Volume 30, Issue 2 (5-2022)                   www.ijcm.ir 2022, 30(2): 23-23 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsaei, Dargahi, Arvin, Shaker, Nezafati. Petrography, geochemistry and petrogenesis of the Daraloo granitoid rocks, south of Kerman. www.ijcm.ir 2022; 30 (2) :23-23
URL: http://ijcm.ir/article-1-1756-en.html
Abstract:   (1078 Views)
The Daraloo ore deposit area, structurally located in the Central Iran and Urumieh Dokhtar magmatic belt, is situated in the south of Kerman Province. In this region, Eocene andesitic flows and pyroclastic rocks have been invaded by Oligo-Miocene hypabyssal intrusive bodies. Most of the intrusive samples are granodiorite porphyry to monzogranite porphyry with a microgranular groundmass and affected by severe phyllic alteration. Mineralogical and geochemical evidence show that Daraloo granitic rocks are calc-alkaline, metaluminous to slightly peraluminous and I-type in nature. Clear negative Nb-Ti anomalies in most samples can be explained by the fractionation of titanium-containing phases such as titanite and titanomagnetite. Also, obvious enrichment in the large ion lithophile elements (LILEs such as K, Rb, Ba and Cs) and light rare earth elements (LREEs) compared to high field strength elements (HFSEs such as Ta, Nb, Ti and Zr) and heavy rare earth elements (HREEs), all clearly show a geochemical feature of magmas generated in subduction environments. So, it can be concluded that Daraloo granitic rocks must be formed in an active continental margin environment as a result of subduction of the Neotethys oceanic crust beneath the Central Iranian microcontinent during the Tertiary time.
 
Full-Text [PDF 2125 kb]   (250 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Allen M., "Late Cenozoic re-organization of the Arabia-Eurasia collision and the comparision of short-term and long-term deformation rates", Tectonics 23: TC2008 (2004) 1-16. [DOI:10.1029/2003TC001530]
2. [2] Berberian F., Muir I., Pankhurst R., Berberian M., "Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and
3. Central Iran", Journal of the Geological Society, v. 139, no. 5, p. 605-614.
4. [3] Hassanzadeh J., Stockli L.D., Axen G.J., Walker J.D., Dewane T.J., "Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area NW Iran", Geological Society of America. Abstracts with Programs., 36 (5) (2004) 319.
5. [4] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): constraints from collisional and earlier deformation", International Journal of Earth Sciences 94 (2005) 401-419. [DOI:10.1007/s00531-005-0481-4]
6. [5] Vincent S. J., Allen M. B., Ismail-Zadeh A. D., Flecker R., Foland K. A., Simmons M. D., "Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region", Geological Society of America Bulletin 117: (2005) 1513-1533. [DOI:10.1130/B25690.1]
7. [6] McQuarrie N., Stock J., Verdel C., Wernicke B., "Cenozoic evolution of Neotethys and implications for the causes of plate motions", Geophysical Research Letters, v. 30 (2003) no. 20. [DOI:10.1029/2003GL017992]
8. [7] Allen M., Kheirkhah M., Neill I., Emami M., McLeod C., "Generation
9. of arc and within-plate chemical signatures in collision zone magmatism:Quaternary lavas from Kurdistan Province", Iran: Journal of Petrology, v. 54, no. 5, (2013) p. 887-911. [DOI:10.1093/petrology/egs090]
10. [8] Verdel C., Wernicke B. P., Hassanzadeh J., Guest B., "A Paleogene extensional arc flare-up in Iran", Tectonics 30 (2011) TC3008, Doi: 10.1029/2010TC002809. [DOI:10.1029/2010TC002809]
11. [9] Mirnajad H., Hassanzadeh J., Cousens B.L., Taylor B.E., "Geochemical evi-dence for deep mantle melting and lithospheric delamination as the origin of theinland Damavand volcanic rocks of northern Iran", J. Volcanol. Geoth.Res. 198 (2010) 288-296. [DOI:10.1016/j.jvolgeores.2010.09.014]
12. [10] Maghdour-Mashhour R., Esmaeily D., Shabani A. A. T., Chiaradia M., Latypov R., "Petrology and geochemistry of the Karaj Dam basement sill: Implications for geodynamic evolution of the Alborz magmatic belt", Chemie der Erde-Geochemistry.V 75 (2015) pp 237-260. [DOI:10.1016/j.chemer.2015.03.001]
13. [11] Moradian A., "Geochemistry, geochronology and petrography of feldspathoid bearing rocks in Urumieh-Dokhtar volcanic belt, Iran: Unpublished PhD thesis, University of Wollongong", Australia (1997).
14. [12] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", JAESc 24 (2005) 405-417. [DOI:10.1016/j.jseaes.2003.11.007]
15. [13] McClay K., Whitehouse P., Dooley T., Richards M., "3D evolution of fold and thrust belts formed by oblique convergence: Marine and Petroleum Geology", v. 21, no. 7 (2004) p. 857-877. [DOI:10.1016/j.marpetgeo.2004.03.009]
16. [14] Mohajjel M., Fergusson C. L , Sahandi M. R., "Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone", western Iran: Journal of Asian Earth Sciences, v. 21, no. 4, (2003) p. 397-412. [DOI:10.1016/S1367-9120(02)00035-4]
17. [15] Ricou L.E., "Tethys reconstructed: plates continental fragments and their
18. boundariessince 260 Ma from Central America to south-eastern Asia", Geodin. Acta7 (1994) 169-218. [DOI:10.1080/09853111.1994.11105266]
19. [16] Dimitrijevic M.D., "Geology of Kerman region", (Inst. for Geological and
20. Mining Exploration and Investigation of Nuclear and other Mineral Raw
21. Materials (1973).
22. [17] Ghorashizadeh M., "Development of hypogene and supergene alteration and copper mineralization patterns, Sarcheshmeh porphyry copper deposit", Iran. M.Sc. Thesis, Brock University, Canada (1978) 223 pp.
23. [18] Shafiei B., Haschke M., Shahabpour J., "Recycling of orogenic arc crust
24. triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks", southeastern
25. Iran: Mineralium Deposita, v. 44 (2009) p. 265-283, doi: 10 .1007 /s00126 -008 -0216 -0 . [DOI:10.1007/s00126-008-0216-0]
26. [19] McInnes B. I. A., Evans N. J., Belousova E., Griffin W. L., "Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes", CSIRO Scientific Research Report 41 (2003).
27. [20] Atapour H., "Geochemistry and metallogenic of igneous rocks in Dehaj-Sardoieh belt, Kerman", Ph.D. Thesis, Shahid Bahonar University of Kerman, Iran, (2007) 280 pp.
28. [21] Hassanzadeh J., "Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Kerman province)", Ph.D. thesis, University of California, Los Angeles (1993) 204 pp.
29. [22] McInnes B. I. A., Evans N. J., Fu F. Q., Garwin S., Belousova E., Griffin W. L., Bertens A., Sukama D., Permanadewi S., Andrew R. L., Deckart K., "Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-Mo-Au deposits. In: Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits", a Global Perspective. PGC publishing, Adelaide, (2005) pp. 1-16.
30. [23] Zolnaj S., Timotijevic S., Grabeljsek V., "Geological map of Sarduiyeh, 1:100000 Series Sheet", Geological Survey of Iran (1972).
31. [24] Lechler D.j., Desiles M.O., "A review of the use of loss ignition as a measurement of total volatiles in Whole-rock analysis", Chemical Geology, 63(1987) 341-344. [DOI:10.1016/0009-2541(87)90171-9]
32. [25] Daly K.B., "A study of the mafic plutons along the Bloody Bluff Fault in northeastern Massachusetts: Placing constraints on the tectonic environment using geochemical and petrologic analysis", M.Sc. thesis, Boston College, 157p (1987).
33. [26] McLemore V.T., Munroe E.A., Heizler M.T., McKee C., "Geochemistry of the Copper Flat porphyry and associated deposits in the Hillsboro mining district, Sierra County", Use: Journal of Geochemical Exploration ,66 (1999) 167-189. [DOI:10.1016/S0375-6742(99)00072-2]
34. [27] Whitney J., "A Origin and evolution of silicic magmas", Reviews in Economic Geology, 4(1989)183-203. isotopes and possible link to Subduction- related origin of some A-type granites", Chemical Geology, 274(2010) 94-107 [DOI:10.1016/j.chemgeo.2010.03.020]
35. [28] Middlemost E.A.K., "Magmas and magmatic rocks. Longman" (1985).
36. [29] Winchester J.A., Floyd P.A., "Geochemical discrimination of immobile elements", Chemical Geology. 20 (1977) 325-343. [DOI:10.1016/0009-2541(77)90057-2]
37. [30] Irvine T.N., Baragar W.R.A., "A guide to the chemical classification of common volcanic rocks: Can", Journal of Earth Science, 8 (1971) p. 523-548. [DOI:10.1139/e71-055]
38. [31] Maniar P. D., Piccoli P. M., "Tectonic discrimination of granitoids", Geological Society of America Bulletin 101 (1989) 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
39. [32] Zen E-An., "Aluminum enrichment in silicate melts by fractional crystallization, some mineralogical and petrographic constraints", Journal of petrology, 27 (1986) 1095-1118. [DOI:10.1093/petrology/27.5.1095]
40. [33] Waight T. E., Weaver S. D., Muir R. J., "The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition, Contribution to Mineralogy and Petrology 130 (1998) 225-239. [DOI:10.1007/s004100050362]
41. [34] Pearce J. A., Cann J. R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and Planetary Science Letters 19 (1973) 290-300. [DOI:10.1016/0012-821X(73)90129-5]
42. [35] Schandl E.S., Gorton M.P., "Appplication of high field strength elements to discriminate tectonic setting in VMS environments", Economic Geology, vol, 97 (2002) p.629-642. [DOI:10.2113/gsecongeo.97.3.629]
43. [36] Pearce J. A., Harris N. B. W., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology 25 (1984) 956-983. [DOI:10.1093/petrology/25.4.956]
44. [37] Joron J.L., Treuil M., "Utilisation des proprietes des elements fortement hygromagmatophiles pour l'etude de la composition chimique et de heterogeneite ḋu manteau", Bulletin de La Societe' Geologique France., 19 (1977) 1197-1205. [DOI:10.2113/gssgfbull.S7-XIX.6.1197]
45. [38] Temel A., Gundogdu M.N., Gourgaud A., "Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey", J. Volcanol. Geoth. Res. 85 (1998) 327 354. [DOI:10.1016/S0377-0273(98)00062-6]
46. [39] Pearce J.A., "The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth. C.J., Norry, M.J. Eds. Continental basalts and mantle xenoliths", Shiva, Nantwhich. (1983) 230-249
47. [40] Fitton J.G., James D., Kempton P.D., Ormerod D.S., Leeman W.P., "The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the western United States", J. Petrol. Special Lithosphere Issue (1988) 331 349. [DOI:10.1093/petrology/Special_Volume.1.331]
48. [41] Rudnick R.L., Fountain D. M., "Nature and composition of the continental crust: a lower crustal pers pective", Rev. Geophysics, 32 (1995) 267-309 [DOI:10.1029/95RG01302]
49. [42] Hofmann A.W., Jochum K.P., Seufert M., White M., "Nb and Pb in oceanic basalts: new constraints on mantle evolution", Earth Planet. Sci. Lett. 79 (1986) 33-45. [DOI:10.1016/0012-821X(86)90038-5]
50. [43] Sun S. S., McDonough W. F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: SaundersAD", Norry MJ (eds) Magmatism in ocean basins: Geological Society of London Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
51. [44] Wilson M., "Igneous Petrogenesis: A Global Tectonic Approach", Harper Collins Academic, (1990) 466 p.
52. [45] Verma S. P., Pandarinath K., Verma S. K., Agrawal S., "Fifteen new discriminant-function-based multi-dimensional robust diagrams.for acid rocks and their application to Precambrian rocks", Lithos, V. 168, p. 113-123. [DOI:10.1016/j.lithos.2013.01.014]
53. [46] Tchameni R., Pouclet A., Penay J., Ganwa A. A., Toteu S. F., "Petrography andgeochemistry of the Ngaondere Pan African granitoids in Central North Cameroon:Implication for their sources and geological setting", Journal of African Earth Sciences. 44 (2006) 511 529. [DOI:10.1016/j.jafrearsci.2005.11.017]
54. [47] Almeida M.E., Macambira M.J.B., Oliveira E.C., "Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97-1.96 Ga) in central portion of Guyana Shield", Precambrian Research., 155: 69-97. [DOI:10.1016/j.precamres.2007.01.004]
55. [48] Pearce J.A., "Trace element characteristics of lavas from destructive plate margins. In: R.S. Thorpe (Editor), Andesites: Orogenic Andesites and Related Rocks", Wiley, New York (1982). 525-548.
56. [49] Keleman P.B., Yogodzinski G.M., Scholl D.W., "Along strike variation in lavas of the Aleutian island arc: Implications for the genesis of high Mg# andesite and the continental crust, Chap. 11. In AGU Monograph", American Geophysica :union:(ed. J. Eiler). American Geophysical :union: (2004). [DOI:10.1029/138GM11]
57. [50] Straub S. M., "Mantle origin of andesites in the central Mexican Volcanic Belt: Goldschmidt Conference Abstracts", (2006). [DOI:10.1016/j.gca.2006.06.1150]
58. [51] Brenan J. M., Shaw H. F., Phinney D. L., Ryerson F. J., "Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts", Earth Planet Science Letters 128 (1995) 327-339. [DOI:10.1016/0012-821X(94)90154-6]
59. [52] Johnson M. C., Plank T., "Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics", Geosystems 1(12). DOI: 10.1029/1999GC000014. [DOI:10.1029/1999GC000014]
60. [53] Ayers J. C., Dittmer S. K., Layne G. D., "Partitioning of elements between peridotite and H2O at 2.0-3.0 GPa and 900-1100 °C, and application to models of subduction zone processes", Earth and Planetary Science Letters 150 (1997) 381-398. [DOI:10.1016/S0012-821X(97)00096-4]
61. [54] Swain G., Barovich K., Hand M., Ferris G., Schwarz M., "Petrogenesis of the St Peter Suite, southern Australia: arc magmatism and Proterozoic crustal growth of the South", Australian Craton. Precambrian Research 15:180-196 (2008).
62. [55] Liu Sh., Hu R., Gao Sh., Feng C., Huang Zh., Lai Sh., Yuan H., Liu X., Coulson I.M., Feng G., Wang T., Qi Y., "U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province", SW China. Journal of Asian Earth Sciences 36 (2009) 168-182. [DOI:10.1016/j.jseaes.2009.05.004]
63. [56] Kibici Y., Ilbeyli N., Yıldız A., Bagcı M., "Geochemical constraints on the genesis of the Sarıcakaya intrusive rocks, Turkey: Late Paleozoic crustal melting in the central Sakarya Zone", Chemie der Erde 70: 243-256. [DOI:10.1016/j.chemer.2009.12.001]
64. [57] Chappell B.W., White A.J.R., "Two contrasting granite types. 25 years later", Australian Journal of Earth Science, v. 48 (2001) p.482-499. [DOI:10.1046/j.1440-0952.2001.00882.x]
65. [58] Newberry R.J., Burns L.E., Swanson S.E., Smith T.E., "Comparative petrologic evolution of the Sn and W granites of the Fairbanks-Circle area, Petrogenesis and Mineralising Processes", Geological Society of America, Special Paper, 246 (1990) 121-142. [DOI:10.1130/SPE246-p121]
66. [59] Green T.H., "Experimental studies of trace element partitioning applicable to
67. igneous petrogenesis-Sendona 16 years later", Chemical Geology 117 (1994) 1-36.
68. [60] Roberts M.P., Clemens J.D., "Origin of high-potassium, calc-alkaline", I-type granitoids. Geology., 21 (1993) 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
69. [61] Boynton WV., "Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry", Elsevier, Amsterdam 63-114 (1984). [DOI:10.1016/B978-0-444-42148-7.50008-3]
70. [62] Parada M. A., Nystrom J. O., Levi B., "Multiple source for the Coastal Batholith of Central Chile: geochemical a Sr-Nd isotopic evidence and tectonic implication", Lithos 46 (1999) 505- 521. [DOI:10.1016/S0024-4937(98)00080-2]
71. [63] Sedighian S., Dargahi S., Arvin M., "Petrochemistry of Khunrang intrusive complex, southeast of Kerman, Iran: Implications for magmatic evolution of Sanandaj-Sirjan zone in the Mesozoic time", Journal of African Earth Sciences 134 (2017) 149e165. www.elsevier.com/locate/ jafrearsci. [DOI:10.1016/j.jafrearsci.2017.06.011]
72. [64] Dokuz A., Tanyolu E., Genc S., "A mantle- and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: trace element and REE evidence for subduction-related rift origin of Early Jurassic Demirkent intrusive omplex", International Journal of Earth Sciences 95 (2006) 370-394. [DOI:10.1007/s00531-005-0046-6]
73. [65] Iannizzotto N. F., Rapela C. W., Baldo E. G. A., Galindo C., Fanning C. M., Pankhurst R. J., "The Sierra Norte-Ambargasta batholith: Late Ediacarane- Early Cambrian magmatism associated with Pampean transpressional tectonics", Journal of South American Earth Sciences 42 (2013) 127-143. [DOI:10.1016/j.jsames.2012.07.009]
74. [66] Dong G., Mo X., Zhao Zh., Zhu D., Goodman R.C., Kong H., Wang Sh., "Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean", Journal of Asian Earth Sciences 62 (2013) 282-294. [DOI:10.1016/j.jseaes.2012.10.003]
75. [67] Bea F., Mazhari A., Montero P., Amini S., Ghalamghash J., "Zircon dating, Sr and Ndisotopes, and element geochemistry of the Khalifan pluton, NW Iran: evidence for Variscan magmatism in a supposedly Cimmerian superterrane", Journal of Asian Earth Sciences 40 (2011) 172-179. [DOI:10.1016/j.jseaes.2010.08.005]
76. [68] Gao Z., Zhang H., Yang H., Pan F., Luo B., Guo L., Xu W., Tao L., Zhang L., Wu J., "Back-arc basin development: constraints on geochronology and geochemistry of arc like and OIB-like basalts in the Central Qilian block (Northwest China), Lithos, 310- 311, 255-268. [DOI:10.1016/j.lithos.2018.04.002]
77. [69] Chekani Moghadam M., Tahmasbi Z., Ahmadi- Khalaji A, Francisco Santos J., "Petrogenesis of Rabor-Lalehzar magmatic rocks (SE Iran): Constraints from whole rock chemistry and Sr-Nd isotopes", Journal of Iran Earth Science, Year 27, Number 108, Summer (2016), p 13-26.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb