Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 183-194 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khorasanipoor, Iranmanesh, Saeednia. Preparation, characterization, and photocatalytic activity of ZnS/MoS2 nanocomposite supported by Fe3O4 nanoparticles. www.ijcm.ir 2023; 31 (1) :183-194
URL: http://ijcm.ir/article-1-1765-en.html
1- Vali-e-Asr University of Rafsanjan
Abstract:   (637 Views)
In this study, ZnS/MoS2 nanocomposites were synthesized by hydrothermal and ZnS/MoS2/Fe3O4 nanocomposite by chemical co-precipitation methods. ZnS nanoparticles were synthesized initially and then loaded with MoS2 nanostructure. After that ZnS/MoS2 product was mixed by Fe3O4 nanoparticles and the final product that obtained, was ZnS/MoS2/Fe3O4 nanocomposite. XRD, FTIR, TEM, BET and Raman Analyses were used to identify and characterize the samples. Photoluminescence spectroscopy was employed to investigate the optical properties of both composites. The infrared Fourier transform spectra showed a well developed Zn-S, Fe-O and Mo-S bonds. X-ray diffraction pattern confirmed the presence of cubic structure for ZnS and Fe3O4 and hexagonal structure for MoS2. Electron microscopy images well confirmed the formation of nanostructures. Based on PL spectroscopy, the intensity of the luminescence peak decreased, which could be due to a decreases in the electron-holes recombination percentage of the triplet sample compared to the binary sample. Photocatalytic activity of ZnS/MoS2/Fe3O4 on degradation of methyl orange (MO) and acid brown (AB) dye degradation was investigated using UV radiation. The sample showed good photocatalytic activity and can be easily recycled due to its magnetic properties, which can be used as photocatalyst in other reactions.
Full-Text [PDF 1092 kb]   (205 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Ameta R., Punjabi P.B., Ameta S.C., "Photodegradation of Naphthol green B in the presence of semiconducting antimony trisulphide", J. Serb. Chem. Soc. 76 (7) (2011) 1049-1055. [DOI:10.2298/JSC100425082A]
2. [2] Li H., Li F., Wang G., Sun H., "One-stepsynthesis of fluorescent carbon nanoparticles for degradation of naphthol green under visiblelight", J. Lumin. 156 (2014) 36-40. [DOI:10.1016/j.jlumin.2014.07.007]
3. [3] Feng X., Guo H., Patel K., Zhou H., Lou X., "High performance, recoverable Fe3O4/ZnO nanoparticles for enhanced photocatalytic degradation of phenol", J. Chem. Eng. 244 (2014) 327-334. [DOI:10.1016/j.cej.2014.01.075]
4. [4] Eskandarloo H., Badiei A., Tavakoli A.R., Behnajady M.A., Ziarani G.M., "Simple and safe educational experiments for demonstration of environmental application of heterogeneous photocatalysis process using the example of natural fruit juice dye degradation", J. Mater. Educ. 36 (2014) 111-116.
5. [5] Ghosh Chaudhuri R., Paria S., "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chem. Rev 112 (2012) 2373-2433. [DOI:10.1021/cr100449n]
6. [6] Rumberg A., "ZnSe thin films grown by chemical vapourdeposition for application as buffer layer in CIGSS solar cells", Thin Solid Films (2000) 361‐362. [DOI:10.1016/S0040-6090(99)00790-7]
7. [7] Yoo J.B., Fahrenbruch A.L., Bube R.H, "Effect of a thin intermediate zinc selenide layer on the properties of CuInSe2 solar cells", Solar Cells. 31(2) (1991) 171‐180. [DOI:10.1016/0379-6787(91)90020-P]
8. [8] Haslinda J., Hamid A., "Fabrication, Structural and Electrical Characteristics of Zinc Oxide (ZnO) Thin Films by Direct Current Sputtering", Universiti Sains Malaysia (2009) 1- 4.
9. [9] Prabhakar V., Byon C., Jeon S., "Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach", Phy. 502 (2016) 103-112. [DOI:10.1016/j.physb.2016.08.050]
10. [10] Fang X., Wu L., Hu L., "ZnS nanostructure arrays: a developing material star", Adv. Mate. 23 (2010) 585-598. [DOI:10.1002/adma.201003624]
11. [11] Li C., Li J., Wang Z., Zhang S., Wei G., Zhang J., Wang H., An C., "The synthesis ofollow MoS2 nanospheres assembled by ultrathin nanosheets for an enhanced energy storage", Performance 22 (2016) 4059-4063.
12. [12] Qin S., Lei W., Liu D., Chen Y., "In-situ and tunable nitrogen-doping of MoS2 nanosheets", Sci. Rep. 4 (2014) 7582. [DOI:10.1038/srep07582]
13. [13] Wang L., Jie, Shao Z., Zhang Q., Zhang X., Wang Y., Sun Z., Lee Sh., "MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High Detectivity, SelfDriven Visible Near Infrared Photodetectors", Adv. Funct. Mater. 25 (2015) 2910-2919. [DOI:10.1002/adfm.201500216]
14. [14] Shahid H., Liu T., Sufyan M., Aslam N., Zeng W., "Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties", Sens. Actuators, B 239 (2016) 1243-1250. [DOI:10.1016/j.snb.2016.09.128]
15. [15] COEY J. M. D., "Magnetism and magnetic materials", Cambridge University Press 1(2010).
16. [16] Khorasanipoor N., Iranmanesh P., TabatabaiYazdi Sh., Saeednia S., "Synthesis and characterization of EDTA-assisted ZnS:Hg nanoparticles", J. Lumin. 219 (2020) 116948. [DOI:10.1016/j.jlumin.2019.116948]
17. [17] Li Z., Zhang Y., Zhang W., "Controlled synthesis of CNTs/MoS2/Fe3O4 for high-performance Supercapacitors", J.Mater. Res. Express 4 (2017) 055018. [DOI:10.1088/2053-1591/aa6c3f]
18. [18] Panigrahi P.K., Pathak A., ‏"Aqueous medium synthesis route for randomly stacked molybdenum disulfide", J. Nanopart, (2013) 671214-671224. [DOI:10.1155/2013/671214]
19. [19] Rashidi Dafeh S., Iranmanesh P., salarizadeh P., "Fabrication, optimization, and characterization of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ZnS core/shell magnetic nanoparticles: Ready for biomedicine application", J. Mater. Sci. Eng. C 98 (2019) 205-212. [DOI:10.1016/j.msec.2018.12.147]
20. [20] Osim W., Stojanovic A., Akbarzadeh J., Peterlik H., Wolfgang Binder H., "Surface modification of MoS2 nanoparticles with ionic liquid ligands: Towards highly dispersed nanoparticles", Chem.Commun 49(81) (2013) 9311-9313. [DOI:10.1039/c3cc45305g]
21. [21] Liu L., Jiang W., Yao L., Yang X.W., Chen B.H., Wu S.X., Li F.S., "Fabrication of Fluorescent Magnetic Fe3O4@ZnS Nanocomposites", J. Nanosci. Nanotechnol. 14 (2014) 5047-5053. [DOI:10.1166/jnn.2014.8239]
22. [22] Vattikuti V.P., Byon C., Jeon S., "Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach", Phy. 502 (2016) 103-112 [DOI:10.1016/j.physb.2016.08.050]
23. [23] Kneipp K., Kneipp H., Itzkan I., Dasari R.R., Feld M.S., "Ultrasensitive chemical analysis by Raman spectroscopy", Chem. rev. 99(10) (1999) 2957-2976. [DOI:10.1021/cr980133r]
24. [24] Gomathi P.T., Sahatiya P., Badhulika S., "Solution processed ZnS-MoS2 for optoelectronic applications", International Conference on Nanotechnology (IEEE-NANO) (2017) 355-357. [DOI:10.1109/NANO.2017.8117266]
25. [25] Cheng J., Han L., Wei Y., Chen Q., "Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation", In MATEC Web of Conferences 108 (2017) 01008. [DOI:10.1051/matecconf/201710801008]
26. [26] Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M., "Photoluminescence from chemically exfoliated MoS2", Nano Lett. 11(12) (2011) 5111-5116. [DOI:10.1021/nl201874w]
27. [27] Vijayalakshmi S., Elaiyappillai E., Johnson P.M., Lydia I.S., "Multifunctional magnetic CoFe2O4 nanoparticles for the photocatalytic discoloration of aqueous methyl violet dye and energy storage applications", J. Mater. Sci. Mater. Electron. 31 (13) (2020) 10738-10749. [DOI:10.1007/s10854-020-03624-z]
28. [28] Shahi S., Saeednia S., Iranmanesh P., Hatefi Ardakani M., "Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles", Luminescence 36 (1) (2021) 180-191. [DOI:10.1002/bio.3933]
29. [29] Hosseiny Davarani S.S., Moazami H.R., Yousefi T., Abrari M., "The flexible route for the electrosynthesis of visible light active CdxZn1-xO nanostructures by sequential anodic dissolution of metallic electrodes", J. Water Environ. Nanotechnol. 3 (2018) 235-242.
30. [30] Amdeha E., R.A. El-Salamony R.A., Al-Sabagh A.M., "Enhancing the photocatalytic activity of Ga2O3-TiO2 nanocomposites using sonication amplitudes for the degradation of Rhodamine B dye", Appl. Organomet. Chem. 34 (2020) 1-11. [DOI:10.1002/aoc.5336]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb