Volume 30, Issue 4 (12-2022)                   www.ijcm.ir 2022, 30(4): 2-2 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

moazzenzadeh G, Rahimsouri Y, Behyari M. Alteration and structural controllers of gold and copper ores in Ahar region, Arasbaran zone, northwest of Iran. www.ijcm.ir 2022; 30 (4) :2-2
URL: http://ijcm.ir/article-1-1809-en.html
Abstract:   (754 Views)
Ahar area is a part of the Arasbaran metallogenic zone in northwestern Iran, where numerous hydrothermal Cu-Au deposits have been formed. In this regard, Safikhanlu, Niaz, Mazraeh, Anjerd and Kujanagh deposits, as representative deposits, have been observed and structural measurements were performed in the field. In this area, Cretaceous limestones along with volcanic rocks are exposed as the oldest rocks in the region along with Eocene latite-andesites. These volcanic rocks have been intruded by Oligocene plutons such as Safi Khanlu with the combination of granite-quartz monzonite and Khan Kandi with the combination of Monzonite-Gabbro, causing phyllite, argillic and siliceous alterations in Safi Khanlu, extensive argillic alteration in Kujanagh and potassic in the Niaz  area. With a time interval, magmatic activity in the Late Miocene-Pliocene resumed and caused phyllic and propylitic alteration in the Mazraeh and argillic, phyllic, propylitic and potassic in Anjerd area. These alterations were studied using ASTER satellite images and PCA and SAM methods. Then, with field studies, the trend of major fractures in each of the mentioned deposits was determined and compared with the results obtained from remote sensing. The structural analysis showed that the predominant trend of mineralization and alteration zones in the studied deposits is northeast-southwest and is consistent with the predominant trend of the fault lines extracted from satellite images. Based on these results, it can be concluded that fault and fracture have played a major role in controlling and forming gold and copper reserves in the Ahar region.
Full-Text [PDF 7237 kb]   (229 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Pirajno F., "Hydrothermal processes associated with meteorite impacts", Springer Netherlands (2009) 759p. [DOI:10.1007/978-1-4020-8613-7_11]
2. [2] Alavi G., Radmard K., Zamanian H., Hosseinzadeh MR., Ahmadi Khalaji A., "Geochemistry of skarn and porphyry deposits in relation to epithermal mineralization in the Arasbaran metallogenic zone, NE Tabriz", Iran. Geological Quarterly 64 (1) (2020) 141-164. [DOI:10.7306/gq.152]
3. [3] Faramarzi R., Alipour P., Khaleghi F., Abedini A., "Mineralogy, Alteration and Fluid Intermediates of Qarachi Summer Mineralization Event, Northwest of Ahar, Northwest of Iran", (in Persian) Iranian Journal of Crystallography and Mineralogy Volume 29, Number 1 (1400)
4. [4] Hou Z., "The Himalayan Yulong copper Belt: product of large- scale strike- slip faulting in Eastern Tibet", Eco. Geo., vol: 98 (2003) pp: 125-145. [DOI:10.2113/98.1.125]
5. [5] Golonka J., "Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic", Tectonophysics, 381 (2004) 235-273. [DOI:10.1016/j.tecto.2002.06.004]
6. [6] Miranuri A., klagari A., Siahchishm K., Sohrabi GH., "Geochemical study of alteration zones around Zaylik gold siliceous veins, East Ahar, East Azerbaijan Province", (in Persian) Iranian Journal of Crystallography and MineralogyVolume 27 (2011) Number 2
7. [7] Radmard K., Zamanian H., Hosseinzadeh M. H., Ahmadi Khalaji A., "Investigation of Mineralization, Geochemistry and Fluid Intermediates in Quartz Veins in Shadi Farm Gold Reserve (Northeast of Tabriz)", (in Persian) Iranian Journal of Crystallography and Mineralogy Volume 25 (2017) Number 4. [DOI:10.29252/ijcm.25.4.823]
8. [8] Jamali H., Mehrabi B., "Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt", Ore Geol. Rev. 65 (2015) 487-501. [DOI:10.1016/j.oregeorev.2014.06.017]
9. [9] Soe J., Mikkelson J., de Kreij A., "U.S. Patent Application", No. 10/911(2005)160
10. [10] Mollai H., Pe-Piper G., Dabiri R., "Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz", NW Iran. Geologica Carpathica 65, 3 (2014) 207-225. [DOI:10.2478/geoca-2014-0015]
11. [11] Azimzadeh Z., "Petrology of volcanic and plutonic rocks in Zandabad area (northwest of Ahar), with a view to the economic potential of the area. Master Thesis", Shahid Beheshti University, (in Persian) (1999).
12. [12] Jamali H., "Metallogenic zonation and their tectono-magmatic control at Ahar- Arasbaran magmatic belt, NW Iran", Ph.D Thesi, (in Persian) Khrazmi Universitys (1999).
13. [13] Whitney DL., Evans BW., "Abbreviations for names of rock-forming minerals", American Mineralogist, Volume 95 (2010) pages 185-187. [DOI:10.2138/am.2010.3371]
14. [14] Sabins F., "Remote sensing for mineral exploration", Ore Geol Rev 14 (1999) 157-183. [DOI:10.1016/S0169-1368(99)00007-4]
15. [15] Robert F., Brommecker R, Bourne B, Dobak PJ, Mcewan C, Rowe RR, Zhou X., "Models and exploration methods for major gold deposit types. Proceedings of Exploration 07", Fifth Decennial International Conference on Mineral Exploration, 691-711 (2007).
16. [16] Van der Meer F.D., Van der Werff H.M.A., Van Ruitenbeek F.J.A., Hecker C.A., Bakker W.H., Noomen M.F., Van der Meijde M., Carranza E.J.M., Smeth J.B., Woldai T., "Multi- and hyperspectral geologic remote sensing: a review", Int J Appl Earth Obs Geoinf 14 (2012) 112-128. [DOI:10.1016/j.jag.2011.08.002]
17. [17] Cardoso-Fernandes J., Teodoro A.C., Lima A., Roda-Robles E., "Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites", Remote Sens 12(14) (2020) 2319. [DOI:10.3390/rs12142319]
18. [18] Goetz A., "Three decades of hyperspectral remote sensing of the Earth: a personal view", Remote Sens Environ 113 (2009) S5-S16. [DOI:10.1016/j.rse.2007.12.014]
19. [19] Cudahy T., "Mineral mapping for exploration: an Australian journey of evolving spectral sensing technologies and industry collaboration", Geosciences 6 (2016) 52. [DOI:10.3390/geosciences6040052]
20. [20] Mielke C., Bösche N., Rogaß C., Segl K., Gauert C., Kaufmann H.," Potential applications of the Sentinel-2 multispectral sensor and the Enmap hyperspectral sensor in mineral exploration", EARSeL eProceedings, 13(2) (2014) 93-102.
21. [21] Pour A.B., Park Y., Park T.S., Hong J.K., Hashim M., Woo J., Ayoobi I.," Evaluation of ICA and CEM algorithms with Landsat-8/ ASTER data for geological mapping in inaccessible regions", Geocarto Int 34(7) (2018)785-816. [DOI:10.1080/10106049.2018.1434684]
22. [22] Pour AB., Park T-YS., Park Y., Hong J.K., Muslim A.M., Läufer A., Crispini L., Pradhan B., Zoheir B., Rahmani O., Hashim M., Hossain M.S., "Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper-gold mineralization in the northeastern Inglefield Mobile Belt (IMB)", northwest Greenland. Remote Sens 11(20) (2019) 2430. [DOI:10.3390/rs11202430]
23. [23] Drury S.A., "Image interpretation. In Geology, (Edited by Nelson Thornes)", Blackwell Science, USA. ISBN 978-0-632-05408-4 (2001).
24. [24] Beygi S., Talovina I.V., Tadayon M., Pour A.B., "Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration", Int J Image Data Fusion:1-21. https://doi.org/10.1080/19479832.2020.1838628 [DOI:10.1080/19479832.2020. 183862. (2020).]
25. [25] Bolouki S.M., Ramazi H.R., Maghsoudi A., Pour A.B., Sohrabi G., "A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran area", NW Iran. Remote Sens 12:105 (2020). [DOI:10.3390/rs12010105]
26. [26] Mahboob M.A., Genc B., Celik T., Ali S., Atif I., "Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data from Landsat", J South Afr Inst Min Metall 119(3) (2019) 279-289. [DOI:10.17159/2411-9717/2019/v119n3a7]
27. [27] Traore M., Takodjou Wambo J.D., Ndepete C.P., Tekin S., Beiranvand Pour A., Muslim M.A., "Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area", Central African Republic using Landsat-8 Operational Land Imager (OLI) data. J Afr Earth Sci 170 (2020). [DOI:10.1016/j.jafrearsci.2020.103933]
28. [28] Takodjou Wambo J.D., Pour A.B., Ganno S., Asimow P.D., Zoheir B., Reis Salles R.D., Nzenti J.P., Pradhan B., Muslim A.M., "Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: a case study of the Ngoura-Colomines goldfield", eastern Cameroon. Ore Geol Rev 122 (2020). [DOI:10.1016/j.oregeorev.2020.103530]
29. [29] Cardoso-Fernandes J., Teodoro A.C., Lima A., Perrota M., Roda-Robles E., "Detecting Lithium (Li) mineralizations from space: current research and future perspectives", Appl Sci (Switzerland) 10(5): 1785 (2020a). [DOI:10.3390/app10051785]
30. [30] Rajesh H.M., "Application of remote sensing and GIS in mineral: resource mapping-an overview", J Mineral Petrol Sci 99(3) (2004) 83-103. [DOI:10.2465/jmps.99.83]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb