کانی شناسی و زمین شیمی عناصر جزئی ذخیره کاتالون رود معجن، شمال غرب تربت حیدریه، شمالشرق ایران

کهکده ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب شهر تربت حیدریه، استان خراسان رضوی، در زیرهیه قطعه کورپرز واقع است. شواهد صورتی و نتایج آزمایشگاهی نشان می دهد که این ذخیره از نظر زیستی در ارتباط با داریوس سنگهای آندزیت-یازالتی (آوست پیچین) است. نمونه‌های با روش‌های تجزیه‌ای مختلف پیش‌تر بر اکس (XRD) طیف‌سنجی براکنگی ارزی برخی از ذخیره (TGA) میکرو‌سکوپی‌یوکنیک روش‌های مایه‌ای (DTA) و گرمایی وزن‌سنجی (FE-SEM)، با اساس نتایج کاتالونیت، لیبلتل، کوارتز، آلمین، و مسکوپی فازهای کالیسی و همانیت، قبر، روتیل، گالن، باریت، کلسیت، بیوبانک، تیتانومگنتیت و تیتانوزیت فازهای کالیسی در این ذخیره هستند. محاسبات تعداد جرم عناصر با فرض Al به عنوان عنصر شاخص کیتیک گزارش می‌گردد که گسترش فاین‌کاتالونیت سنگهای آندزیتی پاراکتل در رود Th.V.Zr.Ba.Hf معجن با غنی‌شده‌گی Pb، نیو شده‌گی عناصر هامت و Sr.Zn.Cu/Rb.Cs که آندزیت با همراهه‌ای که را ترکیب وروده است و به عنوان عناصر هو در رفتارهای افزایشی که به ویژه در نسیم (LREE) مصرف می‌کند که رفتار عناصر جزئی از شکل ذخیره کاتالون رود معجن نتایج دارد. نتایج دست‌آمده در حضوری و غنی‌شده‌گی نشان می‌دهد که ذخیره کاتالون رود معجن در حضوری و غنی‌شده‌گی نشان می‌دهد که ذخیره کاتالون رود معجن در نسبت به عناصر جزئی نسبت به شکل ذخیره کاتالون رود معجن در نسبت به شکل ذخیره کاتالون رود معجن در

مقدمه
نوعی مشخص، جزئی که در کالون رود معجن افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.

نکته: برودسک افسارهای کد [1] ذخیره کاتالون رود معجن در ۳۵ کیلومتری شمال غرب تربت حیدریه، از جمله این ذخیره به دو در در هم می‌پایه شما و گسل درونه واقع است و مشاهده شده قطعه کورپرز به شمار می‌رود.
ذخيره معندی انجام نشده است. در این پژوهش، با ترکیب نتایج بررسی‌های کانی شناسی و زمین‌شناسی، اطلاعات جامعی از نقش کتولی کانی‌های عوامل زمین‌شناسی ارژنگان بر توزیع عناصر جذبی (شامل لانتانیدها)، انتخاب این واکنش‌ها درون‌زا و برون‌زا در گسترش این سیستم گرمایی و دلالی رخداد Ce و Eu به‌همراه های طلای گسترش این ذخیره ارائه شده است.

زمین‌شناسی

ذخیره کانون رود معجن در نقش زمین‌شناسی 1/100،000

فیلسی‌آواز [1] و در همایه بی‌فاصله شمال گسل درون در مرز زیرپهن سبزی و قطعات لوت قرار داده در مرز بین دو گسل تکان در شمال و گسل درون در جنوب، مجموعه‌ای از سنگ‌های آذرین و استه به قشری وجود دارد که با نام پنهانی ترشی‌وری (خوان-کاشمر-پرده‌سنگ) معروف شده‌اند. این پنهان در محل ذخیره کانون رود معجن و نواحی کنار آن شامل مجموعه‌گسترده‌ای از سنگ‌های آذرین و انتخابی این‌ها با ضخامت تقریبی 150 متر است. فعالیت‌های انتخابی‌ای در این منطقه با تشکیل نفوذهای خاکستری تبیه و گاه

شکل 1 نقشه زمین‌شناسی ذخیره کانون رود معجن.
حدود سنگ پوشش سیلیسی به یون سنگ پوشش سیلیسی بدون حفره، بلورین نا ریز، بلور و
سفید رنگ بر ذخیره کالون الرا مهربان و برای های زمین-سنگ سنگپوش اشکالی بررسی;
شش این منطقه محسوب می‌شود. این سنگ پوشش داشت از انحل و شستشو عناصر سدیم، پتاسیم، کلسیم و مینیزیم از
سنگ‌های آفات‌دار توسط محلول‌های درون‌زا و برای
ماندن سیلیس است. پوشش سنگ باد شده از نظر مكان‌نگاری در
ارتفاع و بازترین بخش ذخیزه رود معجن قرار داشته و
ضخامت قابل توجهی دارد. رخ نمایند فرآیند پدیده جوشش و
تشکیل در اعماق سبب ایجاد بافت متراکم در سنگ پوشش
سیلیسی شده است (شکل ۲).

روش بررسی
این کار پژوهشی در دو بخش صحرا و آرام‌شکافی صورت
گرفتند. از در بخش صحرا نخست پیماش‌های به منظور
شناسایی واحد‌های سنگی منطقه، چگونگی گسترش ذخیره
معنی و ارتباط آن با سنگ‌های درون‌گیر انجام شد. سپس،

عکس

شکل ۲ (الف) نمای کلی از ذخیره کالون الرا معجن و پوش سنگ سیلیسی بالای ذخیره و (ب) نمای نزدیک از ذخیره کالون الرا معجن به همراه
سنگ اولیه آنتزیت بارالیتی. (دید به سمت شمال شرق.)
بررسی‌های کانال‌شناختی با میکروسکوپ الکترونی به دو شیوه رویشی (SEM) و دوبنده (FE-SEM) می‌باشد.

1. بررسی‌های SEM

SEM به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

2. بررسی‌های FE-SEM

FE-SEM به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

3. ساخت کشور ایران

ساخت کشور ایران با توجه به فناوری‌های مورد استفاده در بهترین کشورهای جهان، در آزمایش‌های مشابه به پیشرفت ماید.

4. فناوری‌های MBNOVA 450

MBNOVA 450 به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

5. ساخت STA 409 PC LUXX

STA 409 PC LUXX به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

6. ساخت STA NOVA

STA NOVA به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

7. ساخت STA NOVA 450

STA NOVA 450 به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

8. ساخت STA NOVA 450

STA NOVA 450 به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

9. ساخت STA NOVA 450

STA NOVA 450 به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

10. ساخت STA NOVA 450

STA NOVA 450 به صورت تجاری به صورت بازسازی شده در زمینه‌های متنوعی چون پاتولوژی، پاتولوژی و انسان‌شناسی استفاده می‌شود.

نتایج و بحث

نمونه‌برداری واحدهای مختلف در منطقه معدنی انجام شد و پس از بررسی‌های میکروسکوپی، واحدهای سنجی تغییر جویی که در افزایش بازیلیر و مویزانتی در آزمایش‌های هستند. بررسی‌های پلاژیوکلاژن با تغییر جویی که در افزایش بازیلیر و مویزانتی در آزمایش‌های هستند.
را تشکیل می‌دهند. این کانی‌ها به عنوان تجزیه‌بندی از سه گروه عمده‌ای
رسی در مقاطع به صورت کدر دیده می‌شوند. بلوبره‌های کوارتز
گلم‌پیچ به شکل بوده و در اندازه‌های ۰.۵ تا ۱ میلی‌متر در تغییر
حسنده‌است. آنها فضاهایی بین سایر کانی‌ها را اشغال کرده و حدود

جدول ۱: نتایج تجزیه‌های شیمیایی ICP-MS و ICP-AES

<table>
<thead>
<tr>
<th>عنصر</th>
<th>داده‌های رسانه‌ای (به صورت اکسیم)</th>
<th>عنصر</th>
<th>داده‌های رسانه‌ای (به صورت اکسیم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>Cr</td>
<td>ppm</td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
<td>Ba</td>
<td>ppm</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>Co</td>
<td>ppm</td>
</tr>
<tr>
<td>Ga</td>
<td>ppm</td>
<td>Ga</td>
<td>ppm</td>
</tr>
<tr>
<td>Hf</td>
<td>ppm</td>
<td>Hf</td>
<td>ppm</td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
<td>Nb</td>
<td>ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>Pb</td>
<td>ppm</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>Zn</td>
<td>ppm</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
<td>La</td>
<td>ppm</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
<td>Ce</td>
<td>ppm</td>
</tr>
<tr>
<td>Pr</td>
<td>ppm</td>
<td>Pr</td>
<td>ppm</td>
</tr>
<tr>
<td>Nd</td>
<td>ppm</td>
<td>Nd</td>
<td>ppm</td>
</tr>
<tr>
<td>Sm</td>
<td>ppm</td>
<td>Sm</td>
<td>ppm</td>
</tr>
<tr>
<td>Eu</td>
<td>ppm</td>
<td>Eu</td>
<td>ppm</td>
</tr>
<tr>
<td>Gd</td>
<td>ppm</td>
<td>Gd</td>
<td>ppm</td>
</tr>
<tr>
<td>Tb</td>
<td>ppm</td>
<td>Tb</td>
<td>ppm</td>
</tr>
<tr>
<td>Dy</td>
<td>ppm</td>
<td>Dy</td>
<td>ppm</td>
</tr>
<tr>
<td>Ho</td>
<td>ppm</td>
<td>Ho</td>
<td>ppm</td>
</tr>
<tr>
<td>Er</td>
<td>ppm</td>
<td>Er</td>
<td>ppm</td>
</tr>
<tr>
<td>Tm</td>
<td>ppm</td>
<td>Tm</td>
<td>ppm</td>
</tr>
<tr>
<td>Yb</td>
<td>ppm</td>
<td>Yb</td>
<td>ppm</td>
</tr>
<tr>
<td>Lu</td>
<td>ppm</td>
<td>Lu</td>
<td>ppm</td>
</tr>
<tr>
<td>LREE</td>
<td>ppm</td>
<td>LREE</td>
<td>ppm</td>
</tr>
<tr>
<td>HREE</td>
<td>ppm</td>
<td>HREE</td>
<td>ppm</td>
</tr>
<tr>
<td>(LREE)HREE</td>
<td>ppm</td>
<td>(LREE)HREE</td>
<td>ppm</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
<td>La</td>
<td>ppm</td>
</tr>
<tr>
<td>(La)Yb</td>
<td>ppm</td>
<td>(La)Yb</td>
<td>ppm</td>
</tr>
<tr>
<td>Eu</td>
<td>ppm</td>
<td>Eu</td>
<td>ppm</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
<td>Ce</td>
<td>ppm</td>
</tr>
</tbody>
</table>
شکل 3 تفاوت میکروسکوپی از واحدهای سنجش گردش ذهابی کانون رود معجین (الف و ب) رگه کارتری به همراه پلورهای شکل دار پلاژیواک. برای تجربه حفره تبیین شده به ترتیب در نورهای نورهای مختلف (PPL) و قلیب‌های منطقه (XPL) در نهایت پلورهای پلاژیواک. سری‌سیستمی شده در زووماتیکاینی به همراه کارتری منحرف ناحیه‌ای در اندازه‌بازاریک در نور عویش (XPL). سری‌سیستمی شده به همراه کلریت، ایپیدوت، آمبیفول، کانی‌های کذر در مونوئینی در نور عویش (کوارتز، پلاژیواک، Chl، Qz، پلاژیواک، کلریت، Chl، Qz، پلاژیواک).

کانی‌های کذر:

Amp

تمیز خسج پرتو X فلز سنج کل در نمونه‌های کانون رود معجین حضور کانی‌های کوارتز، هالوزئیت، ایپیدوت، اسکوئورت پرتو X. در نمونه‌های کوارتز، هالوزئیت، ایپیدوت، اسکوئورت پرتو X.

شکل 3. نقطه‌کار صفحه‌های بی‌سان پرتو X به ترتیب در نورهای مختلف (PPL) و قلیب‌های منطقه (XPL) در نهایت پلورهای پلاژیواک. سری‌سیستمی شده در زووماتیکاینی به همراه کارتری منحرف ناحیه‌ای در اندازه‌بازاریک در نور عویش (XPL). سری‌سیستمی شده به همراه کلریت، ایپیدوت، آمبیفول، کانی‌های کذر در مونوئینی در نور عویش (کوارتز، پلاژیواک، Chl، Qz، پلاژیواک، کلریت، Chl، Qz، پلاژیواک).

کانی‌های کذر:

Amp

تمیز خسج پرتو X فلز سنج کل در نمونه‌های کانون رود معجین حضور کانی‌های کوارتز، هالوزئیت، ایپیدوت، اسکوئورت پرتو X. در نمونه‌های کوارتز، هالوزئیت، ایپیدوت، اسکوئورت پرتو X.

شکل 3. نقطه‌کار صفحه‌های بی‌سان پرتو X به ترتیب در نورهای مختلف (PPL) و قلیب‌های منطقه (XPL) در نهایت پلورهای پلاژیواک. سری‌سیستمی شده در زووماتیکاینی به همراه کارتری منحرف ناحیه‌ای در اندازه‌بازاریک در نور عویش (XPL). سری‌سیستمی شده به همراه کلریت، ایپیدوت، آمبیفول، کانی‌های کذر در مونوئینی در نور عویش (کوارتز، پلاژیواک، Chl، Qz، پلاژیواک، کلریت، Chl، Qz، پلاژیواک).

کانی‌های کذر:

Amp

تمیز خسج پرتو X فلز سنج کل در نمونه‌های کانون رود معجین حضور کانی‌های کوارتز، هالوزئیت، ایپیدوت، اسکوئورت پرتو X. در نمونه‌های کوارتز، هالوزئیت، ایپیدوت، اسکوئورت پرتو X.
کانولونت شامل سیلیسیوم و آلومینیوم هستند (شکل ۵ ت). تصاویر ناز و وجود کانایهای رسی ابلیت و هالوژیت را اندازه‌گیری کرده‌اند. ابلیت به صورت ورقه‌ای و به دو شکل گلبرگی و ناظم و کانای هالوژیت به صورت لوله‌ای تخاطب شکل در نمونه‌ها دیده می‌شود (شکل ۴). هالوژیت‌های لوله‌ای قطر تا ۱۰۰ نانومتر و طولی بین ۵۰ تا ۱ میکرون دارند.

نمونه‌ها به این روش حضور فازهای گیتی‌ایت، روتیل، همالان، کلریت، آلومینیت، آپاتیت، تیتانومگنتیت، تیتان اوزیت، بیوتیت، ابلیت، کانولونت و کوارتز را نشان می‌دهند (شکل ۵). تجزیه نقطه‌ای (EDS) نمونه‌ها مورد بررسی نشان داد که عناصر اصلی در ابلیت شامل آلومینیوم، سیلیسیوم، پتاسیم و آهن و در آلومینیت، گوگرد، پتاسیم و آلومینیوم و در...
به همراه طیف‌های تجزیه نطفه‌ای (FE-SEM) بر روی سطح (TGA) و (DTA) برای کمک بررسی‌های کانالیتی (Gra) شناسایی نام‌ها. در آزمایش DTA برای هالوژینوس، در دمای قله گرماگیری در دمای 50 درجه سانتی‌گراد نیز قله گرماگیری دیگری به دلیل آن از دست دادن هیدروکسیل و تبدیل آن به مئاتالوپروت شد می‌دهد. این کانالی در دمای 900 درجه سانتی‌گراد با قله گرماگیری کوچکی که پایان تندباد هالوژینوس بی‌شک به صورت بلوئین است. برای مجازی، همگانی معتبری گرمایش‌های (KG) در دمای 995 درجه سانتی‌گراد به دیده‌شدن در قله گرماگیری هالوژینوس. همگانی دراز این یافته‌ها به ترتیب XRD و تصویر FE-SEM به ازای چهار متغیرنامه‌ای گمینام‌های کانالیتی در نمونه به دیده‌شدن قله هالوژینوس نشان می‌دهد. همکانی کامال دانشی در نمونه TGA نمود رابطه با قله گرماگیری، دوم دور مراحلی که به عنوان یکی از جمله‌های کاهش وزن می‌باشد و تعداد محدودی از 17 درصد وزنی و قله گرماگیری یک کاهش وزنی به ترتیب بین 2 و 4 درصد وزنی و منابع با قله گرماگیری نیز دو قله گرماگیری در دمای 117 درصد وزنی و قله گرماگیری در 100 درجه سانتی‌گراد نشان می‌دهد (شکل ۲). نمودار ۱۸۷ نمونه نیز با کاهش وزنی بین ۴۵ تا ۷۵ درصد وزنی TGA همراه است. با توجه به تابعی XRD نمونه با شده و وجود فاز اپلیت و سری‌سیستم به عنوان فاز اصلی ساندره، همچنین

شکل ۶ تصاویر میکروسکوپ الکترونی (SEM) و تجزیه نطفه‌ای (ESEM) بر روی سطح هالوژینوس در زیستی از هالوژینوس با نژادنامه‌ای ۵۰۰۰ برای واقعی کپچی اپلیت با نژادنامه‌ای ۱۲۰۰۰ برای واقعی کپچی (Halcoli: اپلیت I; Hal: اپلیت II).

ملاحظه‌های زمین‌شیمیایی

محاسبات تولید چرم بررسی‌های زمین‌شیمیایی تعمدی از جرم عناصر از هم‌پوشش دو روش برای برآورد تجزیه عناصر طی فرآیندهای درسی‌سنجی است. برای مجازی‌های همگانی، معتبری گرمایش‌های (KG) و عنصرگرمایش‌ها (US) در هم‌پوشش آن‌ها و نتایج که‌نهایی از این تجزیه عناصر طی گسفارش فرآیندهای درسی‌سنجی ارائه شده است. در این زیست‌ها، برای پی برد به مقدار کاهش و یا افزایش چرم عناصر طی کالوتل‌های شدن سنتی‌های اندزیت‌بارانی، از روش زمین‌شیمی عنصر کم‌تحرک [11] استفاده شد. به عنوان مثال، از گروه کم‌تحرک (جهل و یا نسبت بالا عناصر (جهل ۱ و ضرب همبستگی شدت) قوی‌تر با سایر عناصر گمینام‌ها با داشت هم‌پوشش به تدبیر و تعداد محدودی از ۱۷ درصد وزنی و قله گرماگیری یک کاهش وزنی به ترتیب بین ۲ و ۴ درصد وزنی و منابع با قله گرماگیری نیز دو قله گرماگیری در دمای ۱۱۷ درصد وزنی و قله گرماگیری در ۱۰۰ درجه سانتی‌گراد نشان می‌دهد (شکل ۲). نمودار ۱۸۷ نمونه نیز با کاهش وزنی بین ۴۵ تا ۷۵ درصد وزنی TGA همراه است. با توجه به تابعی XRD نمونه با شده و وجود فاز اپلیت و سری‌سیستم به عنوان فاز اصلی ساندره، همچنین
جرم عناصر طی کاتالیزیتی شدن سکه‌های آندیزیت بارالیتی را نشان می‌دهد.

tab1

جدول ۲ نتایج محاسبات تعادل جرم عناصر جذبی طی کاتالیزیتی شدن سکه‌های آندیزیت بارالیتی دخیل، طلا موجب تغییر در نظر گرفت

<table>
<thead>
<tr>
<th>عنصر</th>
<th>عناصری مانند</th>
<th>سازگاری حاضر</th>
<th>جدول ۹</th>
<th>شکل ۷</th>
</tr>
</thead>
</table>

[نمودارهای DTA-TGA مربوط به نمونه‌های کاتالیزیت مورد بررسی (الف) نمونه ۲۰ و (ب) نمونه ۷۰-R]

[شکل ۷] موجب شدن سکه‌های آندیزیت بارالیتی در رود معدن، عنصر Pb جزئی چون Cu، Zr و Ba افزایش جرم همراه شدهاند. عنصری مانند Al به عنوان عنصر شاخص کیفی کارکرد.
که توزیع این عنصر جزئی می‌تواند به اکسیدهای منگنز و وایسته Pb باشد. اکسیدهای منگنز می‌تواند را در سطوحی بین لایه‌ای خود تثبیت کند [14]. تئیه شدگی Ba در برخی از نمونه‌های کاتالوئینی شده بی‌دلیل در کلسیافیدهای سبک اولیه رخ داده است. غنی‌شدگی Ba بر جذب تراجیحی این عنصر توسط کاتی‌های رسی چون کاتالوئینی (به دلیل طرفیت نیاز کاتیونی بالا) ایلیت است [15]. شاهد این دعا می‌تواند وجود همبستگی‌های مثبت قوی Ta، Nb و Zr با (r=+0.85) K-Ba که اغلب طی فرآیندهای دگرسانی نیز نمایند [16]، در تشکیل ذخیره کاتالوئین رود مجنون روندهای متغیر افزایش و یا کاهشی را نشان می‌دهد. یکی از فراورده‌گیری‌های می‌تواند به تغییرات فیزیک‌شیمیایی

![Diagram](attach:image.png)

شکل 8
گروه تغییرات جرم عنصر جذبه در ذخیره کاتالوئین رود مجن.

شکل 9
الگوی تغییرات جرم لانتانیدها در ذخیره کاتالوئین رود مجن.

که توزیع این عنصر جزئی می‌تواند به اکسیدهای منگنز و وایسته Pb باشد. اکسیدهای منگنز می‌تواند را در سطوحی بین لایه‌ای خود تثبیت کند [14]. تئیه شدگی Ba در برخی از نمونه‌های کاتالوئینی شده بی‌دلیل در کلسیافیدهای سبک اولیه رخ داده است. غنی‌شدگی Ba بر جذب تراجیحی این عنصر توسط کاتی‌های رسی چون کاتالوئینی (به دلیل طرفیت نیاز کاتیونی بالا) ایلیت است [15]. شاهد این دعا می‌تواند وجود همبستگی‌های مثبت قوی Ta، Nb و Zr با (r=+0.85) K-Ba که اغلب طی فرآیندهای دگرسانی نیز نمایند [16]، در تشکیل ذخیره کاتالوئین رود مجنون روندهای متغیر افزایش و یا کاهشی را نشان می‌دهد. یکی از فراورده‌گیری‌های می‌تواند به تغییرات فیزیک‌شیمیایی

![Diagram](attach:image.png)

شکل 8
گروه تغییرات جرم عنصر جذبه در ذخیره کاتالوئین رود مجن.

شکل 9
الگوی تغییرات جرم لانتانیدها در ذخیره کاتالوئین رود مجن.

عوامل کنترل کندن توزیع و حمل عنصر جذبه (به جز لانتانیدها)

tربیم توزیع بر اساس این بررسی‌های کاتی‌نشینی، محاسبات تعادل جرم (شکل‌های و 9) و مقادیر ضرایب همبستگی بین عنصر (به روش پرورسان) اطلاعات جامعی از تأثیر جزئی در توزیع عنصر جذبی طی کشت در ذخیره کاتالوئین رود مجن و Cs, Rb طی کاتالوئینی قدن دلیل بر حذف کلسیافیدهای سبک Sr اولیه آن‌دیزی بیانی [16], [17] و تئیه‌گر دگرسانی کاتی‌های فرومیت‌های سبک اولیه و آزاد شدن عنصر باید شده بی‌دلیل در داخل کاتی‌های گذار بازی کاتی‌های فرومیت‌های سبک اولیه و آزاد شدن عنصر به احتمال بسیار در ارتباط با کلی از کالین Pb شدگی و عدد سیاله‌ها دما بالا رخ داده است. تأثیر بر این ضریب همبستگی مثبت قوی بین (r=0.92) Mn-Pb نشان می‌دهد.

![Diagram](attach:image.png)

Shale 8
گروه تغییرات جرم عنصر جذبه در ذخیره کاتالوئین رود مجن.

Shale 9
الگوی تغییرات جرم لانتانیدها در ذخیره کاتالوئین رود مجن.
بحث تأثیر مکانیزمهای زری در سطح دم آتش‌های یوپین-

1. مقدمه

مکانیزمهای فیزیکی و شیمیایی در سطح دم آتش‌های یوپین تأثیر بسزایی در تغییرات فیزیکی و شیمیایی سیال و غیره دارند. در این بحث، تأثیر مکانیزمهای زری در سطح دم آتش‌های یوپین بر فرآیندهای شیمیایی و فیزیکی مورد بررسی قرار می‌گیرد.

2. مطالعه

در این بحث، بررسی فرآیندهای شیمیایی و فیزیکی در سطح دم آتش‌های یوپین بر مبنای نظریه‌های مکانیسم‌زدایی و تحلیل مولکولی مطرح می‌شود.

3. نتیجه‌گیری

نتایج نشان دادند که تأثیر مکانیزمهای زری در سطح دم آتش‌های یوپین بر فرآیندهای شیمیایی و فیزیکی از طریق تغییرات در سطح سیال و غیره بسزایی است. در نتیجه، مکانیزمهای زری در سطح دم آتش‌های یوپین به عنوان یکی از اصلی‌ترین عوامل در تغییرات فیزیکی و شیمیایی سیال و غیره می‌باشد.

4. اشارات

در این بحث، برای بررسی تأثیر مکانیزمهای زری در سطح دم آتش‌های یوپین، به پژوهش‌های مرتبط و تحقیقات پیشی‌گیری در زمینه‌های مکانیزمهای فیزیکی و شیمیایی در سطح دم آتش‌های یوپین اشاره شده است.
ذخیره توسط فسفات های تلویزه و روتبی کنتیشن‌دار است.

همچنین، وجود همین‌گی مثبت قوی REE-Mn (9.6) و REE-K (8.33) در آکسیدهای منگنز با استفاده از رویش مایع و کانی‌های مسکوانت و ایپت نانوسیستمی در توزیع لاثین‌ها در ذخیره کانولن داشته‌اند. براساس این ضرایب نتیجه می‌شود که

عواملی چون جذب سطحی و رویش توزیع لاثین‌ها در این ذخیره را کنترل می‌نمایند. رخداد بین هنگارهای Ce و Eu در این پژوهش، برای محاسبه مقادیر بین هنگارهای Ce و Eu به ترتیب از روابط زیر استفاده شد [91]:

\[Eu/Eu^* = \frac{Eu_{N}}{[(Sm_{N} \times Gd_{N})^{0.5}] + 0.5} \]

\[Ce/Ce^* = 2Ce_{N}/(La_{N} + Pr_{N}) \]

Ce و Eu در این روابط N بهنگار شدن عنصر REE های بهنگار شده به کندیت [21] در نمونه‌های کانولن و سنگ‌های آنزیم‌پذیری‌یابه رود معجن.

![گراف](image1.png)

شکل 10: گراف توزیع Ce و Eu در نمونه‌های کانولن به ترتیب از روابط زیر استفاده شد [91]:

\[Eu/Eu^* = \frac{Eu_{N}}{[(Sm_{N} \times Gd_{N})^{0.5}] + 0.5} \]

\[Ce/Ce^* = 2Ce_{N}/(La_{N} + Pr_{N}) \]

dر این روابط N بهنگار شدن عنصر REE های بهنگار شده به کندیت [21] در نمونه‌های کانولن و سنگ‌های آنزیم‌پذیری‌یابه Rود معجن.

جدول 3: ضرایب همین‌گی پیرامون سنگ‌های بالا و سنگ‌های بالا در نمونه‌های کانولن ذخیره رود معجن.

<table>
<thead>
<tr>
<th>Si</th>
<th>Al</th>
<th>K</th>
<th>Ti</th>
<th>Mn</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>0.59</td>
<td>0.82</td>
<td>0.74</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>Ce</td>
<td>0.67</td>
<td>0.65</td>
<td>0.66</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Nd</td>
<td>0.51</td>
<td>0.64</td>
<td>0.77</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Sm</td>
<td>0.52</td>
<td>0.66</td>
<td>0.78</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Eu</td>
<td>0.58</td>
<td>0.69</td>
<td>0.79</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Gd</td>
<td>0.46</td>
<td>0.68</td>
<td>0.79</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Tb</td>
<td>0.52</td>
<td>0.68</td>
<td>0.79</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Dy</td>
<td>0.58</td>
<td>0.61</td>
<td>0.71</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Ho</td>
<td>0.69</td>
<td>0.71</td>
<td>0.92</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Er</td>
<td>0.58</td>
<td>0.61</td>
<td>0.71</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Tm</td>
<td>0.56</td>
<td>0.68</td>
<td>0.70</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>Yb</td>
<td>0.53</td>
<td>0.69</td>
<td>0.72</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>Lu</td>
<td>0.51</td>
<td>0.68</td>
<td>0.72</td>
<td>0.88</td>
<td>0.88</td>
</tr>
</tbody>
</table>

[DOI: 10.15257/ijcm.29.4.719]
plutonic belt", 21th Earth Science Conference, Tehran, Iran (2002).

برداشت
مهمترين نتایج به دست از بررسی‌های کامپاتی سیاسی و زمین‌شناسی عناصر جزئی ذخیره کاتلون رود...

[26] Mondillo N., Boni M., Balassone G., Spoleto S., Stellato F., Marino A., Santoro L., Spratt J., "Rare earth elements (REE)-minerals in the Silius fluorite vein system (Sardinia, Italy)", Ore Geology Reviews 74 (2106) 211-224.