کانی شناسی، زئوئسیم و بررسی شاره‌های در‌گیر کانسار باریت- سرب ± مس کوه سربی، شمال شرقی ایران

عطیه قائم مقام نژاد، آزاده ملک‌زاده شفراودی، محمدحسن کریمی‌پور

گروه بیولوژی اکتشافات ذخایر معدنی شرق ایران دانشگاه فردوسی مشهد

دریافت مقاله: 1385/1/24، نسخه نهایی: 1385/7/28

چکیده: کانسار باریت- سرب ± مس کوه سربی که در جنوب شرقی مشهد در استان خراسان رضوی واقع شده است، به شکل رگهای برکننده فضایی، جانشینی در سنگ‌های سنگی ریشه‌های گیسی در واحد سنگ کریتیانی درگروگان شده تریاس فوقانی سازند نابنده تشکیل شده است. این کانسار شامل باریت (80 ± 85 درصد) و گالن (10 ± 15 درصد) و مقدار اندکی کالکوپرات و کوارتز است. باریت در آرا مقیار کمی (2.5) است و در سرب ارالیا جاده باریت- سلسنتین و استحکمی به عضو نهایی باریت است. دگرسانی‌های مانند سپیلونی در سنگ دومینی شدن و دولومیتی شدن، شرایط فیزیک‌شیمیایی را برای عبور محلول کاناد و ته نشینی باریت و فلزات فراهم کرده است. زئوئسیم ریگها شامل حدود 1 درصد سرب، 15 درصد مس و حداقل 288 گرم در تن آنتیون است. در حالی که کمتر از 40 گرم در تن دیسپرژه و کمتر از 10 گرم در تن باعث از بین رفتن و نسبت ناپایداری در سرب باریت و ماتریس شدن، شرایط استفاده است. سرب و ماتریس شده کانسار سربی از نوع موزومترمال است.

واژه‌های کلیدی: کانی شناسی، زئوئسیم، شاره‌های در‌گیر، کانسار باریت- سرب ± مس مزئومترمال

مقدمه

شفراودی م. نویسنده مسئول: تلفن- نیم‌بند: 5134772775، پست الکترونیکی: shafaroudi@um.ac.ir

*چاپ و چاپ مرکز جهانی سال 1398ِ ۲۰۰۹ بوده است [4].
کاسار باریت (کوبر) در استان خراسان رضوی و در ۱۳۷ کیلومتری جنوب شرقی مشهد بین طول‌های جغرافیایی ۱۱°۰۰ و ۱۳°۰۰ و عرض‌های جغرافیایی ۳۵° و ۳۷° قرار گرفته است (شکل ۱). اگرچه این کاسار در حال حاضر در حال بهره‌برداری بوده و نیز تولید‌ها و کنده‌های قدمی در منطقه وجود دارد، اما از لحاظ علمی هیچگونه بررسی تفصیلی در آن انجام نشده است و تاریخچه بررسی‌هایی از آن وجود ندارد. این مقاله اولین بررسی درباره کاتیسازی، زنیته‌سازی و بررسی شاره‌های دریگر روی کاسار است که به هدف شناسایی ویژگی‌های شاره‌ای کاسار مسئول کاتیسازی و تعیین نوع آن صورت گرفته است.

روش بررسی

در راستای دستیابی به اهداف مورد نظر، برداشت اطلاعات محوطه و نمونه‌برداری از واحد‌های سنگی و رگه‌کاپ سازی از سطح و داخل نواحی و نیز تولید شده در مجموع تعداد ۱۰۰ نمونه توزیع شده که از آن میان ۵۰ مقطع نازک و ۳۵ مقطع نازک سابقه و ۱۵ مقطع نازک تهیه و بررسی شدند. به‌منظور بررسی زنیته‌سازی باریته تعداد ۱۰ نمونه از آزمایشگاه XRF برای مقایسه با نمونه‌های مشاهده شده نگهداری گردید. بیشتر نمونه‌ها در نرم‌افزار SPSS تحلیل شدند و نمونه‌های مناسب در نرم‌افزار ترسیم شدند.

شکل ۱: موقعیت کاسار باریت کوبری در شمال شرقی ایران، استان خراسان رضوی و راه‌دار سرتاسری به آن.
زمین‌شناسی

کانسپت‌های ناحیه‌ای، درجه‌های پایین و در اولین رخساره شیست

سیستم

پس از سنگ‌های نسبی، مورد بررسی رخ‌مرجع دارد. در شماره‌گذاری منطقه، نهشته‌هایی از شیب و ماسه سنگ‌های نسبی دارد که بر می‌گردد

دشوار و بسیار انداز در آنها فیلترهای شاخص محیط‌های دریایی پدیده است. (شکل 2) این نشسته‌ها مداخل به سری

شهی دویش انسان زیبین که در شرق منطقه (خارج از منطقه)

ی مورد بررسی) قرار دارد. در نظر گرفته شده است [10.

رخ‌مرجع اندکی از ایگنمریت انسان با روند شماره غربی

جبش بری (شکل 2). این واحدهای انسان به وسیله گنج‌شناسی انسان پیشنهاد شده است. در شماره‌گذاری منطقه، همشهری به صورت

درگوشری روی شیب و ماسه سنگ‌های سیب انسان زیبین قرار

گرفته است (شکل 2). گنج‌شناسی انسان سنگ‌های نسبی در

شماره‌گذاری گسترش بروز شده عبوری بود. (شکل 2). در جنوب

غربی گسترش زیبایی را در تراز سنگ‌های کوارتزی قرار

داده که احتمالاً در اثر تراز شیب‌های آب گرم، در طول

گسل اصلی منطقه (غرب نصف) به وجود آمده است (شکل 2).

دگرگونی

سیستم‌شناسی دومنی‌شناسی: دولومیتیک و مانیوتیک شدگی مهیترین

دگرگونی‌های منطقه سیستم‌های سیستم‌های کامپرسیونی میان‌باشند. در اطراف رگه و ریزه‌ها

کانسیسی در سنگ میزان کربناتی مشاهده می‌شود. سیستم‌شناسی در قاب‌های ریزه‌ها کوارتزی کاربرد در

منطقه سیستم‌های ریزه‌های برخی از ریزه‌های باریک دیده می‌شود [3]. این افراد به سمت مشاهده کننده آمده است (شکل 2).

میلیمتر تغییر می‌کند. در این کانسپت، دولومیتیک کلینیت

در سنگ ایندکس و دیده در کانسپت‌ها را، که در ده‌های

های کامپرسیون زیبایی در دشت دانه

دولومیتی‌ها در دشت دانه

دولومیتی‌ها در دشت دانه

شکل‌دار و اندام‌های 3 میلیمتری دیده می‌شود (شکل 3

پ) دولومیتی‌شناسی سنگ ریسی ناشی از افزایش نخل‌سیمین

Downloaded from ijcm.ir at 19:22 +0430 on Saturday March 28th 2020
سنگ در حدود ۱۲۵ درصد می‌شود که به دلیل چگالتر بودن دولومیت نسبت به کلسیت است [۱۶]. دولومیت گرماپی ممکن است قبیل همزمان با این که سازی در سنگ میزبان کربناتی جانشین شود و هاله‌ای در گردنگار را اطراف کاپاس تشکیل دهد [۱۷]. دولومیتی شدن قبل یا همزمان با کاپاس-سازی باعث آماده شدن سنگ کربناتی برای نهست محلول...

شکل ۲ نقشه زمین‌شناسی کانسار کوه سری (با تغییرات از [۱۰])
است. روابط پاتوکی کالیکوپریت که نسبت به وسیله گالن احاطه کرده است تا آنجا که کالکوپریت بری می‌شود این غلبه شده است. تشکیل آن را می‌توان به پیش از گالن نسبت داد. اما وجود ادخال گالن کالکوپریت در داخل گالن حاکی از هم‌زمان تشکیل بخشی از آنها نیز دارد. همراهی خوب بین پارتی و گالن دیده می‌شود که نشان دهندهٔ هم‌روشی و هم‌حساسیت بودن این دو کالی است. سیلیسی شدن و دولومیتی شدن سنگ میزبان نیز قبل و همزمان با تشکیل باریت و گالن، محیط مناسب برای فرآیند جانشینی را فراهم آورده است. کلسیت که از سنگ میزبان خارج شده و جای خود را به عنصر دیگر داده است در نهایت در قابل رگ‌های کلسیت درشت دانه تغشیت گردیده است. همچنین رگ‌های کلسیت تبخیری نیز وجود دارد که کل رگ و رگ‌های منطقه‌ای از قطع کرده و به فرآیندهای تانوهی وابسته‌اند. کاتیه تانوهی نیز در اثر فرآیند اکسابش و هوازدگی سطحی کاتیه سولفیدی به وجود آمدند (شکل ۶).}

شکل ۴ تصاویر میکروسکوپی از کالیهای کاتاسار کوه سری در نور پارازیتی. اف: کالکوپریت در گرانش شده به کولیت همراه با گالن (نماده ۵) ب: ادخال کالکوپریت با داخل گالن (نماده ۱۱) جانشینی سروریت و آنگلزیت در حاشیه گالن و تشکیل کولیت در بین گالن و باریت (نماده ۲۰) (KSM16 ب) انتحا و جابجایی در جاله‌های مصنوعی شکل گالن (نماده ۱۱) (KSM11 ب) گالن (Gn)، (Ccp)، (Cv)، (Cer) = کالکوپریت، (KSM20 ب) کولیت، (KSM5 ب) گالن، (Ang) = آنگلزیت، (Cer) = گالن، (Cv) = سروریت.
بپرسی شیمی رگ‌ها، سنگ میزبان و کانی‌ها
نتایج تجزیه‌ی 10 نمونه از باریت جدا شده به روش و XRF 25 نمونه از رگ‌ها و رگ‌چه‌های کانی‌سازی و 22 نمونه از سنگ میزبان به روش جذب اتمی در جدول (1) و نتایج تجزیه‌ی 10 نمونه گالن جدا شده به روش جذب اتمی در جدول (2) ارائه شدند.

شکل 5 تصاویر بافته‌های مختلف بین گالن و باریت‌الف (بافت پراکنده، ب) بافت توده‌ای، پ) بافت لایه‌ای با رشد تک جهت شانه‌ای گالن.

شکل 6 دنباله‌ی روابط پارازنتی کانسار کوه سربی

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Early</th>
<th>Hypogene</th>
<th>Late</th>
<th>Oxidized zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrusite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angleite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malachite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azurite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شیمی باریت: مقدار Sr باریت از 2/54 تا 2/56 درصد متغیر است که این میزان برای مقدار SrSO₄ است. این نتایج می‌شود که نمونه‌های باریت کوه سربی در سری احتمال جایگزینی باریت سلستیت، وابسته به عضو نهایی باریت هستند. مقدار Ba نیز بین 51/16 تا 55/21 درصد متغیر است (جدول 1).
جدول 1: نتایج تجزیه نمونه‌های زئولیت‌برای مورد بررسی به روش XRF

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
<th>B9</th>
<th>B10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba (%)</td>
<td>55.23</td>
<td>57.20</td>
<td>57.53</td>
<td>51.16</td>
<td>51.75</td>
<td>51.16</td>
<td>51.32</td>
<td>51.16</td>
<td>51.18</td>
<td>51.18</td>
</tr>
<tr>
<td>Sr (%)</td>
<td>2.84</td>
<td>2.83</td>
<td>2.64</td>
<td>2.85</td>
<td>2.80</td>
<td>2.84</td>
<td>2.83</td>
<td>2.82</td>
<td>2.79</td>
<td>2.74</td>
</tr>
<tr>
<td>SO₄ (%)</td>
<td>4.54</td>
<td>3.19</td>
<td>4.19</td>
<td>4.27</td>
<td>4.66</td>
<td>4.43</td>
<td>4.33</td>
<td>4.49</td>
<td>4.14</td>
<td>4.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>R2</th>
<th>R7</th>
<th>R11</th>
<th>R12</th>
<th>R13</th>
<th>R14</th>
<th>R15</th>
<th>R16</th>
<th>R17</th>
<th>R18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>5.74</td>
<td>24.9</td>
<td>24.4</td>
<td>23.8</td>
<td>16</td>
<td>6</td>
<td>27</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.13</td>
<td>0.17</td>
<td>0.09</td>
<td>0.2</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.13</td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>95</td>
<td>116</td>
<td>116</td>
<td>115</td>
<td>114</td>
<td>111</td>
<td>113</td>
<td>117</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>318</td>
<td>238</td>
<td>265</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>R19</th>
<th>R20</th>
<th>R22</th>
<th>R27</th>
<th>R28</th>
<th>R30</th>
<th>R32</th>
<th>R33</th>
<th>R34</th>
<th>R35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>44</td>
<td>22</td>
<td>484</td>
<td>22</td>
<td>56</td>
<td>194</td>
<td>328</td>
<td>155</td>
<td>155</td>
<td>845</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
<td>0.3</td>
<td>0.2</td>
<td>0.18</td>
<td>0.2</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>R38</th>
<th>R47</th>
<th>R1</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>5</td>
<td>24</td>
<td>9</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>295</td>
<td>990</td>
<td>178</td>
<td>910</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.1</td>
<td>0.18</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>V21</th>
<th>V23</th>
<th>V24</th>
<th>V25</th>
<th>V26</th>
<th>V29</th>
<th>V31</th>
<th>V36</th>
<th>V37</th>
<th>V39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>3</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>97</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.23</td>
<td>0.29</td>
<td>0.2</td>
<td>0.25</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>120</td>
<td>193</td>
<td>181</td>
<td>183</td>
<td>185</td>
<td>187</td>
<td>189</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>33</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>V40</th>
<th>V41</th>
<th>V42</th>
<th>V43</th>
<th>V44</th>
<th>V45</th>
<th>V46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>5</td>
<td>108</td>
<td>8</td>
<td>30</td>
<td>40</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>318</td>
<td>4400</td>
<td>377</td>
<td>384</td>
<td>184</td>
<td>589</td>
<td>589</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.07</td>
<td>0.35</td>
<td>0.54</td>
<td>0.81</td>
<td>1.12</td>
<td>1.46</td>
<td>1.46</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>50</td>
<td>223</td>
<td>21</td>
<td>40</td>
<td>34</td>
<td>133</td>
<td>153</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>33</td>
<td>443</td>
<td>10</td>
<td>17</td>
<td>40</td>
<td>171</td>
<td>171</td>
</tr>
</tbody>
</table>
جدول 2
نتایج تجزیه نمونه‌های گالن جدید شده با روش جدید آتیمی

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ag (ppm)</th>
<th>Bi (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (%)</th>
<th>Sb (ppm)</th>
<th>Sb/Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>16</td>
<td>59</td>
<td>332</td>
<td>0.08</td>
<td>142</td>
<td>2.78</td>
</tr>
<tr>
<td>G2</td>
<td>40</td>
<td>111</td>
<td>384</td>
<td>0.2</td>
<td>234</td>
<td>2.77</td>
</tr>
<tr>
<td>G3</td>
<td>175</td>
<td>58</td>
<td>160</td>
<td>0.43</td>
<td>248</td>
<td>4.62</td>
</tr>
<tr>
<td>G4</td>
<td>18</td>
<td>43</td>
<td>944</td>
<td>0.2</td>
<td>199</td>
<td>4.35</td>
</tr>
<tr>
<td>G5</td>
<td>22</td>
<td>42</td>
<td>144</td>
<td>0.07</td>
<td>173</td>
<td>3.74</td>
</tr>
<tr>
<td>G6</td>
<td>81</td>
<td>57</td>
<td>472</td>
<td>0.19</td>
<td>127</td>
<td>3.46</td>
</tr>
<tr>
<td>G7</td>
<td>121</td>
<td>69</td>
<td>420</td>
<td>0.54</td>
<td>202</td>
<td>2.94</td>
</tr>
<tr>
<td>G8</td>
<td>44</td>
<td>63</td>
<td>1400</td>
<td>0.75</td>
<td>136</td>
<td>3.86</td>
</tr>
<tr>
<td>G9</td>
<td>48</td>
<td>48</td>
<td>2320</td>
<td>0.27</td>
<td>270</td>
<td>5.37</td>
</tr>
<tr>
<td>G10</td>
<td>33</td>
<td>72</td>
<td>254</td>
<td>0.67</td>
<td>286</td>
<td>3.28</td>
</tr>
</tbody>
</table>

توضیحات

پژوهش از نظر برسی‌های زیست‌شناسی و رزمی‌شناسی که در کتاب‌های سایری نیز به آن نکشده بود، به کاربرد نمونه‌های گالن جدید شده با روش جدید آتیمی اشاره کرده است. جدول 2 نشان می‌دهد که با استفاده از این روشهای جدید، مقدار Sb/Bi در نمونه‌های گالن از 0.23 تا 3.74 به دست آمده است.

زئوسیموم

زئوسیموم یک ترکیب مشابه Ag و Bi است. های خردسنجی برداشت شده از محل رگه و رچمه دارای این ترکیب می‌باشد. مقدار Ag و Bi در نمونه‌های گالن جدید شده با روش جدید آتیمی به دست آمده است.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ag (ppm)</th>
<th>Bi (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (%)</th>
<th>Sb (ppm)</th>
<th>Sb/Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>16</td>
<td>59</td>
<td>332</td>
<td>0.08</td>
<td>142</td>
<td>2.78</td>
</tr>
<tr>
<td>G2</td>
<td>40</td>
<td>111</td>
<td>384</td>
<td>0.2</td>
<td>234</td>
<td>2.77</td>
</tr>
<tr>
<td>G3</td>
<td>175</td>
<td>58</td>
<td>160</td>
<td>0.43</td>
<td>248</td>
<td>4.62</td>
</tr>
<tr>
<td>G4</td>
<td>18</td>
<td>43</td>
<td>944</td>
<td>0.2</td>
<td>199</td>
<td>4.35</td>
</tr>
<tr>
<td>G5</td>
<td>22</td>
<td>42</td>
<td>144</td>
<td>0.07</td>
<td>173</td>
<td>3.74</td>
</tr>
<tr>
<td>G6</td>
<td>81</td>
<td>57</td>
<td>472</td>
<td>0.19</td>
<td>127</td>
<td>3.46</td>
</tr>
<tr>
<td>G7</td>
<td>121</td>
<td>69</td>
<td>420</td>
<td>0.54</td>
<td>202</td>
<td>2.94</td>
</tr>
<tr>
<td>G8</td>
<td>44</td>
<td>63</td>
<td>1400</td>
<td>0.75</td>
<td>136</td>
<td>3.86</td>
</tr>
<tr>
<td>G9</td>
<td>48</td>
<td>48</td>
<td>2320</td>
<td>0.27</td>
<td>270</td>
<td>5.37</td>
</tr>
<tr>
<td>G10</td>
<td>33</td>
<td>72</td>
<td>254</td>
<td>0.67</td>
<td>286</td>
<td>3.28</td>
</tr>
</tbody>
</table>

مقدار متوسط

مقدار متوسط مقدار Ag و Bi در نمونه‌های گالن جدید شده با روش جدید آتیمی به دست آمده است.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ag (ppm)</th>
<th>Bi (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (%)</th>
<th>Sb (ppm)</th>
<th>Sb/Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>16</td>
<td>59</td>
<td>332</td>
<td>0.08</td>
<td>142</td>
<td>2.78</td>
</tr>
<tr>
<td>G2</td>
<td>40</td>
<td>111</td>
<td>384</td>
<td>0.2</td>
<td>234</td>
<td>2.77</td>
</tr>
<tr>
<td>G3</td>
<td>175</td>
<td>58</td>
<td>160</td>
<td>0.43</td>
<td>248</td>
<td>4.62</td>
</tr>
<tr>
<td>G4</td>
<td>18</td>
<td>43</td>
<td>944</td>
<td>0.2</td>
<td>199</td>
<td>4.35</td>
</tr>
<tr>
<td>G5</td>
<td>22</td>
<td>42</td>
<td>144</td>
<td>0.07</td>
<td>173</td>
<td>3.74</td>
</tr>
<tr>
<td>G6</td>
<td>81</td>
<td>57</td>
<td>472</td>
<td>0.19</td>
<td>127</td>
<td>3.46</td>
</tr>
<tr>
<td>G7</td>
<td>121</td>
<td>69</td>
<td>420</td>
<td>0.54</td>
<td>202</td>
<td>2.94</td>
</tr>
<tr>
<td>G8</td>
<td>44</td>
<td>63</td>
<td>1400</td>
<td>0.75</td>
<td>136</td>
<td>3.86</td>
</tr>
<tr>
<td>G9</td>
<td>48</td>
<td>48</td>
<td>2320</td>
<td>0.27</td>
<td>270</td>
<td>5.37</td>
</tr>
<tr>
<td>G10</td>
<td>33</td>
<td>72</td>
<td>254</td>
<td>0.67</td>
<td>286</td>
<td>3.28</td>
</tr>
</tbody>
</table>

مقدار متوسط

مقدار متوسط مقدار Ag و Bi در نمونه‌های گالن جدید شده با روش جدید آتیمی به دست آمده است.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ag (ppm)</th>
<th>Bi (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (%)</th>
<th>Sb (ppm)</th>
<th>Sb/Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>16</td>
<td>59</td>
<td>332</td>
<td>0.08</td>
<td>142</td>
<td>2.78</td>
</tr>
<tr>
<td>G2</td>
<td>40</td>
<td>111</td>
<td>384</td>
<td>0.2</td>
<td>234</td>
<td>2.77</td>
</tr>
<tr>
<td>G3</td>
<td>175</td>
<td>58</td>
<td>160</td>
<td>0.43</td>
<td>248</td>
<td>4.62</td>
</tr>
<tr>
<td>G4</td>
<td>18</td>
<td>43</td>
<td>944</td>
<td>0.2</td>
<td>199</td>
<td>4.35</td>
</tr>
<tr>
<td>G5</td>
<td>22</td>
<td>42</td>
<td>144</td>
<td>0.07</td>
<td>173</td>
<td>3.74</td>
</tr>
<tr>
<td>G6</td>
<td>81</td>
<td>57</td>
<td>472</td>
<td>0.19</td>
<td>127</td>
<td>3.46</td>
</tr>
<tr>
<td>G7</td>
<td>121</td>
<td>69</td>
<td>420</td>
<td>0.54</td>
<td>202</td>
<td>2.94</td>
</tr>
<tr>
<td>G8</td>
<td>44</td>
<td>63</td>
<td>1400</td>
<td>0.75</td>
<td>136</td>
<td>3.86</td>
</tr>
<tr>
<td>G9</td>
<td>48</td>
<td>48</td>
<td>2320</td>
<td>0.27</td>
<td>270</td>
<td>5.37</td>
</tr>
<tr>
<td>G10</td>
<td>33</td>
<td>72</td>
<td>254</td>
<td>0.67</td>
<td>286</td>
<td>3.28</td>
</tr>
</tbody>
</table>
بررسی شاره‌های درگیر
بررسی شاره‌های درگیر بر کاتی باریت که پارانز کاتی‌های سولفیدی نیز انجام شده که نتایجی نتایجی در جدول (3)
ارائه شده است. در این مطالعه شاره‌های درگیر در
پروین چاله داده‌ها و نتایج تحلیل به نظر اولیه و به ندرت نامه‌های
هستند. شکل شاره‌های درگیر اولیه به صورت استوانه‌ای
پیوسته و بر تلول و در اندازه‌های 4 تا 10 میکرون
(میانگین 7 میکرون) حضور دارند. براساس رهبری‌های
متوالی [2021], نتایج داده‌ها نشان می‌دهد که دره
مقدار مایع 60 تا 95 درصد و بخار 5 تا 20 درصد و تک فاز
ماع (L) است و فاز دیگری در آنها دیده نشد. شواهدی از
جوشش در این برسی‌ها مشاهده نشده با دمای نهایی نوع محلول
و مقدار شیر شاره‌های درگیر اولیه نوع LV تغییر شد.
(جدول 3).

به دست آمده نمک‌های NaCl و CaCl2 بر
دارند. این نوع نمک می‌تواند در اثر
گیرش شاره که برای محافظت در سیستم
درجه حالت دمای نهایی ذوب (Tm) در
منطقه جزئی در است را مشخص
می‌کند. مقدار Tm بین 3 تا 5 درجه سانتی‌گراد با
میانگین 7-18 درجه سانتی‌گراد منفی است (شکل 8 و 9).

براساس سیستم NaCl در مقدار شوری بین 3-18 در
میانگین 6 درصد است (شکل 8 و 9). مقدار
چگالی شاره درگیر اولیه نیز برمبنای معادله (A) بین
50 تا 85 گرم بر سانتی‌متر مکعب است (شکل 9).
جدول ۳ نتایج ریزمانسنجی شاره‌های درگیر اولیه در باریک کانسارد کوه سری.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>تعداد</th>
<th>T_h (°C)</th>
<th>T_m (°C)</th>
<th>شوری (NaCl wt. % equiv.)</th>
<th>چگالی (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-1</td>
<td>۱۲</td>
<td>۲۵۶.۵</td>
<td>۲۵۹.۵</td>
<td>۶.۵</td>
<td>۰.۶۷</td>
</tr>
<tr>
<td>KS-4</td>
<td>۱۰</td>
<td>۲۷۸.۵</td>
<td>۲۷۹.۵</td>
<td>۶.۸</td>
<td>۰.۸۴</td>
</tr>
<tr>
<td>KS-7</td>
<td>۱۰</td>
<td>۲۱۱.۵</td>
<td>۲۱۲.۵</td>
<td>۶.۷</td>
<td>۰.۸۲</td>
</tr>
<tr>
<td>KS-9</td>
<td>۲۵</td>
<td>۳۰.۵</td>
<td>۳۰.۵</td>
<td>۶.۹</td>
<td>۰.۷۷</td>
</tr>
<tr>
<td>KS-10</td>
<td>۲۴</td>
<td>۲۴۴.۵</td>
<td>۲۴۵.۵</td>
<td>۶.۸</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>KS-13</td>
<td>۱۳</td>
<td>۲۹۵.۵</td>
<td>۲۹۶.۵</td>
<td>۶.۹</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>KS-17</td>
<td>۸</td>
<td>۳۴۷.۵</td>
<td>۳۴۸.۵</td>
<td>۷.۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>KS-22</td>
<td>۶</td>
<td>۳۲۵.۵</td>
<td>۳۲۶.۵</td>
<td>۷.۲</td>
<td>۰.۷۶</td>
</tr>
</tbody>
</table>

T_h = دمای همگن شدن، T_m = دمای ذوب اخیر به T_h}

شکل ۸ نمودارهای حاصل از برش‌های شاره‌های درگیر اولیه در کانسارد کوه سری (الف) نمودار دمای همگن شدن. (ب) نمودار دمای ذوب اخیر ذوب بیشتر. (پ) نمودار شوری ت. نمودار مقدار چگالی شاره‌های درگیر.
برداشت
سنگ میزبان کانی سازی‌های سربی، سنگ‌های در گردن‌شان در تریاس فوتوانی است. راه‌های کانی سازی سنگ میزبان نشان می‌دهد که کانی‌سازی از نوع روراژی بوده، لیکن بر پایه سنگ‌های در گردن‌شان، سنگ‌های میزبان کانی‌سازی جوانی از تریاس فوتوانی است.

اگرچه در پرگندنده‌های خالی، جانشینی سنگ میزبان و سنگ‌های در گردن‌شان در نظر گرفته شده، درگیری سنگ‌های میزبان شال سیلیسی شدن، دولومیتی شدن و کلسیتی شدن است. کلسیتی شده سنگ‌های میزبان به کوبن‌دری افتاده و پس از آنها قرار دارد. تریازن سنگ‌های آذرین جوانی تریاس فوتوانی به خورشید، با یک تاریخ کاربنیز [10] انرژی و باریک‌گیری پالاسیس در حدود ۲۰ کیلومتری جنوب غربی و شمال شرقی منطقه است. بنابراین این کانی‌سازی هیچ ارتباطی به فعالیت‌های میزبانی ندارد.

در کنار کوبن‌دری، سنگ‌های گلی و سنگ‌های سیلیسی به شکل درگیر درگیری اولیه باریت و سربی نشان داده که محلول کانی‌سازی دارای دما مشترک، شوری کم و چگالی میکروتکسیمی حضور کانی‌سازی Na⁺ و Ca²⁺ در قاز منابع شاره‌ای درگیر اولیه است. این کانی‌سازی احتمالاً واحدهای رسوبی شده و به وسیله اکسیژن کلرید منتقل شده‌اند [24]. در نتیجه محلولی می‌تواند به وسیله عوامل مختلف، مانند کاشش دما، کاشش فشار، تغییرات pH و فشار بخشی در دولومیت و سنگ مایعات واکنش داده، به وزن یا نوشیدنی از همه یا یکی از همه‌ها کنترل شود. نمودار دمای هموگین‌سازی نشان دهنده است. درگیری اولیه باریت کوبن‌دری نشان دهنده یک رویداد کاشش دمای است. در حالی که مقدار زیادی ندارد (شکل 10).

مقدار K1 کمتر از ۴ درصد باریت کوبن‌دری است و سنگ‌های در گردن‌شان نشان می‌دهد که این کانی در پرگندنده اصلی دارای باریت فعالیت فعالیت است. بلندی از پنجه ریزی یا باریت در می‌تواند سرب و مس میانگین رژه‌های نیز به ترتیب به حدود ۱۰۰ درصد می‌رسد.

در حالت که میانگین مقدار همین عناصر در سنگ میزبان به ترتیب حدود ۰ به ۲/۲ در گرم در نتیجه که در نتیجه سنگ‌های میزبان در ناحیه بازه شده است. مقدار عناصر فری غلظت و سنگ‌های در گردن‌شان کوبن‌دری را به شکل کنار کوبن‌دری می‌تواند شان‌ها و آنتونیونی کوبن‌دری در شیار واکنش اولیه مورد است. در (شکل 10) در (شکل 10)
بنا براین می‌توان گفت که فاز کوه‌ریزی کمیابی میانی در زوراسیک میانی باعث تشکیل کانسراهای منطقه‌ای کوه سربی پوسته است. اگرچه که بررسی‌های پیش‌تری مانند بررسی اپزوهی‌های پایدار، تعیین سن دقیق کانسراهای زئوپی و زئوپی‌سی REA عنصر در باریت برای شناخت چگونگی تشکیل کانسار و سن دقیق آن لازم است، شکل (12) گستره‌ای دما و شوری ...
شکل 11: نمودار شوری نسبت به دمای همگن شدن شاردهای در گروه اولیه کانسار کوه سربی. گسترهای شاردهای مختلف از [27].

شکل 12: نمودار دمای همگن شدن نسبت به شوری شاره های در گروه اولیه کانسار کوه سربی. گستردهای کانسارهای مختلف از [26].

مراجع

قدردانی
این پروژه با حمایت مالی دانشگاه فردوسی مشهد در ارتباط با طرح پژوهشی شماره 22443/3 مورخ ۱۳۹۱/۴/۱۲ انجام شده است.

formation”, Geochemistry International 7 (1968) 1055–1068.