Volume 29, Issue 4 (12-2021)                   www.ijcm.ir 2021, 29(4): 4-4 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanzadeh, Heidari, Ghalmaghash, Mohebi. Magma and mineralization controles of Zavarian (Salafchegan) epithermal Au (Cu) in comparison with Sari-Gunay epitermal Au (Qorveh) deposit. www.ijcm.ir 2021; 29 (4) :4-4
URL: http://ijcm.ir/article-1-1678-en.html
Abstract:   (905 Views)
Zavarian epitermal gold (copper) deposit is located in an intracontinental volcanic cone (stratovolcano) with the Early Miocene age, in the middle of the Urmia-Dokhtar magmatic arc. The host rocks of this mineralization include a set of basaltic, andesitic-basaltic, andesitic, dacitic, as well as granodiorite and tonal units that have been exposed in volcanic form (lava and pyroclastic) and semi-deep massifs. These Zavarian gold (copper) deposit is located in the middle of Urmia-Dokhtar magmatic arc, in a volcanic cone with andesite-basalt, andesitic units and granodiorite massifs. This complex has the nature of calc-alkaline and the pattern of changes in rare earth elements (LREE enrichment, LILE relative to HREE, HSFE, negative anomalies of Ti, Nb and low Nb /Y values) of arc-associated magmas. Structural studies point to the key role of right-wing shear zones as controlling sedimentary basins and creating the necessary conditions for local tensions and magma outflows. Dispersion and type of hydrothermal alterations, mineralized veins within intrusions and the presence of magnetite, tourmaline and chalcopyrite show the role of magmatic fluids in mineralization. These fluids have a homogenization temperature between 220° to 350° C and a salinity of 10-15% by weight of salt. Comparison of this mineralization with Sari Gunay deposit in the northwest of Sanandaj-Sirjan zone, the Miocene magmatic phases are related to the formation of shear zones and local tension in post-collision orogenic phases, which increases with the role of fluids. Atmosphere and mixing are associated with magmatic fluids.
Full-Text [PDF 8030 kb]   (327 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Emami M. H., "Magmatism in Iran. Geological Survey and Mineral Exploration Organization", page 608(2000).
2. [2] Alavi M., "Tectonic of the Zagros orogenic belt of Iran: new data and interpretations: Tectonophysics", v. 229 (1994) p. 211-239. [DOI:10.1016/0040-1951(94)90030-2]
3. [3] Heidari S. M., Mossavi Makooi S. A., Mirzakhanian M., Rasoli F., Ghaderi M., Abadi A. R., "A review of tectonomagmatic evolution and gold metallogeny in the inner parts of Zagros orogeny: a tectonic model for the major gold deposits, western Iran", Eurasian Mining, 1 (2006) 3-20.
4. [4] Ghasemi A., Talbot C.J., "A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran) ", Journal of Asian Earth Sciences 26 (2006) 683-693. [DOI:10.1016/j.jseaes.2005.01.003]
5. [5] Richards J. P., Sholeh A., "The Tethyan tectonic history and Cu-Au metallogeny of Iran. Tectonics and Metallogeny of the Tethyan Orogenic Belt. Society of Economic GeologistsI, Special Publication, 19 (2016) 193-212.
6. [6] Yigit O., "Gold in Turkey-a missing link in Tethyan metallogeny", Ore Geology Reviews, v. 28, (2006) p. 47-179. [DOI:10.1016/j.oregeorev.2005.04.003]
7. [7] Alaei Mehabadi S., "Geological map 1: 100,000, Salafchegan", Geological Survey of Iran (2000).
8. [8] Khannazer N.H., "Geological map 1: 100,000, Kuhin", Geological Survey of Iran (2015).
9. [9] Stockli D.F., Hassanzadeh J., Stockli L.D., Axen G., Walker J.D., Dewane T.J., "Structural and geochronological evidence for oligo-miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran", Geological Society of America Abstracts with Programs, v. 36 (2004) n. 5, p. 319.
10. [10] Moritz R., Ghazban F., Singer B.S., "Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, Western Iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros Orogen": Economic Geology, v. 101 (2006) p. 1497-1524. [DOI:10.2113/gsecongeo.101.8.1497]
11. [11] Echtler H., Mallavieller J., "Extentional Tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire/Suthern Massif Central)", Tectonophysics, v. 177 (1990) p. 125-138. [DOI:10.1016/0040-1951(90)90277-F]
12. [12] Allen M.B., Kheirkhah M., Emami M.H., Jones S.J., "Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone", Geophysical Journal International, v. 184, (2011) p. 555-574. [DOI:10.1111/j.1365-246X.2010.04874.x]
13. [13] Morley C.K., Kongwung B., Julapour A., Abdolghafourian M., Hajian M., Waples D., Warren J., Otterdoom H., Srisuriyon K., Kazemi H., "Structural development of a major late Cenozoic basin and transpressional belt in central Iran", The Central Basin in The Qom- saveh area. Geosphere, Volume 5 (2009) 4:325-362. [DOI:10.1130/GES00223.1]
14. [14] Emami M.H., "Géologie de la région de Qom-Aran (Iran): Contribution a l'étude dynamique et géochimique du volcanisme Tertiaire de l'Iran Central": Ph.D., Thèse, Univ., Grenoble, France, (1981) 489pp.
15. [15] Roozbeh Kargar.s, Movahedi.M, "Gold Exploration Report in 1: 100000 Salafchegan Qom Zavarian Area", Geological Survey of Iran (2010).
16. [16] Hart C.J.R., "reduced intrusion-related gold systems, in Goodfellow, W.D., ed., Mineral deposits of Canada", A Synthesis of Major Deposit Types, District Metallogeny (2007).
17. [17] Chiu H.Y., Chung S.L., Zarrinkoub M.H., Mohammadi S.S., Khatib M.M., Iizuka Y., "Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny", Lithos, 162, (2013) pp.70-87. [DOI:10.1016/j.lithos.2013.01.006]
18. [18] Ayati F., Yavuz F., Asadi H.H., Richards J.P., Jourdan F., "Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper-gold deposit, Markazi Province, Iran", International Geology Review, v. 55, (2013) p. 158-184. [DOI:10.1080/00206814.2012.689640]
19. [19] Richards J.P., Wilkinson D., Ullrich T., "Geology of the Sari Gunay epithermal gold deposit, northwest Iran". Economic geology, 101 (2006) 1455-1496. [DOI:10.2113/gsecongeo.101.8.1455]
20. [20] Wilkinson D., "the geological summary of the Sari Gunay gold project", Report of Zar Kuh Mining Company (2005).
21. [21] Boccaletti M., Innoncenti F., Manetti P., Mazzuoli R., Motamed A., Paquare A., Radicati de Brozolo F., Amin Sobhani E., 'Neogene and Quaternary volcanism of the Bijar area (western Iran)', Bull. Volcanol, v. 40-42 (1976) p. 121-135. [DOI:10.1007/BF02599857]
22. [22] Moinevaziri H., Volcanisme Tértiaire et Quatérnaire en Iran. Thèse d' Etat, Paris-Sud Orsay, 290 pp.
23. [23] Hassanzadeh T., Heidari S.M., Qalamqash J., Mohebbi A., "Comparison of alteration areas in Sari Gunnay and Zavarian epithermal gold deposits, by ASTER satellite image processing". Proceedings of the 38th Conference on Earth Sciences, Geological Survey and Mineral Exploration (2019).
24. [24] Petersen U., Vidal C. E., "Magmatic and tectonic controls on the nature and distribution of copper deposits in Peru. Andean copper deposits: New discoveries, mineralization, styles and metallogeny: Society of Economic Geologists Special Publication, (5) (1996) 1-18.‏
25. [25] Le Bas, M. J., Le Maitre R. W., Streckeisen A., Zanettin B., "A chemical classification of volcanic rocks based on total Alkali-Silica content": Journal of Petrology, v. 27 (1986) p. 745-750 [DOI:10.1093/petrology/27.3.745]
26. [26] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey.Contributions to Mineralogy and Petrology": 58 (1976) 63-81. [DOI:10.1007/BF00384745]
27. [27] Bissig T., Clark A.H., Lee J.K.W., Quadt A.V., "Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu belt, Chile/ Argentina. Min Deposit, v. 38 (2003) p. 844-862. [DOI:10.1007/s00126-003-0375-y]
28. [28] Waight T.E., Weaver S.D., Muir R.J., "The Hohonu batholith the north Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition", Contrib Mineral Petrol., v. 130, (1998) p. 225-239. [DOI:10.1007/s004100050362]
29. [29] Nakamura N., "Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites". Geochim. Acta, 38 (1974) 757- 775. [DOI:10.1016/0016-7037(74)90149-5]
30. [30] Lang J.R., Titley S.R., "Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits": Economic Geology, v. 93, (1998) p. 138-170. [DOI:10.2113/gsecongeo.93.2.138]
31. [31] Hanson G.N., "Rare earth elements in petrogenetic studies of igneous systems", Annual Review of Earth Planetary Sciences, v. 8 (1980) p. 371-406. [DOI:10.1146/annurev.ea.08.050180.002103]
32. [32] Frey F.A., Chappell B.W., Roy S.D., "Fractionation of rare-earth elements in the Tuolumne intrusive series, Sierra Nevada batholith, California", Geology, v. 6, (1978) p. 239-242. https://doi.org/10.1130/0091-7613(1978)6<239:FOREIT>2.0.CO;2 [DOI:10.1130/0091-7613(1978)62.0.CO;2]
33. [33] Rollinson H. R., "Using geochemical data: evaluation", Presentation, Interpretation, 796 (1993) 317-343.
34. [34] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes.In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins", vol. 42. Geological Society of London, pp.313-345 Special Publication (1989). [DOI:10.1144/GSL.SP.1989.042.01.19]
35. [35] Thuy N.T.B., Satir M., Siebel W., Vennemann T., Van Long T., "Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences", 23(4) (1989) pp.467-482. [DOI:10.1016/j.jseaes.2003.06.001]
36. [36] Glennie K.W., "Cretaceous tectonic evolution of Arabia's eastern plate margin: A tale of two oceans: Society for Sedimentary Geology (SEPM) Special Publication". 69 (2000) p. 9-20. [DOI:10.2110/pec.00.69.0009]
37. [37] Frey F.A., Chappell B.W., Roy S.D., "Fractionation of rare-earth elements in the Tuolumne Intrusive Series, Sierra Nevada batholith, California". Geology 6 (1978) 239-242. https://doi.org/10.1130/0091-7613(1978)6<239:FOREIT>2.0.CO;2 [DOI:10.1130/0091-7613(1978)62.0.CO;2]
38. [38] Gorton M.P., Schandl E.S., "From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks".The Canadian Mineralogist, 38(5) (2000) pp.1065-1073. [DOI:10.2113/gscanmin.38.5.1065]
39. [39] Pearce J.A., Peate D.W., "Tectonic implications of the composition of volcanic arc magmas". Annu. Rev. Earth Planet. Sci. 23 (1995) 251-285. [DOI:10.1146/annurev.ea.23.050195.001343]
40. [40] Pirouz M., Avouac Jean-Philippe, Hassanzadeh Jamshid, Kirschvink Joseph L., Bahroudi Abbas, "Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening". Earth Planet. Sci. Lett. 477 (2017) 168-182. [DOI:10.1016/j.epsl.2017.07.046]
41. [41] Zahmatkesh A., Heidari S.M., "Geology and mineralization of gold (copper) Zavarian (Qom-Salafchegan)", Quarterly Journal of Earth Sciences, Vol. 117 (2020) pp. 39-50.
42. [42] Abdi Bastami S., Rezaei B., Pazooki A., Amini A., "Preliminary Cyanidation of Gold Ore from Zavvarian", International Journal of Engineering and Innovative Technology (IJEIT), V. (4) (2015) P. 191-194.
43. [43] Niroumand Sh., "Geochemical characteristics, cognitive mineralogy and genesis of Antimony Dashkasan deposit", Master Thesis, College of Science, Tarbiat Modares University (1999).
44. [44] Roedder E., "Fluid Inclusions". Rev. Mineralogy, Mineral. Soc. Am., (1984) p. 12-644. [DOI:10.1515/9781501508271]
45. [45] Wilkinson J.J.,"Fluid inclusion in hydrothermal ore deposits". Elsevier, Lithos. 55 (2001) pp. 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
46. [46] Walshe J. L., Hobbs B. E., "hydrothermal systems, giant ore deposits and a new paradigm for predictive mineral exploration". CSIRO Exploration and Mining Research Reviews 30-31(1999).
47. [47] Shepherd T.J., Rankin A.H., Alderton D.H.," A practical guide to fluid inclusion studies", Blackie (1985).
48. [48] Pirajno F., "Hydrothermal processes associated with meteorite impacts. In Hydrothermal processes and mineral systems", (pp. 1097-1130). Springer, Dordrecht (2009). [DOI:10.1007/978-1-4020-8613-7_11]
49. [49] Cooke D.R., Simmons S.F., "Characteristics and genesis of epithermal gold deposits: Society of Economic Geologists", Reviews in Economic Geology, v. 13, (2000) p. 221-244. [DOI:10.5382/Rev.13.06]
50. [50] Vargas R., Gustafson L., Vukasovic M., Tidy E., Skewes M.A., "Ore breccias in the Rio Blanco-Los Bronces porphyry copper deposit, Chile", In: Skinner B (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Publ., v. 7, (1999) p. 281-297.
51. [51] Zheng Y., Frantz J.D., "Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions", Chem Geol, v. 64, (1987) p. 335-350. [DOI:10.1016/0009-2541(87)90012-X]
52. [52] Large R., Huston D., McGoldrich P., McArthur G., Ruxton P., "Gold distribution and genesis in Paleozoic volcanogenic massive sulphide systems", In: Bicentennial Gold 88. Geol. Soc. Aust. Abst. Ser., v. 22 (1988) p. 121-126.
53. [53] Sillitoe R.H., "Epithermal models: Genetic types, geometrical controls, and shallow features". Geological Association of Canada special Paper. 40, (1993) p. 403- 417.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb