بررسی خاصیت فرومغناطیسی نانوذرات اکسیید روی آلبیش شده با یون منگنز در
دماه اتاق

نسرین صراف، احمد حسن پور۳، سید علی هاشمی زاده عقیل۴، احمد آخوند۱

۱- دانشگاه پیام نور تهران شرق، خیابان ۱۵ متری شیرازی، شهرک حکیمیه‌سارجامان (آب)- تهران
۲- گروه چربیک، دانشگاه آزاد اسلامی واحد امیرآباد، اهواز. بلوم برکسل‌ران، سه راه تیونیکا
(دریافت مقاله، ۹۳/۰۱/۰۶، نسخه نهایی ۹۳/۰۸/۲۸)

چکیده: در این پژوهش نانوذرات نیترات اکسیژن روی یک قطعه شده با یون منگنز به روش سل-زل خود احتراقی با فرآوری کلیه‌ی تهیه شد. تک فاز بودن همه نمونه‌ها و اندازه‌ی پلارک‌ها به کمک پرایس پنتو Zn_{1-x}Mn_xO (x = 0, 0.03, 0.05, 0.07, 0.1) ایکس و رابطه‌ی شری و برنامه‌ریزی جغرافیایی مورد تایید قرار گرفت. اندازه‌ی مترای با میکروسکوپ الکترونی اجزایی در حد چندانانومتر براورد شد. بین‌یاب‌های فرآیند نمونه‌ها (FTIR) نشان داد که پهنی جنبی ۶۸۰-۷۰۰ تامان نمایی برهم کنش منگنز و اکسیژن در جایی‌ها شود و در هسته‌است. برعکس پسندان نمونه‌ها که با مغناطیسی سنج لیزر نوشته (VSM) نشان داد که نمونه‌ها ها دارای فرآیند مغناطیسی در دماه اتاق هستند. از بین نژاد‌های روی ایکس نمونه‌ها (XPS) نمای شده نتیجه گرفته که پون-های منگنز دوخرفتی در ساختار اکسید روی شرکت کرده‌اند. خاصیت فرآیند مغناطیسی نمونه‌ها در غلتتهای بالاتر منگنز کاهش یافته که این می‌تواند ناشی از خاصیت بادفتونی پون‌های منگنز در غلتتهای بالا باشد.

واژه‌های کلیدی: آلبیش با یون منگنز، اکسید روی، نیترات مغناطیسی، قطر شده سل-زل خود احتراقی

مقدمه

نیترات‌های مغناطیسی قطر شده نیترات‌های که با یک ماده مغناطیسی به یک سیال می‌شود. اکسید روی (ZnO) به عنوان یک ماده‌ی کاربردها با گام انرژی بین ۱.۲ (Eg = ۳.۴۴ ev) دارای بودن مسئولیت در اپاره‌های میکروالکتریک [۴] و اسپین ترموکتیک [۳] دارد. در سال‌های جدید خواص فرآیند مغناطیسی اکسید روی آلبیش شده با یون منگنز در توده‌ها و فیلم‌ها مورد بررسی قرار گرفته‌اند [۵] در سال‌های خیال کم و همکارانش‌ها خاصیت مغناطیسی فیلم‌های Zn_{0.8}Mn_{0.2}O را در دماه Tc ≈ ۳۹ K توسط کشیده‌شده مسئول. لفن: ۱۲۰۳۶۲۷۳۵۵۵۵۲۸۸، پست الکترونیکی: hasanpour88@gmail.com

زل مورد بررسی قرار دادند و نتایج مشابهی را گزارش کردند. باید یاد کرد که در آن نمونه‌ها زنگی و همکارانش گزارش فاز مغناطیسی مناسب مسئول شده‌اند. Zn_{0.95}Mn_{0.05}O (x = ۱۱۰، ۱۱۰، ۱۱۰) در توسعه‌ی با وجود فاز
ناتخالیسی مشابه یک مهارت و گزارش نمونه‌ها در Zn_{1-x}Mn_xO (x = ۰.۰۳) مناسب کم مایه‌ی لی و همکارانش به روش سل-زل دمای ۹۰۰ درجه سانتیگراد با وجود نیتروژن هوا، به‌مست
شیب. [۸] آمده‌اند. این رابطه همکارانش فرآیند مغناطیسی در دمای
انتقال را برای نمونه‌های بالا (کثیف) گزارش کردند. [۱۹]
این، چنین محکم این دما را در خواص مغناطیسی اکسید
روی آلبیش شده با منگنز اینکار
کردن [۱۰۰۱
شماره و همکاران برهم کنش فریمیتیلاسیون در نمونه‌های آماده شده در دمای 70 درجه سانتیگراد در جو نورسی کردن. افتتاحیه آنها به این روش که وقتی نمونه‌ها در هوا خشک می‌شوند خاصیت فرو مغناطیسی از بین می‌روند. این علت از نمونه‌ها روز به‌روز به‌روز نیم‌پرساران دارد (11). رویه‌های مختلف در ترکیب نیترات‌های آریل‌های فوق شده مثل هدرسوسی (12) گرم‌های (31) برای استفاده با لیزی، ابزاری و سیز سر و زل (13) غیره به کار می‌روند، این میان سل زل سر و زل احتراقی، به دلیل عدم نیاز به گرمای خنکی از اثرات آن، در مورد توجه قرار گرفته است (14). منگنز به دلیل داشتن مناطق احترامی در ساخت ابرهای آن خانه، مورد توجه قرار گرفته است.

در این پژوهش نتانولز اکسید سیلیکا را به روش سل-زل خود احترافی تهی کرده و تأثیر غلظت‌های مختلف ناخالصی Zn1-xMnxO (x = 0,0,0,03,0,05,0,07,0,1) با پنومتر بی‌سوز مولکول-گذاری (TEM) و مغناطیسی نتانولز اکسید سیلیکا مورد بررسی قرار دادیم.

برای تهیه نتانولز آلیاژ شدید اکسید سیلیکا به روش سل زئیت احترافی از نیترات‌های روز 6 آینه و Mn (NO₃)₂.9H₂O و منگنز به آب Zn(NO₃)₂.6H₂O اسید سیتریک (C₆H₈O₇) به خلاصه درصد 99,9 در شرکت مرکزی اکسید، دی‌آب دهنده شد. برای ظرفیت قرار گرفتن در این آلیاژ، منگنز به دو اعداد 100 سی آب فشاری دید که می‌تواند محالی تعقلی ساخت شد. همه‌گیران به هم زدن محالی در دمای 300 درجه سانتی‌گراد تا داشته شد. خشک کردن و سپس به فرآیند سوختن، زئیت ساخته شد در یک ظرف با دمای 340 درجه سانتی‌گراد مطلق تا ضبط شود به شکل 500 میلی‌متری و سپس از مداده‌ها سرعت نشانه‌برداری گردید. در این حالت منوی‌های سرعت شروع به سوختر کرد و پس از ساخت که با سرعتی خارجی آنها از طریق بجا کرده و سپس به جام‌سازی می‌رفت با پلاستیک و همکاران (16) و همکاران (17) برای ترکیب CO-Zn متوقف می‌شود. منوی‌های مولکول‌شناخته با انتقال میکروسکوپی که است. مشاهده که که در اثر آلیاژ، انتقالیت نشان‌دهنده فاقد آنتی‌جیهه‌ی ایش دارای آمد و ترکیب یکی زئیت‌هایی که با سختی‌داده‌های میان‌روش تبدیل شد و میزان گنگ به مضای نتانولز اکسید سیلیکای داشت که ساختار که می‌تواند X = 0 دارای رنگ زرد.
بررسی تحلیلی بیناب فورهیسی

بررسی بیناب سنجی فتوالکترون برتو ایکس

برای آزمایش از چگونگی انتقال مغناطیس در نمونه‌ها، از بیناب سنجی فتوالکترون برتو ایکس (XPS) استفاده شد (شکل C , Zn, M, O). در نمودار XPS نمونه‌هاقلهای مربوط به به دیده می‌شوند که به وسیله (12) کربن محدود شده‌اند. در شکل 4 قله‌های 1044 و 1044 الکترون ولت در نمونه‌ها ارتباط

<table>
<thead>
<tr>
<th>عکس‌هاي از (TEM) (نمونه‌هاي مختلف)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

شکل 2 عکس‌هایی از (TEM) (نمونه‌های مختلف)

بررسی فتوالکترون برتو ایکس

بنیاد جدید نمونه‌ها با استفاده از نمودار بیناب جدید فورهیسی (FTIR) انجام شد (شکل 2) و علاوه بر قله‌های مولکول‌های فسفری شده بخار O-H و H-O-H مربوط به بسیاب O = C = O آب موجود در هوا و بسیاب Zn-O بوده و قله‌های 600 cm⁻¹ و 600 حالت در نمونه‌های فسفورهای از طرف دیگر هر چه افزایش E₁(T) (TO) و A₁(TO) معرفی‌شده‌اند. [18]

<table>
<thead>
<tr>
<th>عکس‌هاي از (TEM) (نمونه‌هاي مختلف)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

شکل 1 بیناب XRD نمونه‌ها پس از پخت شدن در دمای 500 درجه‌سیلیوس و به مدت 5 ساعت.

شکل 1 بیناب XRD نمونه‌ها پس از پخت شدن در دمای 500 درجه‌سیلیوس و به مدت 5 ساعت.

<table>
<thead>
<tr>
<th>عکس‌هاي از (TEM) (نمونه‌هاي مختلف)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

شکل 2 عکس‌هایی از (TEM) (نمونه‌های مختلف)

بررسی تحلیلی بیناب فورهیسی

بنیاد جدید نمونه‌ها با استفاده از نمودار بیناب جدید فورهیسی (FTIR) انجام شد (شکل 2) و علاوه بر قله‌های O-H و H-O-H مربوط به بسیاب O = C = O آب موجود در هوا و بسیاب Zn-O بوده و قله‌های 600 cm⁻¹ و 600 حالت در نمونه‌های فسفورهای از طرف دیگر هر چه افزایش E₁(T) (TO) و A₁(TO) معرفی‌شده‌اند. [18]
مشاهده می‌شود: تا غلظت ۵۰٪ تمام قله‌های مربوط به منگنز به صورت ۱۲p/۲p و از غلظت ۲۰٪ قله‌ی منگنز به صورت ۳S نیز ظاهر می‌شود بنابراین نتیجه می‌گیریم که منگنز تا غلظت ۵۰٪ به صورت Mn۲+ درون ساختار نانوذرات آلیش شده وجود دارد.

به شکل ۳ نمودار بیشتری از شده فرآیند FTIR نمونه‌ها.

(۳) سندرم پیروالکترون برنو ایکس نمونه‌ها (XPS)
بررسی ویژگی‌های مغناطیسی

جرخه پسماند نمونه‌ها به دست مغناطیس سنگ از تغییرات VSM (شکل 5) به دست آمده. نشان از وجود ویژگی فرم‌ منهایی در دمای اتفاق داده. با افزایش مقدار منگنز از $\text{Zn}_{1-x}\text{Mn}_x\text{O}$ به $x = 0.5$, مغناطیس اشاع نمونه‌ها لیز افزایش می‌یابد. ولی نمودار نشان داد که مغناطیس اشاع نمونه‌ی $x = 0.5$ به نمونه‌ی $x = 0.2$ پیشرفت جهت است. پیشرفت به از جد ناخالصی نه نمک مغناطیسی را افزایش نمی‌دهد بلکه رفتار مغناطیسی را ضعیفتر می‌کند.

بحث و برداشت

کلیه نانو بوده‌ها با رابطه کلی به $\text{Zn}_{1-x}\text{Mn}_x\text{O}$ به روش سل زل خود احتراف شده‌اند. آنالیز نتایج از XPS نشان داد که طریق متغیر در $2\text{P}^{3/2}$ به خوبی VSM در شبکه اکسید روی چاپ‌گیری شده‌اند. آنالیز ویژگی‌های نشان دهنده خاصیت فرم‌ منهایی در دمای اتفاق نشان داد که در دمای هوا بیشترین فرم‌ منهایی ممکن است. این کمد دهده درون این ترکیب‌ها معمولاً از نظریه فرم‌ منهایی ذاتی (RKKY) قبلی نشان داده است [27]. با توجه به این‌که قابل توجه است برای اکسید روی آلبیش شده با منگنز به‌صورت جرخه مانند $\text{Zn}_{1-x}\text{Mn}_x\text{O}$ به دست آمده ساختار بلوری و تغییر در غلظت حامل جرخه بار است. شرایط و همکاران کمتر بودن مغناطیسی اشاع را به کاهش اندازه بلورک‌ها ارتباط می‌دهند [11].

![شکل 5: نمودار جرخه پسماند نمونه‌ها با مقادیر منفی‌جات منگنز ($\text{Zn}_{1-x}\text{Mn}_x\text{O}$) در دمای اتفاق](image-url)