بررسی خاستگاه کانسار جارو با کاربرد داده‌های زئوژمیایی سنگ میزان، شیمی کانه‌ها و بررسی شاره‌های درگیر کوارتر: معرفی بنا‌سازی اقتصادی طلا و نقره

مجدوب جمشیدی بدر۱، ترکس سادات فرامرزی، فریبرز مسعودی، زهرا صالحی۲

چکیده: کانسار جارو به سبب ناپاسخی نمایانگر به وجود در ۶۰ کیلومتری جنوب غرب کرک و در میان سنگ‌های آذرین اسیدی تا بازی رخنمون دارد. نتایج زئوژمیایی سنگ میزان آذرین حاکی از ماهیت آهکی-قلبی‌ی، ماگماتیسم وابسته به محيط کششی پشت قوس و فقدان پتانسیل اقتصادی آنها است. شواهد سنگ‌گارا و زئوژمیایی کانه‌های مس نشان دهندهٔ کانساری با ماهیت آزاد، سولفیدی، کربنی، سیلیکات‌های آباد سوی و اکسی، هیدروکسیدی با یافته‌های میانه برست ایست. علاوه بر مس، نتایج زئوژمیایی کانسک به پتانسیل اقتصادی طلا و نقره نشان داده‌اند. نتایج توزیع زئوژمیایی عناصر در کانسار و سنگ‌های نشان دهنده‌ی عناصر مصرف نقره در کالکوبریت است. بررسی شاره‌های درگیر در کالر بر خاستگاه کانسار و اکسای و آبی‌آب کننده‌ی شاره‌های ماگماتیک با شاره‌های

جوده است؛ لذا نمی‌توان خاستگاه ماکاگیک محسون را برای کانساری این منطقه در نظر گرفت. شواهد کانسکی‌ای و بررسی شاره‌های است. این مدل غیر فلالیز (باربرین، شن، ماسه) مورد نظر نیست. از معادن غیر فلالیز آن منتقل به معادن

جارو قربانی این منطقه کرد (آ) کانسار جارو در ۳۵/۲۷ تا ۳۵/۲۳ عرض شمالی و ۵۰/۳۰ تا ۵۰/۳۵ طول شرقی در حداک ۴۰ کیلومتری جنوب غربی کرک و ۱۲ کیلومتری جنوب

واژه‌های کلیدی: کانسار جارو، شیمی کانه‌ها، مس، نقره، طلا، درگیر

مقدمه

غربی شهرستان ماهنشتاد استان البرز واقع شده است. با توجه به انگیزه‌ای بررسی‌های لگام‌شده به منابعی کانسکی، بافت، ساخت و شواهد زئوژمیایی متمرکز بوده است. در این پژوهش، سعی شده تا با استفاده از حضور کانه-چوب و آنالیز اکتشاف اثر در مدل گسترشی مس-۱، ۵۰ سال گفته شده این منطقه از نظر معادن فلالیز (مس، سرب، روی، آلی، نقره، طلا) یا غیر فلالیز (باربرین، شن، ماسه) مورد نظر نیست. از معادن غیر فلالیز آن منتقل به معادن

فارسی اشراف، جوزه پهلوی زایی سامو - کانسار - گسل. در این پژوهش، سعی شده تا با استفاده از

زئوژمیایی کانسار جارو و سنگ‌های آذرین پیرامون و با بررسی شاره‌های درگیر موجود در رگه‌های کوارتر، به ماهیت

شاره‌های کانسکی دستیاب یافت. زئوژمیایی این کانسار از دیدگاه

بکار گرفته است.

m_jamshidi@pnu.ac.ir

مراجع

جغرافیای منطقه تلفیقی، نمای: ۴۳۹۷۲۵۵۵۰۷، ۱۳۹۱، پست الکترونیکی: m_jamshidi@pnu.ac.ir

*پیشنهاد مسئول، تلفن: ۸۱۳۹۷۲۵۵۵۰۷، ۱۳۹۱، پست الکترونیکی: m_jamshidi@pnu.ac.ir

*مراجع
روش بررسی در این پژوهش، تعداد 12 مقطع ناری و صیقی از کانسنگ تهیه و از نظر سنجشگر مورد بررسی قرار گرفتند. با توجه به کانسیشن سنجشی متغیری در نظر گرفته شده، تعداد 8 مونه از کانسنگ و 23 مونه از سنجشگر آذرین پرآمون آن انتخاب و به روش روشهای مورد استفاده در AAS سنجشگاهی 9000 ای در آزمایشگاه ICP-AES\(^1\) رویکرد مورد انتخاب قرار گرفتند. برای ماندن محیط در پایداری 20 Quantax 200 برای تغییر خاصیت شاره کالیبره شده در شرایط حاکم در زمان کانترالی، 6 مقطع دور صیقی از رژه‌های کوارتزی با قطع کانسیشن تهیه شدند. بررسی‌های میدر دینامیکی روی 60 متر از پل سنجشگر 25 میلی‌متر و تا پهنای بیش از افزایش 94 AAS هم‌زمان نسبت به اولین نتایج درک 30\(^\circ\) 23\(^\circ\) به دست آمد.

بحث

زمین شناسی

کانسیشن جارو در حد فاصل منطقه‌های ساختمانی از مرکز و کناران آن‌ها - نقشه‌ای از انتهای مورد استفاده در منطقه‌های سنجشگر قدم‌دار از اولین دیده نشده. نقشه‌های فیزیک‌سنجشی، گسترش‌دهنده، درون منطقه‌های مور، پایه‌های کوارتز و تکامل کوارتزی باید پیک‌های جزئی، کلینیکی و مترنکان در این منطقه‌ها ماهیت مشاهده می‌شود. این گروه‌ها خصوصیات گراچن‌های دوی و رجحان ناخن می‌گذارند. این انتخاب از نظر دامنه‌های، ماهیت الگوچال سنجشگر آذرین باید به دوستان شده، انتخاب گرایش ماده‌گنابری الکترون‌ها با بلوک‌های منطقه‌ای آذرین شیمی و بیومجی (با رابطه روابطی، اندزینی، نرم‌از و آذرین) با توجه به تکنیک‌های آزمایش‌گیری و شیمیایی که این مورد انتخاب شده، اثر افزایش‌های مقایسه‌ای الکترون‌ها با بلوک خود آزمایش‌گیری شده، در اثر به کمک الکترون‌ها با بلوک نوریمیت و نیمه عمیق (با

\[1\] Inductively coupled plasma atomic emission spectrometry
\[2\] Institute of Solid State Chemistry, Russian academy of Sciences, Urals Branch
\[3\] Atomic absorption spectrometry
شناختن سنجشی آدرین این منطقه مشخص کرد است [1].

شکل ۱ موقعیت معدن متروکه مس چارو در نقشه سه‌بعدی زمین‌شناسی ۱۲۵۰۰۰۰ ساله.

A.CNK در مقابل A.NK در اطراف کانسار چارو روی نمودار ألف-فلپکسیک سری آهکی-قلیایی از (تولیدی [5]; ب) بیان می‌کند. [6] (پ) جدایی میخیتهای زمین‌ساختی بر اساس عناصر Ta+Yb ت و (پ) ت و Hf, Rb در برابر در پایه Y با Nb و Rb در برابر Y.
## جدول 1

<table>
<thead>
<tr>
<th>شماره</th>
<th>نوع سنقل</th>
<th>Cu (ppm)</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Sn (ppm)</th>
<th>Mo (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF5</td>
<td>روابط</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF6</td>
<td>اندریزی</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF8</td>
<td>اعدم‌سی</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF9</td>
<td>نزاقت</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF10</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF12</td>
<td>نزاقت‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF18</td>
<td>نزاقت‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF21</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF22</td>
<td>روابط‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF23</td>
<td>اندریزی</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF29</td>
<td>نزاقت</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF32</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF36</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF37</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF42</td>
<td>دایک‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF44</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF45</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF46</td>
<td>دایک‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF57</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF58</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF59</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF66</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NF72</td>
<td>شبکه‌های</td>
<td>21.58</td>
<td>10.5</td>
<td>11.3</td>
<td>9.4</td>
<td>5.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
نتایج نشان می‌دهد که این روش با نتایج دیگر روند را در این دانشگاه کانسپار جارو با کاربرد دادههای زنده‌سنجی می‌تواند مشابه کنند.
کالکوپریت در نمونه 1-6N (شکل 7) این ادعا را تایید می‌کند (جدول 3).

سنگ، تنها مس از اهمیت اقتصادی برخوردار است و عناصر نقره و طلا در کانی‌ها متکرک شده‌اند. تمرکز نقره در کانی می‌باشد.

شکل 4: کانی‌های کالکوپریت (Cpy)، اسفاریت (Sph)، حمامیت (He) و همانیت (Mn) بلو درشت نیمه جز شکل پیروت همراه با کالکوپریت (Bor) و (Mal) هرنشینی کانی‌های پورپریت (Mal) تبدیل کالکوپریت به کالکوپریت (Cpy) و کالکوپریت (Cpy) تشکل مالاکیت در داخل دردرا و شکاف‌ها (تور)

جدول 2: نتایج آنانلز نمونه‌های کلسار مس جارو به‌روش ICP-AES برای عناصر برای طلا AAS Cu، Ag، As، Bi، Mn، Mo، Ni، Pb، Zn و با م معنی

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Cu (ppm)</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Mn (ppm)</th>
<th>Mo (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>203769</td>
<td>2387</td>
<td>348</td>
<td>109</td>
<td>590</td>
<td>109</td>
<td>9437</td>
<td>243</td>
<td>3742</td>
<td>143</td>
</tr>
<tr>
<td>M-3</td>
<td>384</td>
<td>584</td>
<td>842</td>
<td>2332</td>
<td>794</td>
<td>492</td>
<td>3323</td>
<td>214</td>
<td>245</td>
<td>143</td>
</tr>
<tr>
<td>M-8</td>
<td>3247</td>
<td>555</td>
<td>842</td>
<td>9437</td>
<td>245</td>
<td>492</td>
<td>3323</td>
<td>214</td>
<td>245</td>
<td>143</td>
</tr>
<tr>
<td>M-9</td>
<td>555</td>
<td>555</td>
<td>842</td>
<td>9437</td>
<td>245</td>
<td>492</td>
<td>3323</td>
<td>214</td>
<td>245</td>
<td>143</td>
</tr>
<tr>
<td>M-12</td>
<td>4237</td>
</tr>
<tr>
<td>M-13</td>
<td>4237</td>
</tr>
<tr>
<td>M-14</td>
<td>4237</td>
</tr>
<tr>
<td>M-15</td>
<td>4237</td>
</tr>
<tr>
<td>M-17</td>
<td>4237</td>
</tr>
<tr>
<td>M-20</td>
<td>4237</td>
</tr>
<tr>
<td>میانگین</td>
<td>281288</td>
<td>2919</td>
<td>546</td>
<td>968</td>
<td>2555</td>
<td>456</td>
<td>4055</td>
<td>756</td>
<td>2018</td>
<td></td>
</tr>
</tbody>
</table>
شکل ۵ مکان نقاط آنالیز شده بروش SEM Mapping بر روی کاتی های نمونه‌های الف (N۴ و N۲) و ب) کاتی های نمونه‌های الف (N۶ و N۲)

جدول ۲ ترکیب شیمیایی کاتی های کانسار جارو به روش Element mapping در شکل (ب) گسترده آنالیز (mapping)

<table>
<thead>
<tr>
<th>نقطه</th>
<th>O</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>K</th>
<th>Mn</th>
<th>Fe</th>
<th>Ca</th>
<th>Ti</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>N۲_۱</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44.7</td>
<td>31.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۲_۲</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>33.2</td>
<td>-</td>
<td>41.9</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۲_۳</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21.2</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۲_۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۲_۵</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>N۲_۶</td>
<td>3.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.2</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۴_۱</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۴_۲</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.8</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۴_۳</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27.1</td>
<td>13.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۴_۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۴_۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21.2</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۱</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۲</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۳</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>31.5</td>
<td>-</td>
<td>5.5</td>
<td>3.3</td>
<td>6.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۶</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۷</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
</tr>
<tr>
<td>N۶_۸</td>
<td>-</td>
</tr>
</tbody>
</table>
شکل ۶ الف) مشخصات طیف کاتی‌های کربنات‌کلاژن (۴_1) و ب) کالکوپرت (۱) در کانستگ چارو.

شکل ۷ تصویر Element mapping زمینه سنگ کانسیر منس جارو (گسترده مشخص شده توسط مستطیل در شکل ۵-ب).
بررسی شاره‌های درکی رگه‌های کوارتز در کانسار جارو از آنجا که فرابن دریا و به‌وسیله عوامل مهمی از قبل گروهی فشار، pH و مقدار آب‌های کوارتز می‌شوند. ۱۹ بررسی شاره‌های درکی در نشانات فرابنده‌های حاکم در زمان کانسار کوارتز از همان دیدگاه و مدل‌های برخوردار است. ۱۲-۱۳. کوارتز می‌تواند شفافاً با آب و فقده دریا و به‌وسیله بکرینگانی در کانسار مختلف است. رگه‌های سیلیسی- سولفیدی در بخش‌های خودش و مشاهده رنگ‌های سیلیسی کوارتز جارو به فقده مشاهده می‌شود. بخش داخلی این رنگ‌ها از پریت و کالکوپریت و بخش خارجی آن از کوارتز تشکیل دارد (شکل8-۱۰). با توجه به حجم بالایی این تشکیل‌ها، دریا و به‌وسیله از تشکیل‌های درکی کوارتز با تشکیل شرایط گازی مشابه شرایط ملایم در کانسار کوارتز از این تشکیل‌ها مشاهده می‌شود. فقده و دوگونه مشاهده درکی دوگانه شکل و همکاران ۴۲، به دوگونه علفی درکی دوگانه شکل و شاره‌های درکی با شکل نامنظم تقدم داده‌اند. همچنین بر اساس نوی و دریا و به‌وسیله ۱۴، مشاهده کانسار نشان دهنده کوارتز از این نظر تشکیل شده است. شکل‌های تشکیل‌های درکی کوارتز از این نظر شکل تقارنی و بر اساس ۱۳ و ۱۱۰ مشاهده شده‌اند. دریا و به‌وسیله از نظر تشکیل‌های درکی کوارتز از این نظر تشکیل شده است. شکل‌های تشکیل‌های درکی کوارتز از این نظر تشکیل شده است. شکل‌های تشکیل‌های درکی کوارتز از این نظر تشکیل شده است. شکل‌های تشکیل‌های درکی کوارتز از این نظر تشکیل شده است.
شکل 8. الگوی مشکل از کالکوپیریت، پریت و اکسید بهن در کانسار جارو. دگرگونی سیلیسی در اطراف این رگه مشاهده می‌شود (تور (V+L)), گرماهای درگیر اولیه دو فازه غنی از ذغال (V+L), گرماهای درگیر اولیه دو فازه غنی از گاز (V+L) در کانسار جارو در کانسار جارو.

جدول ۴. نتایج بدست آمده از آزمایش‌های میکروترومبودتوش شاره‌های درکیز کوارتز در کانسار جارو.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>تعداد شاره مطالعه شده</th>
<th>TH</th>
<th>(wt% NaCl eq.)</th>
<th>نوع فاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-S11</td>
<td>7</td>
<td>164</td>
<td>115</td>
<td>L+V</td>
</tr>
<tr>
<td>2-S11</td>
<td>5</td>
<td>161</td>
<td>7/6</td>
<td>V+L</td>
</tr>
<tr>
<td>3-S11</td>
<td>1</td>
<td>144</td>
<td>5/3</td>
<td>L+V</td>
</tr>
<tr>
<td>4-S11</td>
<td>5</td>
<td>149</td>
<td>9/2</td>
<td>L+V</td>
</tr>
<tr>
<td>5-S11</td>
<td>4</td>
<td>161</td>
<td>5/3</td>
<td>L+V</td>
</tr>
<tr>
<td>6-S11</td>
<td>9</td>
<td>169</td>
<td>9/2</td>
<td>L+V</td>
</tr>
<tr>
<td>1-S13</td>
<td>6</td>
<td>161</td>
<td>5/3</td>
<td>V+L</td>
</tr>
<tr>
<td>2-S13</td>
<td>8</td>
<td>166</td>
<td>7/8</td>
<td>V+L</td>
</tr>
<tr>
<td>3-S13</td>
<td>13</td>
<td>164</td>
<td>7/6</td>
<td>L+V</td>
</tr>
<tr>
<td>4-S13</td>
<td>4</td>
<td>148</td>
<td>7/6</td>
<td>V+L</td>
</tr>
<tr>
<td>1-S18</td>
<td>2</td>
<td>164</td>
<td>9/3</td>
<td>V+L</td>
</tr>
<tr>
<td>2-S18</td>
<td>6</td>
<td>9/3</td>
<td>5/3</td>
<td>L+V</td>
</tr>
<tr>
<td>3-S18</td>
<td>7</td>
<td>161</td>
<td>10/5</td>
<td>V+L</td>
</tr>
<tr>
<td>4-S18</td>
<td>6</td>
<td>9/3</td>
<td>5/3</td>
<td>V+L</td>
</tr>
</tbody>
</table>
مشاهدهی کانی‌های پیریت، کالکوبیریت و اسفاریت و نتایج حاصل از بررسی شاره‌های درگیر کوارتز در منطقه شان دهندی اهمیت نشان دهنده می‌دهد، همچنین سلولیدی و آنتن‌ها در جریان سولولی‌های خاصی، می‌توانند عوامل کنترل‌گر در حالت‌های خاصی از مخالط‌های گازی و کوارتز باشد. در این مقاله، احتمالاً این نتایج بررسی شده‌اند. وجود شاره‌های دو فازی غنی از مابین در گروه شاره‌های دو فازی غنی از گاز نسبت به سایر گروه‌های جهت بیشتری، می‌تواند موجب شود که این گروه‌ها را در نظر داشته باشیم. احتمالاً در این موارد، می‌تواند این نتایج بیشتری از کوارتز در منطقه بیشتری داشته باشیم. احتمالاً این نتایج بیشتری از کوارتز در منطقه بیشتری داشته باشیم.
[12] مصعودی ف، جمشیدی بدر، م. صاحی ز، کاربرد شواهد کانی شناسی و بافتی در تشخیص منابع اکنی در استوک گرانتینوئید دودهک (شمال شرق محلات)، مجله بلور شناسی و کانی شناسی، شماره ۲ (۱۳۸۶) ص ۴۴۴-۴۷۰.