کانی شناسی، زئوئسیمی و بررسی شاره‌های درگیر کانسار باریت - سرب ± مس کوه سربی، شمال شرقی ایران
علیه قائم مقام‌زاده، آزاده ملکزاده شفارودی، محمدحسن کریمی‌پور

گروه پژوهشی اکتشافات ذخایر معدنی شرق ایران، دانشگاه فردوسی مشهد

چکیده: کانسار باریت - سرب ± مس کوه سربی در جنوب شرقی مشهد در استان خراسان رضوی واقع شده است. به شکل رگه‌ای و پراکندگی قطعاتی خالی، جانشینی در سنگ میزبان و سیمان به رنگ‌های کبیستی در این سنجک کریپتی در گدرگون شده تریاس فوقانی، سازنده نابیند تشکیل شده است. این کانسار شامل باریت (80 درصد) و گالن (15 درصد) و مقدار اندکی کالکوپیت و کوارتز است. باریت در اثر فقدان کمی S2 (15 درصد) است و در سر انحلال جاده باریت - سلسنیت واکنش به عضو نهایی باریت است. در گذرانه‌های مناسب سیلیسیشن و دولومیت شدن، شرایط فریتیکوتروپی‌ای را برای بروز محلول کاندار و مهندش باریت و فلزات فراهم کرده است. زئوئسیمی همگناهی شامل حدود 1 درصد سرب، 15 درصد مس و حداکثر 288 گرم در تن انقیمات، در حالی که دفعه (کمتر از 40 گرم در تن) و بیشتر (کمتر از 10 گرم در تن) پایین است. همچنین ترکیب تقریبی، بیشتر و انتخابات در Sb/Bi در نمونه‌های غلان جدایی به ترتیب 17 درصد 43 درصد 201 گرم در تن و 127 درصد 270 گرم در تن است. نسبت گالن به کانسار کوه سربی بین 542 تا 1 2/25 گالن است که نشان دهنده تشکیل گالن در دما و فشار مناسب است. نمونه‌های غلان از نوشترشیاری از انتخابات گالن است. اندازه‌گیری‌های ریزدانمی‌برند در شاره‌های درگیر دواره‌های مانگ (ماینگ و بخار) نشان می‌دهد که باریت و کانه‌ها از یک شاره‌ای داده متغیر (سه درجه سانتی‌گراد) و شوری پایین (34/3 درصد وزنی که احتمالاً آب گدرگونی است) ریزش گرفته‌اند. کاهش شدت پنهان‌نیش در کانی باریت - سرب ± مس داشته‌است. براساس زمین‌شناسی، کانی شناسی، بافت و ویژگی‌های شاره‌ها، کانسار کوه سربی از نوع موزنترمال است.

واژه‌های کلیدی: کانی شناسی، زئوئسیمی، شاره‌های درگیری، کانسار باریت - سرب ± مس؛ موزنترمال

مقدمه

Shafaroudi@um.ac.ir
کانسار باریت–کربنات کویسی در استان خراسان رضوی
و جریان‌های ۱۱ و ۱۳ در کیلومتری جنوب شرقی مشهد بین طول‌های
۹۰ و ۹۲ درجه غربی مشاهده شدند. تعداد ۱۲۰ نمونه از
مرحله‌های سرده و گرم کردن قرارگیری در سیستم
SPECSX و مقادیر شاره‌ای درکرای با استفاده از
CLOR و بررسی اطلاعات دسترسی به [1] محاسبه
شدهاند. نمونه‌های مناسب در نرم‌افزار SPSS ترسیم
شداند.

روش بررسی
در راستای دستیابی به اهداف مورد نظر، برداشت اطلاعات
محراوی و نمونه‌برداری از واحدهای سنگی و گرنگی کانسای
از سطح و داخل تراش‌ها و نتیجه‌ها انجام شد. در مجموع
تعداد ۱۰۰ نمونه جمع‌آوری شد که آن میان ۵۰ مقطع
نارک و ۳۵ مقطع نارک مایعی و بلوری مایعی بهره و بررسی
شدند. به منظور بررسی زئوستینی باریت تعداد ۱۰ نمونه از
باریت خالص جدا شده و به روش XRF بررسی شد.

شکل ۱: موقعیت کانسار کوه دوری در شمال شرقی ایران، استان خراسان رضوی و راه دسترسی به آن.
زمین‌شناسی

سنگ در حدود ۱۲.۵ درصد می‌شود که به دلیل چگال‌تر بودن، دولومیت نسبت به کلسیت است [۱۶]. دولومیت گروه‌های ممکن است قبلاً همزمان با یکی یا دیگری در سنگ میزان کربنات جانشین شود و هاله‌های گروسانت را اطراف کانسی تشکیل دهد [۱۷]. دولومیتی سنگ قبل یا همزمان با یکی-سازی باعث آباده شدن سنگ کربناتی برای نشست محلول

کانسیتی می‌شود. کلسیتی شدن آخرین مرحله‌ی گروسانت است که به صورت رگ‌چه‌هایی از کلسیت درشت بلور دیده می‌شوند. رگ‌چه‌های کلسیت رگ‌چه‌های باریت را قطع می‌کنند و از آن-های جوان‌ترند (شکل ۳ ت). کلسیتی شدن در اثر انحلال سنگ کربناتی و ته نشست دوباره کلسیت رخ می‌دهد.

شکل ۲ نقشه‌ی زمین‌شناسی گاس‌کار کوه سری (با تغییرات از [۱۰۱])
شکل 2-الف) قطعات بریده شده که به وسیله سیمانی از کوارتز و باریت سیمانی شده است (نمونه‌های 20-22). (ب) دو روش سیلیسی در غلاف رگچه‌های کوارتز در سنگ میزان (نمونه‌های 37-39). (پ) اکتمین خشک و سیلیسی شدن همراه با گل‌کنی (نمونه‌های 15-16). (ت) رگچه‌های کوارتز که روی میزان را قطع کرده است (نمونه‌های 22-20). (ن) باریت (Qz)، کوارتز (Br), Dol (ولکانیت، = Cal)، Gn (ولکانیت، = گل‌کنی)، کوارتز = کوارتز، = Cal، Dol = وولکانیت، = کوارتز، گل‌کنی = وولکانیت، = کوارتز، گل‌کنی = کوارتز، = گل‌کنی) (گالان [18]).

کانی سازی
کانی سازی در کانسار کوه سربی دارای کنتل گل‌کنی بوده و به صورت رگچه و جانشینی در سنگ آهک‌های دندریت شده توسط فوکی تشکیل شده است. این رگچه‌ها توسط نمونه‌های N5W/68h = V2، N67W/66h = V1 و S80W/70w = V4 و S30W/72hNW = V3 در منطقه وجود دارند که در جنوب غربی تشکیل شده و لاورینی سنگ میزان را قطع می‌کند (شکل 3). به اثر زلزله‌های مددانگیز وضعیت اصلی رگچه مشخص نیست و گونه‌های مستند به شیب از 5 تا 20 متر و طول آن‌ها از 10 تا 30 متر متغیر است. در شعاع شیب‌هایی که در منطقه به چشم می‌خورد که به گونه‌ای محل در گذشته از آن سرب استخراج می‌شده، رگچه‌هایی از باریت، کوارتز و گل‌کنی با ضخامت بین 5 تا 10 سانتیمتر و با تراکم 15 تا 20 عدد در متراز دیده می‌شوند که تعداد و ضخامت آن‌ها با دور شدن از محل رگچه کاهش می‌یابند، رابطه‌ای بین رگچه‌ها و سنگ میزان نشان می‌دهد که کانی سازی کاملاً روزادی است و سن تشکیل آن پس از تیرابیس فوکایی (سنگ میزان) است. کانی شناسی رگچه‌ها یکبار بیشتر هم بوده و شامل باریت (80 تا 85 درصد)، گالان (10 تا 15 درصد) و مقادیر جزئی کالکوپیریت و کوارتز است.

کانی شناسی
کانی شناسی براساس بررسی‌های صحرايی-آزمایشگاهی، بلورهای باریت شکل‌دار تا نیمه‌شکل‌دار به شکل‌های صحراوی، تیغه‌ای و شعاعی و در اندام‌های 0.1 میلیمتر تا بزرگتر از 2 سانتیمتر دیده می‌شوند. در برخی نقاط نیز تحرک دوبه‌ای در شکل رگچه‌ای کوچک باریت شده که دارای های اولیه آن را قطع کرده‌اند. همچنین باریت هماه اگر با کانی‌های بهصورت سیمان برکه‌های گل‌کنی در داخل رگ مشاهده می‌شود. کالکوپیریت اولین کانی سفیدی در تکامل شکل‌های اولیه است که پیشتر به‌وسیله کانی اطراف احاطه شده و به‌طوری‌گونه که با هدایت اکستروژن، در غلاف نیز دیده می‌شود. بخش زیادی از این کانی به مالاکیت، آزوریت و
کولوئیت تبدیل شده و باقیمانده‌های آن اندازه‌های در حد ۵۰ تا ۲۵ میلیمتر دارند (شکل ۴ اف و ب). گالن فراوان‌ترین کانی سولفیدی منطقه است که در نمونه‌ی دستی نیز دیده می‌شود. این گالن را در قلب سه بافت پراکندگی، توده‌ای و لایه‌ای با رشد تک راستای بلورهای گالن همراه با پاریت و با اندازه‌های ۱۰۰ سانتی‌متری تا ۵ سانتی‌متری می‌توان مشاهده کرد (شکل‌های ۲ و ۳). ادخال خاصی به جز کالکوپیریت که به ندرت دیده می‌شود، در گالن وجود ندارد. احتمالاً به کاله‌های مثلث گالن نشان دهنده رخ‌دادگر شکل‌گیری پس از نشینی آن است (شکل‌های ۴ ب). سروژیت و آنگلزیت به شکل قاب‌های تیغه‌ای در حاشیه راستاز و شکستگی و رخ‌های گالن جانشین شدن را و گاهی فقط باقی‌مانده‌ی از گالن پرچای‌اندازه هستند. کولوئیت نیز در میان بین گالن و پاریت دیده می‌شود (شکل ۴ ت). کانی‌های تانوبی منطقه نیز سروژیت و آنگلزیت هستند که محصول نجیزه‌ی گالن و کولوئیت، مالاکیت، آزوریت همراه با مقادیر جزیی گونیت و همچنین محصول نجیزه‌ی کالکوپیریت.

بررسی شیمیایی رگ‌ها، سنگ میزبان و کاتی‌ها

نتایج تجزیه‌ی ۱۰ نمونه از پارک در فرودهی دیه به روش و XRF نمونه‌های ۲۵ نمونه از رگ‌ها و سنگ‌های کاتی‌ها، ۲۲ نمونه از سنگ میزبان به فرودهی دیه به روش XRF (۱) و (۲) نمونه‌های ۱۰ نمونه‌های گالن جداسازی شده به روش جذب اتمی در جدول (۱) ارائه شده‌اند.

شکل ۵ تصاویر بسته‌ای مختلف بین گالن و پارک(الف) بافت در ایران. (ب) بافت توده‌ای، (ب) بافت نیم‌ החלه اب برش تک چهته شانه‌ای گالن

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Early</th>
<th>Hypogene</th>
<th>Late</th>
<th>Oxidized zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerussite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angleite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malachite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azurite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶ نمودار روابط پارازنتی کاتی‌ها و سرپر

شیمی پارک: مقدار Sr باریت از ۲,۵۴ تا ۵۳۴ درصد متغیر است که این مقادیر برای ۱۳۳ درصد مانند SrSO۴ است. این نشان می‌دهد که نمونه‌های باریت کوه سرپر در سری اصلی مانند B₃ جامد باریت سلسیس، وابسته به عضو نهایی باریت به سیرین. مقدار Ba نیز بین ۵۱,۱۶ تا ۵۵,۱۶ درصد متغیر است (جدول ۱).
جدول 1 نتایج تجزیه‌ی نمونه‌های زنوهیمیایی مورد بررسی به روش XRF

<table>
<thead>
<tr>
<th>عناصر</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
<th>B9</th>
<th>B10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba (%)</td>
<td>58.44</td>
<td>58.20</td>
<td>53.53</td>
<td>51.16</td>
<td>51.75</td>
<td>51.70</td>
<td>54.33</td>
<td>51.14</td>
<td>55.21</td>
<td>51.18</td>
</tr>
<tr>
<td>Sr (%)</td>
<td>2.84</td>
<td>2.72</td>
<td>2.64</td>
<td>2.65</td>
<td>2.80</td>
<td>2.54</td>
<td>2.83</td>
<td>2.82</td>
<td>2.59</td>
<td>2.74</td>
</tr>
<tr>
<td>SO₄ (%)</td>
<td>4.35</td>
<td>4.19</td>
<td>4.62</td>
<td>4.35</td>
<td>4.46</td>
<td>4.45</td>
<td>4.49</td>
<td>4.34</td>
<td>4.51</td>
<td>4.51</td>
</tr>
<tr>
<td>Total</td>
<td>99.82</td>
<td>98.89</td>
<td>98.93</td>
<td>99.13</td>
<td>99.21</td>
<td>98.98</td>
<td>99.01</td>
<td>98.62</td>
<td>99.23</td>
<td>99.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر</th>
<th>R2</th>
<th>R7</th>
<th>R11</th>
<th>R12</th>
<th>R13</th>
<th>R14</th>
<th>R15</th>
<th>R16</th>
<th>R17</th>
<th>R18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>2.90</td>
<td>2.44</td>
<td>3.84</td>
<td>1.6</td>
<td>4.16</td>
<td>11</td>
<td>23</td>
<td>19</td>
<td>0.49</td>
<td>6.19</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>115</td>
<td>114</td>
<td>113</td>
<td>112</td>
<td>111</td>
<td>110</td>
<td>109</td>
<td>108</td>
<td>107</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>318</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر</th>
<th>R19</th>
<th>R20</th>
<th>R22</th>
<th>R27</th>
<th>R28</th>
<th>R30</th>
<th>R32</th>
<th>R33</th>
<th>R34</th>
<th>R35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>42</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>115</td>
<td>114</td>
<td>113</td>
<td>112</td>
<td>111</td>
<td>110</td>
<td>109</td>
<td>108</td>
<td>107</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>318</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر</th>
<th>R38</th>
<th>R47</th>
<th>V1</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>295</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>115</td>
<td>114</td>
<td>113</td>
<td>112</td>
<td>111</td>
<td>110</td>
<td>109</td>
<td>108</td>
<td>107</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>318</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر</th>
<th>V21</th>
<th>V23</th>
<th>V24</th>
<th>V25</th>
<th>V26</th>
<th>V29</th>
<th>V31</th>
<th>V36</th>
<th>V37</th>
<th>V39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>97</td>
<td>140</td>
<td>110</td>
<td>143</td>
<td>170</td>
<td>100</td>
<td>69</td>
<td>64</td>
<td>92</td>
<td>83</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>115</td>
<td>114</td>
<td>113</td>
<td>112</td>
<td>111</td>
<td>110</td>
<td>109</td>
<td>108</td>
<td>107</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>318</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر</th>
<th>V40</th>
<th>V41</th>
<th>V42</th>
<th>V43</th>
<th>V44</th>
<th>V45</th>
<th>V46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (ppm)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>318</td>
<td>318</td>
<td>318</td>
<td>318</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>116</td>
<td>115</td>
<td>114</td>
<td>113</td>
<td>112</td>
<td>111</td>
<td>110</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>318</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
<td>328</td>
</tr>
</tbody>
</table>
جدول 2 نتایج تجزیه نمونه‌های گالن جدا شده به روش جدید آنیمی

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ag (ppm)</th>
<th>Bi (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (%)</th>
<th>Sb (ppm)</th>
<th>Sb.Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gn1</td>
<td>14</td>
<td>59</td>
<td>462</td>
<td>0.08</td>
<td>124</td>
<td>3.78</td>
</tr>
<tr>
<td>Gn2</td>
<td>20</td>
<td>40</td>
<td>410</td>
<td>0.2</td>
<td>274</td>
<td>2.67</td>
</tr>
<tr>
<td>Gn3</td>
<td>175</td>
<td>88</td>
<td>1600</td>
<td>0.37</td>
<td>286</td>
<td>2.67</td>
</tr>
<tr>
<td>Gn4</td>
<td>13</td>
<td>23</td>
<td>422</td>
<td>0.2</td>
<td>199</td>
<td>4.32</td>
</tr>
<tr>
<td>Gn5</td>
<td>42</td>
<td>42</td>
<td>144</td>
<td>0.2</td>
<td>174</td>
<td>2.34</td>
</tr>
<tr>
<td>Gn6</td>
<td>81</td>
<td>57</td>
<td>400</td>
<td>0.19</td>
<td>127</td>
<td>3.40</td>
</tr>
<tr>
<td>Gn7</td>
<td>121</td>
<td>69</td>
<td>240</td>
<td>0.54</td>
<td>202</td>
<td>2.99</td>
</tr>
<tr>
<td>Gn8</td>
<td>73</td>
<td>36</td>
<td>1400</td>
<td>0.75</td>
<td>140</td>
<td>2.80</td>
</tr>
<tr>
<td>Gn9</td>
<td>43</td>
<td>48</td>
<td>230</td>
<td>0.27</td>
<td>270</td>
<td>5.50</td>
</tr>
<tr>
<td>Gn10</td>
<td>33</td>
<td>42</td>
<td>245</td>
<td>0.8</td>
<td>160</td>
<td>1.25</td>
</tr>
</tbody>
</table>

بنابراین، افزایش باربری‌های زئوستاتیک با نزدیک‌رساندن الکتروندو و سیم‌کلریک‌سازی الکتروندو است. علاوه بر این، عناصر غیر دیده و سیم‌کلریک‌سازی نیز امکان‌پذیر است.

میکروسکوپ الکتروندو است، سیم‌کلریک‌سازی الکتروندو است.

查明: گالن: مقادیر بالای آهن (200 تا 760 درصد) و مس (49 تا 166 درصد) در گالن مربوط به ادخال‌های کالکوپتیر با همراهی بعضی کانی‌های تاناه مانند کولتونیست اکسید و اشکال نقره، عناصر فرمی مهم و قابل بروز در این بخش شامل نفره، انتیمون و بیسموت. در بررسی یکی از کانی‌های نقره، میکروسکوپ باروزی، هیچ‌گونه ادخالی از کانی‌های نقره، انتیمون و بیسموت در داخل گالن دیده نشد و این نشان می‌دهد که این عناصر احتمالاً به صورت مشترک جامد در ان حضور دارد. اما این موضوع نیز نیاز به بررسی الکتروندو می‌باشد. مقادیر نقره 12 تا 43 در تیم و 37 تا 41 در تیم و 12 تا 27 در تیم و 41 در تیم است. انتیمون نیز بین 127 تا 200 در تیم است.

مقدار اکسیدی نقره به چاپ سرب در ساختار گالن وابسته به حضور نیتریک همچنین میکروسکوپ بی‌پایه است. این

MnCl₂+Ag⁺ + (Sb,Bi)Cl₂ = 2Cl⁻ + 2Ag⁺ + Sb(Bi)Cl₂ است.

به جای (شش) نیز مقدار نقره 12 تا 27 در تیم، مقدار اکسیدی نقره است.

هماهنگ برای راهلی در اثر 2Ag⁺ + Sb(Bi)Cl₂ + 6CaF₂ + 3CaCl₂ + 2H₂O

به جای (شش) نیز مقدار نقره 12 تا 41 در تیم است.

مقدار بی‌پایه از محدوده نقره کمتر از 10 در تیم است.

به دیدگاه که با توجه به دیدگاه شناسی این ادخال‌ها در میکروسکوپ بی‌پایه است.
کانسارهایی که به جوشش رسیدند، اگر یک فشار هیدروستاتیک فرض شود، دمای کانی‌های نمی‌تواند بیشتر از 230 درجه سانتی‌گراد باشد. بنابراین دمای همگن شدن خیلی نزدیک به دمای واقعی تشکیل است و فقط تصحیح بسیار کوچکی نیاز دارد. تخمین دمای ذوب شدتی در (\(T_m\)) شاره‌ای نیز بین ۲۱- تا ۳۳ درجه سانتی‌گراد (میانگین: ۲۴.۵ درجه) متمرکز بود. تخمین دمای ذوب شدتی رابطه مستقیم با ترکیب نمک موجود در گرمایش‌های دارد [۲۲]. براساس \(T_m\) به دست آمده نمک‌های NaCl و CaCl\(_2\) در شاره‌ای درگیر اولیه وجود دارد. این نوع نمک می‌تواند در اثر چرخش شاره‌ای کانادار در سیگنال‌های شناسایی مکان‌های حاصل شده باشد. دمای نهایی ذوب (\(T_m\)) نیز مقدار شوری را مشخص می‌کند. مقدار تا ۲- درجه سانتی‌گراد با میانگین ۷.۲ درجه سانتی‌گراد می‌باشد (شکل ۸: ب). براساس سبیستم \(V\) H\(_2\)O-NaCl درصد شوری بین ۴.۹ تا ۱۸.۹ \% مقدار ثابت بین ۳ تا ۸ (شکل ۸: ب). مقدار \(C_{\text{ماکس}}\) شاره‌ای درگیر اولیه نیز بر نسبت معادل \(A\) بین ۰.۶ تا ۰.۱۸ GMR بر سانتی‌متر مکعب است (شکل ۸: ب).
جدول ۲: نتایج بهبودی‌نگی شرایط در ورودی‌های با باریک کانسال کوه‌سیری.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>تعداد</th>
<th>T_h (°C)</th>
<th>T_m (°C)</th>
<th>شوری (NaCl wt. % equiv.)</th>
<th>جغایی (gr/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-1</td>
<td>12</td>
<td>357</td>
<td>6-4</td>
<td>6.5</td>
<td>3.0</td>
</tr>
<tr>
<td>KS-4</td>
<td>10</td>
<td>360</td>
<td>6-4</td>
<td>6.8</td>
<td>3.0</td>
</tr>
<tr>
<td>KS-7</td>
<td>10</td>
<td>310</td>
<td>4-3</td>
<td>6.7</td>
<td>4.0</td>
</tr>
<tr>
<td>KS-9</td>
<td>7</td>
<td>330</td>
<td>4-3</td>
<td>6.8</td>
<td>4.0</td>
</tr>
<tr>
<td>KS-10</td>
<td>4</td>
<td>344</td>
<td>3-3</td>
<td>8.1</td>
<td>7.0</td>
</tr>
<tr>
<td>KS-13</td>
<td>13</td>
<td>366</td>
<td>3-3</td>
<td>8.2</td>
<td>7.0</td>
</tr>
<tr>
<td>KS-17</td>
<td>8</td>
<td>346</td>
<td>4-5</td>
<td>7.1</td>
<td>8.0</td>
</tr>
<tr>
<td>KS-22</td>
<td>6</td>
<td>335</td>
<td>4-5</td>
<td>6.7</td>
<td>8.0</td>
</tr>
</tbody>
</table>

T_h = دمای همگن شدن، T_m = دمای ذوب آن دریچه‌ی بخ

شکل ۸: نموداری حاصل از بررسی‌های شرایط در ورودی‌های با باریک کانسال کوه‌سیری (الف) نمودار دمای همگن شدن. (ب) نمودار دمای ذوب آن دریچه‌ی بخ.

شکل ۹: نموداری حاصل از بررسی‌های شرایط در ورودی‌های با باریک کانسال کوه‌سیری (الف) نمودار مقدار جغایی. (ب) نمودار مقدار شوری (NaCl wt. % equiv.)
تشکیل کاتیوی در اکسیژن می‌گذارد. به طوری که نسبت‌های کم‌(کمتر از 0.6) مشخص کنندگان گالی با دمای بالاست که در فشار بیش از 250 کیلوگرم در سانتی‌متر مکعب تشکیل شده و نسبت‌های بالا (بیش از 6 تا 10) نشان دهنده کلیات تشکیل شده در دما و فشار گالی Sb/ Bi از 2.1 تا 2.7 است که معروف دما و فشار منطقه کویری بین 0.6 تا 2.1 است (جدول 2). این بررسی با بازه‌های
در گرین در بازی که پرتو دراز گالی است و دما صحیح شدن آن
بین 250 تا 270 درجه سانتی‌گراد بود، نتایج می‌شود.
نمونه‌گیری نشان دهنده از نوع سرشار از Ag-Sb-Bi نمودار سه تابی
انیمیون هستند (شکل 9).
نتایج بررسی‌های ریز‌ماسیون و شاره‌های گرین اولیه باریت
کویری نشان داد که محلول کانادار با دمای متوسط، شوری
یک و چگالی متوسط، تا کمی است. اندورژی‌گری دمای
پتولیکش در اکسیژن کننده حضور کاتیون‌های Na+ و Ca2+
یابع شاره‌ای در گرین اولیه است. این کاتیون‌ها احتمالاً در
واحدهای روی‌های هسته شده و به وسیله‌های هم‌فکری کرده
منطقه سه‌دام [25]. هن دنه سه‌دام از محلول می‌تواند به
وسیله‌های مختلفی مانند کاشش دما، کاشش، تغییرات
فشار و فشار بخشی گاز اکسیژن در سنگ میزان
واکنش داده‌ای به شرایط وابسته‌ای از همه‌ها کنترل شود.
نمونه دمای کلیات سه‌دام نسبت به شرایط کاتیوی در گرین
ولی باریت کویری نشان دهنده کوچک که کنش‌های دمایی
است در حالی که قدرات تغییر زیادی ندارد (شکل 10).
این نشان می‌دهد که احتمالاً کاتیوی دما نشان می‌دهد
تشکیل کاتیوی دراست. رابطه‌ای بین شوری و دماه می‌کن
شن در شکل (11) نشان می‌دهد که آب دگرگونی در تشکیل
کاتیوی سه‌دام نشان‌دهنده این نوع شاره در این‌ها
منطقه از دگرگونی رشته‌ای می‌گیرد. هرگاه آب محصور
بین دار روی‌های تحت تأثیر فشار و دما حاصل از دگرگونی
نکاتیای قرار گیرد، عناصر را از سه‌گنجین حالت در بیرون
حمل کرد و فضا را تکمیل می‌کند. این نوع شاره می‌تواند در
طول مراز لایه‌ها، گسل‌ها، گردوشی‌ها و زیرهای کم فشار،
کاتیوی سازی خود را ضمن وکنش با سنگ میزان بر جای گذاشته.
برداشت
سنگ میزان کاتیوی کویری سبزی، سنگ آهک دگرگون شده
تریس فوتوولتیک نابیند است. راه‌حل کاتیوی و سنگ
میزان نشان می‌دهد که کاتیوی سبزی از نوع روزولتی بوده، لاشه
بند سنگ آهک را قطع کرده و منطقه‌های گسلی و در و شکستگی‌ها پر شده. بنابراین، سنگ رهگاه کاتیوی
جانویت از تریس فوتوولتیک است.
اگرچه در شرایط ایران فعالیت‌های مانگانیسی
گسترده‌ای وجود دارد ولی منطقه‌های کویری سبزی با فاصله از آنها
قرار دارد. نتیجه‌گیری‌های آذرین جوانیت از تریس فوتوولتیک
به گذشته، با پر ته و کارپترزی [10]. انرژی و بازالت‌های
آلاین در حدود 200 کیلو‌تریج تغییری و شرایط‌های
منطقه است. بنابراین، این کاتیوی سازی هیچ ارتباطی به فعالیت
های کاتیوی‌ای در ایران ندارد.
در کانسار کویری، کاتیوی‌های سولفاتی و سولفیدی به
شکل رگه‌های فضای خالی جانشینی سنگ میزان و
سیمان بر خلأ گسل تشکیل می‌شود. درگاه‌سازی سنگ میزان
شامل سیلیسی کشنده، دولاویتی کشنده و کلسیتی کشنده است. کلیتیهای ریز در کانسار نشان می‌دهد با کوزرت
دولاویت، کلسیت درشت دانه و باریت جانشینی شدیدان. این
جانشینی، ریز خالی شکندگی لگی در سنگ میزان به
وجود آورده است و محلول کانادار کاتیوی خود را بر جای
گذازه.
مقدارهای مس (S) درصد 6 درصد باریت کویری است و
نشان می‌دهد که این کاتیوی در شرایط اندورژیا گردیده است.
سلسیتی در عضو بالا باریت قرار می‌گیرد. مقدار سرب و مس
میانگین رگه‌ها نشان دهنده این است که از حدود 1 و 150 درصد می‌رود. در حالی که میانگین درصد همین عناصر در سنگ میزان
تریس حدود 400 و 17 درصد می‌باشد که به دور
شنده از رگه‌ها در حلال کاهش است. مقدار عناصر فرعی شامل
گالن نیز اطلاعات درباره خاصی و ندارد. تشکیل آن فراهم
می‌کند. مقدار بی‌پوش و انتی‌نیوم گالن می‌تواند در
شرایط انرژی و شکستگی‌ها پر شده. بنابراین سنگ رهگاه کاتیوی
جانویت از تریس فوتوولتیک است. [124] به عقیده مالاوخ [144] نسبت
در کانسار اطلاعات درباره دما و فشار در زمان
Sb/Bi
بنابراین می‌توان گفت که فاز کوه‌هایی کمیترین میانی در زوراسیک میانی باعث تشکیل کاناساری مLECیا کوه سربی
بوده است. اگرچه که بررسی‌های بیشتری مانند بررسی
ایزوتوب‌های پایدار، تعیین سن دقیق کاناساری و Zئوشیمی
عناصر در باریت، برای شناخت چگونگی تشکیل کاناسار و
سن دقیق آن لازم است. شکل (12) گستره‌ی دما و شوری

شکل ۹ نمودار سه‌بعدی برای نموده‌ای کاناسار کوه سربی.

شکل ۱۰ نمودار دماهی همگن نسبت به شوری شاره‌های در گیر کاناسار کوه سربی. مسره‌های روند تغییرات احتمالی از[۲۴].
شکل 11: نمودار شویری نسبت به دمای همگن شدن شاردهای در گروه اولیه کانسار کوه سربی. گستردهی شاردهای مختلف از [27].

شکل 12: نمودار دماهای همگن شدن نسبت به شویری شاردهای در گروه اولیه کانسار کوه سربی. گستردهی کانسارهای مختلف از [26].

مراجع

formation”, Geochemistry International 7 (1968) 1055–1068.