C.S., Utsunomiya S., Reich M., Kesler S.E., Wang L.M., Ewing R.C., "Invisible gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit". American Mineralogist (2004) 89, 1359-1366. [DOI:10.2138/am-2004-1002]
2. [2] Reich M., Kesler S.E., Utsunomiya S., Palenik C.S., Chryssoulis S.L., Ewing R.C., "Solubility of gold in arsenian pyrite". Geochimica et Cosmochimica Acta (2005) 69, 2781-2796. [DOI:10.1016/j.gca.2005.01.011]
3. [3] Daliran F., Hofstra A., Walther J., Topa D., "Ore Genesis Constraints on the Agdarreh and Zarshuran Carlin-Style Gold Deposits in the Takab Region of Northwestern Iran". Economic Geology (2018) 20, 299-333. [DOI:10.5382/rev.20.09]
4. [4] Madan-Zamin Co., "Modeling and updating report of rock estimation at the Zarshuran mine". Iranian Mines and Mineral Industries Development and Renovation Organization, Tehran, Report no. MO-9812-04, (2020) 35 pp.
5. [5] Kavoshgaran Consulting Engineers., "Instructions for monitoring of drilling operation, geological logging, and sampling in the 30,000-meter exploratory drilling project of the Zarshuran gold mine". Iranian Mines and Mineral Industries Development and Renovation Organization, Tehran, Report no. 99501, (2019) 33 p.
6. [6] Mehrabi B., Yardley B.W.D., Cann J.R., "Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran". Mineralium Deposita (1999) 34, 673-696 [DOI:10.1007/s001260050227]
7. [7] Asadi H.H., Voncken J.H.L., Kühnel R.A., Hale M., "Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, northwest Iran". Mineralium Deposita (2000) 35, 656-671. [DOI:10.1007/s001260050269]
8. [8] Wirth R., "Focused Ion Beam (FIB): A novel technology for advanced ap¬plication of micro- and nanoanalysis in geosciences and applied mineralogy". European Journal of Mineralogy (2004) 16, 863-876. [DOI:10.1127/0935-1221/2004/0016-0863]
9. [9] Wirth R., "Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale". Chemical Geology (2009) 261, 217-229. [DOI:10.1016/j.chemgeo.2008.05.019]
10. [10] Alavi M., "Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforeland evolution". American Journal of Science (2004) 304, 1-20 [DOI:10.2475/ajs.304.1.1]
11. [11] Nabavi M.H., "An introduction to the geology of Iran". Geological Survey of Iran (1976) 110 p (in Persian).
12. [12] Karimi M., "Petrographic-mineralogical studies and the genesis of the Au-As ore at Zarshuran, Takab". M.Sc. Thesis, Tarbiat Moallem University, Tehran, Iran (1993) 264 pp.
13. [13] Heshmatnia Sh., Tale Fazel E., Oroji A., "Petrography of Fe-sulfide and pyrite generations in the Zarshuran sediment hosted gold deposit (N Takab): implication for history of ore deposition". 13th National Symposium of Iranian Society of Economic Geology (2021) p.145-151.
14. [14] Pokrovski G.S., Escoda C., Blanchard M., Testemale D., Hazemann J.-L., et al., "An arsenic-driven pump for invisible gold in hydrothermal systems". Geochemical Perspectives Letters (2021) 17, 39-44. [DOI:10.7185/geochemlet.2112]
15. [15] Xing Y.L., Brugger J., Tomkins A., Shvarov Y., "Arsenic evolution as a tool for understanding formation of pyritic gold ores". Geolog (2019) 47, 335-338. [DOI:10.1130/G45708.1]
16. [16] Li J.L., Qi F., Xu Q.S., "A negatively charged species of gold in minerals-further study of chemically bound gold in arsenopyrite and arsenian pyrite". Neues Jahrbuch für Mineralogie-Abhandlungen (2003) 5, 193-214. [DOI:10.1127/0028-3649/2003/2003-0193]
17. [17] Hough R.M., Noble R.R.P., Reich M., "Natural gold nanoparticles". Ore Geology Reviews (2011) 42, 55-61. [DOI:10.1016/j.oregeorev.2011.07.003]
18. [18] Simon G., Kesler S.E., Chryssoulis S., "Geochemistry andtextures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits". Economic Geology, (1999) 94, 405-422. [DOI:10.2113/gsecongeo.94.3.405]
19. [19] Cook N.J., Chryssoulis S.L., "Concentrations of invisible gold in the common sulfides". Canadian Mineralogist (1990) 28, 1-16.
20. [20] Fleet M.E., Mumin A.H., "Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits to laboratory synthesis". American Mineralogist (1997) 82, 182-193. [DOI:10.2138/am-1997-1-220]
21. [21] Clark L.A., "The Fe-As-S system: phase relations and applications". Economic Geology (1960) 55, 1631-1652. [DOI:10.2113/gsecongeo.55.8.1631]
22. [22] Cline J.S., Hofstra A.H., Muntean J.L., Tosdal R.M., Hickey K.A., "Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models". Economic Geology 100th Anniv. Volume (2005) 451-484. [DOI:10.5382/AV100.15]
23. [23] Deditius A.P., Reich M., "Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite". American Mineralogist (2016) 101, 1451-1459. [DOI:10.2138/am-2016-5603]
24. [24] Zheleva T., Jagannadham K., Narayan J., "Epitaxial growth in large-lattice-mismatch systems". Journal of Applied Physics (1994) 75, 860-871. [DOI:10.1063/1.356440]
25. [25] Jia B.P., Gao L., "Morphological transformation of Fe3O4 spherical ag¬gregates from solid to hollow and their self-assembly under an external magnetic field". The Journal of Physical Chemistry (2008) 112, 666-671. [DOI:10.1021/jp0763477]
26. [26] Scherer G.W., "Crystallization in pores". Cement and Concrete Research (1999) 29, 1347-1358. [DOI:10.1016/S0008-8846(99)00002-2]
27. [27] Reich M., Utsunomiya S., Kesler S.E., Wang L., Ewing R.C., Becker U., "Thermal behavior of metal nanoparticles in geologic materials". Geology (2006) 34, 1033-1036. [DOI:10.1130/G22829A.1]
28. [28] Gonzalez-Jimenez J.M., Reich M., Camprubi A., Gervilla F., Griffin W.L., Colas V., O'Reilly S.Y., Proenza J.A., Pearson N.J., Centeno-Garcia E., "Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles". Contributions to Mineralogy and Petrology (2015) 170, 15 p. [DOI:10.1007/s00410-015-1169-9]
29. [29] Shackelford J.F., "Introduction to materials science for engineers". Upper Saddle River, Pearson, (2016) 687 p.
30. [30] Hirth J.P., Kubin L., "Dislocations in solids". Amsterdam, Elsevier (2010) 282 p.
31. [31] Dubosq R., Lawley C.J.M., Rogowitz A., Schneider D.A., Jackson S., "Pyrite deformation and connections to gold mobility: Insight from microstructural analysis and trace element mapping". Lithos (2018) 310-311, 86-104. [DOI:10.1016/j.lithos.2018.03.024]
32. [32] Gopon P., Douglas J., Auger M., Hansen L., Wade J., Cline J., Robb L., Moody Mi., "A Nanoscale Investigation of Carlin-Type Gold Deposits: An Atom-Scale Elemental and Isotopic Perspective". Economic Geology (2019) 114, 1123-1133. [DOI:10.5382/econgeo.4676]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb