طیف‌بینی رامان و پرتو ایکس کانسگر گرافیت، مجموعه سوریان

فرید موسوی‌زاده گرامی، سیلا استادی

پخش علوم زمین، دانشگاه علوم، دانشگاه شیراز

(دریافت مقاله: ۱۳۹۳/۰۸/۳، پذیرش نهایی: ۱۳۹۳/۰۸/۲۷)

چکیده: مجموعه‌ی انتخابی-رسویی سوریان در لبه شرقی پهنه‌ی دگروانی-ماگماپی سند-سیرجان در جنوب غرب ایران قرار گرفته است. گرافیت شیست فراوانی ترین و انتخابی‌ترین مجموعه است و به‌دلیل بالا بودن عیار گرافیت (بیشینه ۵۰/۰ دارای ارزش اقتصادی است. کاتالی‌های شامل این کانسگر گرافیت، عبارتند از کوارتز، مسکوپت، کلیپزکلر، پلاژیوکلاژ، زیرکن و اسلیمان. آشکار بودن قلیایی در مربته‌ی اول جاهایی طیف رامان (حدود ۱۵۸۷ cm-۱) و قابلیت بین صفحه‌ی (فاضل) d=۲۵۳ آنتی‌روم، نشان-رده‌ی کانتی‌گرافیت کامل پویای دارای با ساختار مشابه در این مجموعه است. رابطه‌ی خطی بین دمای دگروانی و پارامتر R، گرافیت را به کی و زمین‌دماستج دقت تبدیل کرده است. با استفاده از این داده‌ها و چزی دماستج دمای دگروانی مسیری (کانتی‌گرافیت، گستردگی دماستج ۲۲۴ درجه سانتی‌گراد را نشان می‌دهد که با تکنیک‌های پیشرفته صورت گرفته در منطقه و تعیین شرایط دما و فشار در هر رخ‌های دگروانی شیست سبز تا امپیبولیت زیرین این مجموعه همخوانی دارد.

واژه‌های کلیدی: گرافیت، طیف رامان، پرتو ایکس، زمین‌دماستج، دگروانی، مجموعه سوریان

مقدمه

کانسگر گرافیت یک چندگونه (allotrop) کربن با ویژگی‌های فیزیکی‌محیاطی منحصر به فرد است. آراز انی‌های کربن در یک شکه‌ی شستگی (شکل ۱) و پیوندهای کوالاکسی درون-لایه‌ای، گرافیت را یکی از پایدارترین و واکنش‌ناپذیرترین مواد طبیعتی تبدیل کرده است، به‌طوری که انی‌هایی که می‌تواند تا دماهای ۲۰۰۰ درجه سانتی‌گراد را نجات دهد یک پیوندهای فیزیکی‌محیاطی خود را حفظ کند. این پیوندهای ضعیف و نانولوگی بین لاکسی‌های کربن باعث کاهش سختی‌گرافیت (۱۲ تا ۱۷ در مقیاس موس) شده و آن را یک روان کندمی مناسب در صحت تبدیل کرده است. کانسگر به (delocalized) در دل‌های پرتو ایکس داده جابجای شده و منتقل در ساختار اتمی چهار از رساندهای الکترونیکی و گرمایی خوبی بخورده است [۱-۲].

Gholami.zahra1989@gmail.com

نویسنده مسئول، تلفن: ۰۲۱-۳۸۵۷۵۵۶۴، ۰۲۱-۸۹۸۸۸۵۷ اسکن

Downloaded from ijcm.ir at 13:38 +0430 on Thursday June 4th 2020
研磨体試料 موضوع جغرافیایی و زمین‌شناسی مجموعه آنششانتی – روستو سیروان منطقه‌های مورد بررسی بخشی از مجموعه آنششانتی – روستو سیروان در شمال شرق شهر دشت (پیشنهاد). این منطقه در ۵۴°۳۱′-۵۱°۵۴′ طول شرقی و ۳۰°۰۸′-۳۰°۱۵′ عرض شمالی قرار دارد (شکل ۲).

در این محدوده آنششانتی – روستو سیروان در لبه شرقی منطقه ماهکی دزگونی سنگنی سیروان واقع شده است. بر اساس پیشنهاد زیمن دیمانیکی پنهان سنگنی- سیروان، در این منطقه در پارک زیستی تنوریترویزونیک تا دو پتین بک حوضه سکویی حاشیه سنگان قرار داشته که با نازک‌شدن پوسته و انعکاس‌های درونی همراه بوده است [۸]. از این مناطق، دو حوضه اصلی استحکام‌دار محسوب شده و بر اساس مساحت و شدت قلب‌های R1 و R2، و موقعیت و شدت قلب‌های G و Dr1، Dr2 به کار گرفته می‌شود.

روش بررسی
در زمرد صحرایی از منطقه، نمونه‌برداری از بخش شرقی حفره معدنی شیرو از دامنه بی‌شکل، رنگ زئوژنیک، گرافیت شیست است. انجام شد. نمونه‌های گرافیتی بر مبنای رنگ و دارای پیشتر میزان موارد کربنی انتخاب شدند و برای تجزیه‌برداری پیشتر ایکس (XRD) یا آزمایشگاه سازمان زمین‌شناسی و اکتشافات معدنی شمال غرب کشور ارسال شدند. طیف‌سنجی رامان از این نمونه‌ها نیز در آزمایشگاه رامان بخش فیزیک دانشگاه تهران مورد انجام شد.

هدف اصلی این پژوهش تعبیه دیجیتال برای شبکه هکتارگالی و تشکیل یک بافته گرافیت [۲].
است. گرافیت‌شیست یکی از واحدهای سنگ‌شناختی غالب در مجموعه سوریان است که در بیش از ۶۰٪ این مجموعه را به عنوان یک ذخیره‌کننده گرافیت معرفی می‌کند.

بررسی‌های کانی‌شناسی، با استفاده از بروکر پرتو ایکس انکساری و پس از آن، نمونه‌های پودر شده، از غربال ۲۵۰ میکرومتر عبرت دادند، و با استفاده از Bruker -D8 میکروتر عبرت داده شدند. با استفاده از Advanced Cu-۷ filter (Cu-۷ filter) انجام شد. مشاهدات میکروسکوپی و بررسی‌های پرتو ایکس نشان داد که گرافیت در مرز کانی به صورت پولک‌هایی در شیست‌ها و در گرافیت‌شیست‌های تاریک، نشانه‌های فروان‌ترین کانی در گرافیت‌شیست‌هاست.

شکل ۲ نقشه زمین‌شناسی منطقه‌ای بوتان [۱۱].

شکل ۳ مقاطع میکروسکوپی از گرافیت‌ها، ج) فلز-پوسته‌ها در سخت‌تر گرافیت‌ها در زمین‌های از کوارتز و مسکوویت، ب) شیپس‌وارگی در گرافیت‌شیست با فرمانی کانی گرافیت، کوارتز و مسکوویت. Qz: کوارتز، Gr: گرافیت، Mu: مسکوویت.
جدول 1 درصد فراوانی کانی‌های موجود در نمونه‌های کانستگ گرافیت با استفاده از روش تجزیه پرتو ایکس.

<table>
<thead>
<tr>
<th>کانی</th>
<th>نمونه 1</th>
<th>نمونه 2</th>
<th>نمونه 3</th>
<th>نمونه 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>25</td>
<td>48.3</td>
<td>49.3</td>
<td>35.8</td>
</tr>
<tr>
<td>Muscovite</td>
<td>18.3</td>
<td>18.1</td>
<td>13.1</td>
<td>43.6</td>
</tr>
<tr>
<td>Clinochlore</td>
<td>18</td>
<td>12.5</td>
<td>14.5</td>
<td>16</td>
</tr>
<tr>
<td>Quartz</td>
<td>44.4</td>
<td>14.6</td>
<td>15.2</td>
<td>15.8</td>
</tr>
<tr>
<td>Albite</td>
<td>4.6</td>
<td>8.8</td>
<td>8.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Zircon</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

شکل 4 نتایج تجزیه پرتو ایکس نمونه‌های کانستگ گرافیت، در هر دو نمونهalfa و beta نمونه گرافیت ۳.۲۵ انجکستروم را نشان می‌دهد که کامل‌اً بلوری بودن این کانی را تایید می‌کند [5].
از روش‌های تجزیه‌ای مختلف برای تعیین مشخصات مواد
گرفته دار از جمله گرافیت استفاده شد. این روش‌ها عبارتند از
اندازه‌گیری پارتاپش نوی [116]. طیف‌سنجی فروسرخ [117]
پراکندگی پراش نوتریونی [114]. پراش پرتو ایکس و طیف‌سنجی
رامان.
در آزمایش‌های معمول پراش پرتو ایکس، بازتاب از صفحه-
CuK\alpha برای گرافیتهای با ساختار منظم و تاپش
6.6 d. اطلاعات فاصلهٔ بین صفحه‌های (فاصلهٔ \(d\)) به‌دست
می‌آید که با استفاده از آن می‌توان گرافیتهای کاملاً بلوئین با
تشخیص \(d=2.35 \text{ Å} \) را از مواد کربنی ناشی‌ی‌برن با
\(d=3.35 \text{ Å} \) داد [5].

طیف‌سنجی رامان

تمام نمونه‌های گرافیت شیست منطقه در مرتبه اول (Order
\(1587 \text{ cm}^{-1}\) طیف رامان، در جابجایی رامان تقیبای \(G\)
(نوار قله‌ای روشی را نشان می‌دهند. این نمونه‌ها در جابه-
جا رامان تقیبای \(1620 \text{ cm}^{-1}\) هیچ گونه قله‌ای را نشان نمی-
دهد (شکل 5).

نسبت‌های \(R\) و \(R\) رامان محاسبه شده برای نمونه‌های
گرافیت به ترتیب در گستره‌ی بین 166 تا 164.74 تا
77 را شامل می‌شوند (جدول 2). دمای دگرگونی نیز در
گستره‌ی بین 258.21 تا 234.16 اندازه‌گیری شد (شکل 5،
الف و ب).

شکل 5 طیف‌های رامان نمونه‌های گرافیت شیست.
برداشت
شواهد کالیشناتی و پراش پرتو ایکس نشانگر عبارت از: غبار در گرافیت شیسته‌های رم، همه‌نمونه در مجموعه انتظارانی روی سری‌بندات است. در این مجموعه، کلیه‌ها گرافیت (بدن از 80-50%) هر یک یا یکی از کوارتز، مسکویت، کلبنرت، آلیت، زیرکن و ایلامیت، کالستر گرافیت را تشکیل می‌دهند.

فصل گرافیتی: مقدار 3.25 آنگستروم (d: 3.25Å) و جویه قله مافیک در جایه‌ها، رمان نسبتی 18.87 بلوپر گرافیت شیسته‌های این مجموعه را نشان می‌دهد و باعث بالارفتن قیمت کالستر گرافیت، در پارامتر جهانی عرضه این ماده معمولاً می‌شود. فضایه شناخته‌کننده ۲ نمونه از گرافیت شیسته به منطقه‌ای کمتر ۳۲۵ آنگستروم برای ۲ نمونه از گرافیت شیسته‌های منطقه‌ای با شرایط قرارگیری این مجموعه در پهنه گرافیت مالگی و سندج سیوری و عملکرد نشانه‌های یک‌گانه همخوانی دارد.

نسبت‌های R2 و R3 نمونه‌های گرافیتی به نسبت ۱.۶۶۴ نا و ۰.۷۴ نا انداره‌گذار شدن و میانگین دما گرافیتی در منطقه‌ای ۲۵۰ درجه سانتی‌گراد نسبتی شده که با شرایط دما برخواده گرافیت‌های سیبره‌ای همخوانی دارد (شکل ۴).

قدیردانی
نوشته‌گان این مقاله مراتب قدردانی و تشبیه خود را از سازمان زمین‌شناسی و اکتشافات ملی شمار غرب کشور مطرح نمی‌تواند، بدین ترتیب تجزیه نمونه‌ها به روش پرتو ایکس ایکس-مدان دارند. همچنین از مدیریت مهندس کارکنان زمین‌شناسی و مهندس برقی به خاطر همکاری‌شان سپاسگزاریم.

جدول ۲: نتایج داده‌های طیف‌سنجی رمان نمونه‌های گرافیت شیسته و محاسبات، R1 و R2

<table>
<thead>
<tr>
<th>G مواد</th>
<th>G رمان</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>R1</th>
<th>R2</th>
<th>T(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه ۱</td>
<td>۱۸۴۷</td>
<td>۲۹۰</td>
<td>۲۵۵</td>
<td>۱۸۳</td>
<td>۶۵</td>
<td>۱۵۸</td>
<td>۲۸۴</td>
</tr>
<tr>
<td>نمونه ۲</td>
<td>۱۸۴۷</td>
<td>۲۳۳</td>
<td>۱۷۵</td>
<td>۱۶۶</td>
<td>۶۷</td>
<td>۱۵۸</td>
<td>۲۸۸</td>
</tr>
<tr>
<td>نمونه ۳</td>
<td>۱۵۹۰</td>
<td>۳۱۰</td>
<td>۲۰۰</td>
<td>۲۰۹</td>
<td>۶۷</td>
<td>۱۴۰</td>
<td>۲۴۴</td>
</tr>
<tr>
<td>نمونه ۴</td>
<td>۱۵۹۲</td>
<td>۳۷۰</td>
<td>۲۵۵</td>
<td>۱۸۵</td>
<td>۷۵</td>
<td>۱۵۰</td>
<td>۲۵۵</td>
</tr>
</tbody>
</table>

(۱) \(R_1 = \frac{D_1}{D_1 + D_2 + D_3} \) \(\times \) \(\frac{R}{G} \)
(۲) \(R_2 = \frac{D_1}{G} \)
(۳) \(\frac{T(°C)}{\beta} = \frac{330}{R_1 - 100} + 374 \frac{R_1}{R_2 - 800} \)

شوند و در تعیین درجه گرافیت به کار می‌رود.

\(R_1 = \frac{D_1}{D_1 + D_2 + D_3} \) \(\times \) \(\frac{R}{G} \)

\(R_2 = \frac{D_1}{G} \)

\(\frac{T(°C)}{\beta} = \frac{330}{R_1 - 100} + 374 \frac{R_1}{R_2 - 800} \)

(۱) \(\times \) \(\frac{R}{G} \)
(۲) \(\times \) \(\frac{R}{G} \)

\(\frac{T(°C)}{\beta} = \frac{330}{R_1 - 100} + 374 \frac{R_1}{R_2 - 800} \)

(۳) \(\times \) \(\frac{R}{G} \)

مراجع
