Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 123-134 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barati M, Mohamadi A, Hazareh M, Fallah Karimi Z. Mineralogical and XRD studies of graphite veins in the northeast of Alvand Mountain. www.ijcm.ir 2023; 31 (1) :123-134
URL: http://ijcm.ir/article-1-1667-en.html
1- Bu Ali Sina University
2- Geological and Mineral Exploration Organization of Iran
Abstract:   (638 Views)
The study area is located about 45 km southeast of Hamedan, northeast of Azandarian city and east of Alvand batholith. Graphite is seen in two forms in the region: 1) in the form of graphite veins with 5 to 10 cm thickness, in contact with smoky quartzite veins, 2) Scattered in spotted graphite schist, containing large crystals of muscovite, quartz, garnet, andalusite, kyanite and biotite. In this region, the most important impurities associated with graphite are ​​sersite and muscovite. In the X-ray diffraction pattern (XRD), graphite peaks with hexagonal crystallization system were observed in the samples. Thermometric studies show that there are 4 types of fluid inclusions in quartz veins:1) LCO2 + VCO2 + LH2O 2) LCO2 + VCO2, 3) VH2O + LH2O and 4) LCO2 + VH2O. Homogenization temperature for the fluids inclusions in all two-phase samples (range between 240-150) is 180 ° C in average, and calculated salinity is between 3 to 16.4% by weight equivalent of NaCl according to H2O-CO2-NaCl system. In addition, presence of CO2 in the fluids inclusions indicates the hydrothermal origin of available quartzite veins. The results of petrographic and physical properties studies of graphite mineral indicate, the formation of this mineral from the metamorphic transformation of organic matter from initial sediments to amphibolite facies. The mineralization of graphite in this deposit is directly related to formation of quartz hydrothermal vein of origin.
Full-Text [PDF 3873 kb]   (192 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1]Aghazadeh M., "Exploration report of GouyDash deposite", Senmar co., Unpublished (1395).
2. [2] Meinert L.D., "Skarn and skarn deposit", Geosciences Canada 19 (1992) 145-162.
3. [3] Aksyuk A.M., "Estimation of fluorine concentrations in fluids of mineralized skarn systems", Economic Geology 91 (2000) 1339-1347. [DOI:10.2113/gsecongeo.95.6.1339]
4. [4] Dill H.G., "The "chessboard" classification scheme of mineral deposits", mineralogy and geology from aluminum to zirconium. Earth-Science reviews 100 (2010) 1-420. [DOI:10.1016/j.earscirev.2009.10.011]
5. [5] Marbouti Z., Ehya F., Rostami Paydar G., Maleki S., "Geochemical, microthermometric, and sulfur isotopic constraints on the origin of the Sarviyan iron deposit, Markazi Province, Iran", Journal of Geochemical Exploration 210 (2020) 106451. [DOI:10.1016/j.gexplo.2019.106451]
6. [6] Ehsani Nasab P., Ehya F., "Mineralogy and magnetite trace element geochemistry of the Niyasar iron ore deposit, Esfahan province, Iran", Periodico di Mineralogia, DOI:10.2451/2019PM838 (2019).
7. [7] Bonyadi Z., Davidson G. J., Mehrabi B., Meffre S., Ghazban F., "Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran", Insights from paragenesis and geochemistry. Chemical Geology 281 (2011) 253-269. [DOI:10.1016/j.chemgeo.2010.12.013]
8. [8] Daliran F., Stosch H.G., Williams P., "Multistage metasomatism and mineralization at hydrothermal Fe oxide REE apatite deposits and "apatitites" of the Bafq district, central-east Iran", The 9th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Dublin, (2007) 501-1504.
9. [9] Jami M., Dunlop A.C., Cohen D.R., "Fluid inclusion and stable isotope study of the Esfordi apatite -magnetite deposit, Central Iran", Economic Geology 102 (2007) 1111-1128. [DOI:10.2113/gsecongeo.102.6.1111]
10. [10] Daliran F., "Kiruna-type iron oxide apatite ores and apatitites of the Bafq district, Iran", with an emphasis on the REE geochemistry of their apatites. In: Porter T.M. (Ed.) Hydrothermal iron oxide Copper-Gold and related deposits. A global perspective, PGC Publishing, Adelaide. 2 (2002) 303-320.
11. [11] Foster H., Jafarzadeh A., "The Bafq mining district in Central Iran-a highly mineralized Infracambrian volcanic field", Economic Geology 89 (1994) 1697-1721. [DOI:10.2113/gsecongeo.89.8.1697]
12. [12] Stocklin J., "Structural history and tectonic of Iran A Review", American Association of Petroleum Geologists Bulletin, USA, 52 (1968) 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
13. [13] Brunet M. F., Wilmsen M., Granath J.W., "South Caspian to Central Iran basins", Geological Society, London, Special Publications, (2009) 312. [DOI:10.1144/SP312.0]
14. [14] Mohajjel M., Fergusson C.L., "Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran", International Geology Review 56 (3) (2014) 263-287. [DOI:10.1080/00206814.2013.853919]
15. [15] Ghorbani M., "An introduction to economic geology of Iran", National Geosciences Database of Iran, Report No. 2 (2002) 695 p.
16. [16] Alavi M., "Tectonic map of the Middle East 1:5000000", Geological Survey of Iran: Tehran, Iran, (1991).
17. [17] Meinert L.D., "Application of skarn deposit zonation models to mineral exploration", Exploration and Mining Geology 6 (1997) 185-208.
18. [18] Boynton W.V., "Cosmochemistry of the rare earth elements, meteorite studies. In: Henderson. P. (Ed.), Rare earth element geochemistry", Developments in Geochemistry 2. Elsevier, Amsterdam, (1984) pp. 115 -1522. [DOI:10.1016/B978-0-444-42148-7.50008-3]
19. [19] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts:implications of mantle composition and processes", In: Magmatism in the ocean basins (Eds. Saunders, A. D., Norry, M. J.) Special Publication, 42 (1989) 313-345. Geological Society, London. [DOI:10.1144/GSL.SP.1989.042.01.19]
20. [20] Middlemost E.A.K., "Naming materials in the magma/igneous rock system", Earth Science Reviews, 37 (1994) 215-224. [DOI:10.1016/0012-8252(94)90029-9]
21. [21] Schandl E.S., Gorton M.P., "Application of high field strength elements to discriminate tectonic settings in VMS environments", Economic geology, 97 (2002) 629-642. [DOI:10.2113/gsecongeo.97.3.629]
22. [22] Pearce J.A., Harris N.B., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology, 25 (1984) 956-983. [DOI:10.1093/petrology/25.4.956]
23. [23] Wilson M., "Igneous petrogenesis: A global tectonic approach", Harper Collins Academic, London (1989). [DOI:10.1007/978-1-4020-6788-4]
24. [24] Rollinson H.R., "A terrane interpretation of the Archaean Limpopo belt", Geological Magazine, 130 (1993) 755-765. [DOI:10.1017/S001675680002313X]
25. [25] Wu F.Y., Jahn B.M., Wilde S.A., Lo C.H., Yui T.F., Lin Q., Sun D.Y., "Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic", Lithos, 67 (2003) 191-204. [DOI:10.1016/S0024-4937(03)00015-X]
26. [26] Ross P.S., Bédard J.H., "Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams", Canadian Journal of Earth Sciences, 46 (2009) 823-839. [DOI:10.1139/E09-054]
27. [27] Hastie A.R., Kerr A.C., Pearce J.A., Mitchell S.F., "Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram", Journal of petrology, 48 (20070 2341-2357. [DOI:10.1093/petrology/egm062]
28. [28] Shand S.J., "Eruptive rocks: their genesis", composition, classification, and their relation to ore deposits with a chapter on meteorites, 552.1 S43, (1943).
29. [29] Henderson P., "Rare earth element geochemistry", Elsevier, Amsterdam (1984) 510 pp.
30. [30] McCurry P., Wright J.B., "Geochemistry of calc-alkaline volcanics in Northwestern Nigeria, and a possible Pan-African suture zone", Earth and Planetary Science Letters 37 (1977) 90-96. [DOI:10.1016/0012-821X(77)90149-2]
31. [31] ShafaeiPour N., Mokhtari M., Kouhestani H., Honarmand M, "Petrology& Earth Chemistry of Ghozlou Granitoid mass and skarn iron ore(west of Zanjan)", Economic Geology 12 (1399) 46-76
32. [32] Martin H., "Adakitic magmas: Modern analogues of Archaean granitoids", Lithos, 46 (1986) 411-429. [DOI:10.1016/S0024-4937(98)00076-0]
33. [33] Karsli O., Dokuz A., Uysal I., Aydin F., Kandemir R., Wijbrans J., "Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust", eastern Turkey: Implications for crustal thickening to delamination. Lithos, 114(1-2) (2010) 109-120. [DOI:10.1016/j.lithos.2009.08.003]
34. [34] Omrani J., Agard P., Whitechurch H., Benoit M., Proutea G., Jolivet L., "Arc-magmatism and subduction history beneath the Zagros Mountains, Iran", A new report of adakites and geodynamic consequences. Lithos, 106 (2009) 380-398. [DOI:10.1016/j.lithos.2008.09.008]
35. [35] Jahangiri A., "Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implications", Journal of Asian Earth Sciences, 30 (2007) 433-447. [DOI:10.1016/j.jseaes.2006.11.008]
36. [36] Defant M.J., Drummond M.S., "Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc", Journal of Geology, 21 (1993) 547-550. https://doi.org/10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
37. [37] Plank T., "Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents", Journal of Petrology, 46 (2005) 921-944. [DOI:10.1093/petrology/egi005]
38. [38] Elburg M.A., Bergen M., Hoogewerff J., Vroon P., Zulkarnain I., Nasution A., "Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the pantar Strait volcanoes", Indonesia. Geochimica et Comochimica Acta, 66 (2002) 2771-2789. [DOI:10.1016/S0016-7037(02)00868-2]
39. [39] Martin H., Smithies R. H., Rapp R., Moyen J. F., Champion D., "An overview of adakite, tonalite-trondhjemite-granodiorite (TTG)", and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79 (1943) 1-24. [DOI:10.1016/j.lithos.2004.04.048]
40. [40] Stern C.R., Kilian R., "Role of the subducted slab, mantle wedge and continental crust in the eneration of adakites from the Andean Austral Volcanic Zone", Contributions to mineralogy and petrology, 123 (1996) 263-281. [DOI:10.1007/s004100050155]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb