Volume 30, Issue 1 (4-2022)                   www.ijcm.ir 2022, 30(1): 9-9 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Qafuri Sedehi, Tajeddin, Rastad, Mahmoodi Qafuri. Mineral chemistry of sulfide and sulfosalt minerals in the Cheshmeh-Noghreh barite (gold- silver) deposit, Sabzevar subzone, NE Kashmar. www.ijcm.ir. 2022; 30 (1) :9-9
URL: http://ijcm.ir/article-1-1717-en.html
Abstract:   (157 Views)
The Sebandoon Barite (gold-silver) deposit is located about 20 km NW of the Kashmar in the Central Iran. The rock units exposed in the area consist of Eocene volcano-sedimentary sequences of lithic tuff, rhyolitic tuff, tuffaceouce shale, lapilli tuff and agglomerate associated with pyroxene andesite and trachyandesite. The barite is composed of lenticular, banded and stockwork mineralization and that is hosted in rhyolithic tuff. Lenticular, massive and banded barite contains pyrite, sphalerite,chalcopyrite, galena, tetrahedrite, argentite and electrum. The association of sulphide minerals with the barite indicates sub-oxic conditions during ore forming processes. In this study, the chemistry of sulfide minerals in the barite lenses was studied using Electron Microscope. Accordingly, the narrow range and low iron content within the sphalerite are similar to those of mineralization in a sub-oxic environments. The presence of elements with heavy atomic nuclei, such as gold and silver, in the pyrite indicates that the pyrites are formed in a sub-oxic environment and arsenic in the pyrite is replaced by metal (As3 +). The presence of large amounts of antimony, bismuth, arsenic, and silver in the sulfide and sulfosalt minerals of this deposit indicates that the ore forming fluid was rich in the metal elements.
Full-Text [PDF 544 kb]   (50 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Qaemmaghami nejad A., Malehzadeh Shafaroodi A., Karimpour M.H., "Mineralogy, geochemistry, and fluid inclusion studies of Kuh-Sorbi Barite-lead ± copper deposit, northeast of Iran", Iranian Journal of Crystallography and Mineralogy 23 (2) 225-240 (in Persian).
2. [2] Hajalilo B., Vosough B., Moayed M., "REE Geochemistry of Precambrian Shale-Hosted Barite-Galena Mineralization, a Case Study from NW Iran", Iranian Journal of Crystallography and Mineralogy 22 (2) (2014) 39-48 (in Persian).
3. [3] Pourkaseb H., Zarasvandi A. R., Aliabadi M.A., "Geochemistry and genesis of Robat-Paein barite deposit, Khomein, Markazi province", Iranian Journal of Crystallography and Mineralogy 24 (4) (2017) 813-824 (in Persian).
4. [4] Yarmohammadi A., Rastad E., Mohajjel M., Shamsa M.J., "Barika gold occurrence: gold- rich volcanogenic massive sulfide in Iran", Tehran Uni. J. Sci. 34 (2008) 47-60 (in Persian).
5. [5] Yarmohammadi A., Rastad E., "Deformation effects on the gold bihavior in Barika gold-rich massive sulfide deposit, east of Sardasht", Iranian Journal of Crystallography and Mineralogy 16 (3) (2008) 442-435 (in Persian).
6. [6] Tajeddin H.A., Rastad E., Yaghubpour A., Mohajjel M., "Formation and evolution stages of gold rich Barika massive sulfide deposit, east of Sardasht, northern Sanandaj-Sirjan zone: Based on structural, textural and fluid inclusion studies", Iranian Journal of Economic Geology. 2(1) (2010) 107-135 (in Persian).
7. [7] Baharvandi A., Loutfi M., Ghaderi M., Jafari M., Tajeddin H. A., "Ore mineralization and fluid inclusion and sulfur isotope studies of the Shekarbeig deposit, southwest Mahabad, Sanandaj-Sirjan Zone", Quarterly Journal of Geosciences, Geol. Min. Expl. Surv. Iran. 26(103), (2017) 201-218 (in Persian).
8. [8] Tajeddin H. A., Hassankhanlou S., Mohajjel M., "Geology, mineralogy and fluid inclusion studies of the Abdossamadi barite deposit, Northeast Marivan", Quarterly Journal of Geosciences, Geol. Min. Expl. Surv. Iran. 27(109), 97-108 (2018) (in Persian).
9. [9] Hassankhanlou S., "Geology, mineralogy, deformation and genesis of Abdolsamadi barite deposit in late Cretaceous volcano-sedimentary sequences", NE Marivan. Unpublished M.Sc. thesis, Tehran, Tarbiat-Modares University, Iran.
10. [10] Richard P.J. Sholeh A., "The Tethyan Tectonic History and Cu-Au Metallogeny of Iran, SEG Special Publication 19", Economic Geology
11. [11] Qafouri E., Tajeddin H. A., Rastad E., "Cheshmeh Noghreh gold deposit, NW Kashmar: an example of stratiform gold deposit in the Eocene volcano-sedimentary sequences", 36th Symposium on Geosciences, Geological Survey of Iran, Tehran, Iran, 25-27 Feb. in Persian with English abstract (2018).
12. [12] Qafouri E., "Geology, mineralogy, geochemistry and genesis of Cheshme Noghreh gold deposit, NW Kashmar", Unpublished M.Sc. thesis, Tehran, Tarbiat-Modares University, Iran.
13. [13] Cook N. J., Ciobanu C. L., Pring A., Skinner W., Shimizu M., Danyushevsky L., Melcher F., "Trace and minor elements in sphalerite: A LA-ICPMS study", Geochimica et Cosmochimica Acta, 73(16) (2009) 4761-4791. [DOI:10.1016/j.gca.2009.05.045]
14. [14] George L., Cook N. J., Ciobanu C. L., Wade B. P., "Trace and minor elements in galena: A reconnaissance LA-ICP-MS study, American Mineralogist, 100(2-3) (2015) 548-569. [DOI:10.2138/am-2015-4862]
15. [15] George L. L., Cook N. J., Ciobanu C. L., "Minor and trace elements in natural tetrahedrite-tennantite: Effects on element partitioning among base metal sulphides", Minerals, 7(2) (2017) 17. [DOI:10.3390/min7020017]
16. [16] George L. L., Cook N. J., Crowe B. B., Ciobanu C. L. "Trace elements in hydrothermal chalcopyrite", Mineralogical Magazine, 82(1) (2018) 59-88. [DOI:10.1180/minmag.2017.081.021]
17. [17] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: New data and interpretations", Tectonophysics. 229 (1994) 211-238. [DOI:10.1016/0040-1951(94)90030-2]
18. [18] Taheri J., Shamanian G. H., "Geological map in 1:100000 scale of Kashmar sheet", Geological Survey of Iran (2001).
19. [19] Shahrabi M., Hosseini M., Shabani G., "Geological map in 1:100000 scale of Bardeskan sheet", Geological Survey of Iran (2006).
20. [20] Keith M., Haase K. M., Schwarz-Schampera U., Klemd R., Petersen S., Bach W., "Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents", Geology, 42(8), 699-702. [DOI:10.1130/G35655.1]
21. [21] Koski R. A., Hein J. R., "Stratiform barite deposits in the Roberts Mountains allochthon, Nevada: A review of potential analogs in modern sea-floor environments: US Department of the Interior", US Geological Survey (2004).
22. [22] Maynard J., Morton J., Valdes-Nodarse E., Diaz-Carmona A., "Sr isotopes of bedded barites; guide to distinguishing basins with Pb-Zn mineralization", Economic Geology, 90(7) (1995) 2058-2064. [DOI:10.2113/gsecongeo.90.7.2058]
23. [23] Gregory, D. D., Large, R. R., Halpin, J. A., Baturina E. L., Lyons T. W., Wu S., "Maslennikov", Trace element content of sedimentary pyrite in black shales. Economic Geology, 110(6) (2015) 1389-1410. [DOI:10.2113/econgeo.110.6.1389]
24. [24] Reich M., Becker U., "First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite", Chemical Geology, 225(3) (2006) 278-290. [DOI:10.1016/j.chemgeo.2005.08.021]
25. [25] Deditius A. P., Utsunomiya S., Renock D., Ewing R. C., Ramana C. V., Becker U., Kesler S. E., "A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance", Geochimica et Cosmochimica Acta, 72(12) (2008) 2919-2933. [DOI:10.1016/j.gca.2008.03.014]
26. [26] Qian G., Brugger J., Testemale D., Skinner W., Pring A., "Formation of As (II)-pyrite during experimental replacement of magnetite under hydrothermal conditions", Geochimica et Cosmochimica Acta, 100 (2013) 1-10. [DOI:10.1016/j.gca.2012.09.034]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb