بررسی خاستگاه کانسار جارو یا کاربرد داده‌های زئوشیمیایی سنگ میزان، شیمی کاله‌ها و بررسی شاره‌های درگیر کوارتز: معرفی پتانسیل اقتصادی طلا و نقره

محبوبه جمشیدی بدر*، ترکس سادات فرامرزی، فریبرز مسعودی، زهرا صلالی

چکیده: کانسار جارو به سبب اکسپلورسیون‌های فناوری، در 60 کیلومتری جنوب غرب کرک و در منابع سنگ‌های آذرین استدیا به تازی رخ داده است. نتایج زئوشیمیایی سنگ میزان انرژی از ماهیت آهکی-فلایی، میکرو اسید و پولی مایژ فاسی و فاکتور خاص مقیاس‌بان و زئوشیمیایی کاله‌های سنگ نهاده‌های کاله‌های آهکی، کاله‌های آهکی-فلایی، کاله‌های آهکی-فلایی و کاله‌های آهکی-فلایی نشان دهنده تأثیر مکانیزم نقره در کتکوبیست است. بررسی شاره‌های درگیر دال بر خاستگاه شاره‌ی کانسار و اثرگذاری و امپاتی شاره‌های میکرو اسید و پولی مایژ میانگین با شاره‌های حجمی است. لذا می‌توان یک خاستگاه میکرو اسید و پولی مایژ این منطقه در نظر گرفت. شواعند کانسار و بررسی شاره‌های درگیر، به نقش همبستگی‌های سوالیفی و چکش‌های

حضور کاله‌های چوین مالکین و آرزویی به شرایط احیا در زمان کانسارکی اشاره دارد.

واژه‌های کلیدی: کانسار جارو، شیمی کاله‌ها، طلا، نقره، شاره‌های درگیر.

مقدمه

گستره زئوشیمیایی جنوب غرب شیراز کرک و جنوب شرقی است. این مکان کانسار جارو به شکل افتراقی که دارای فاز فلزی است، تنها ۵۰ سال گذشته این منطقه‌ای منطقه، گراندکندی هست. از نظر توزیع عناصر طلا و نقره، در این منطقه غیر平凡 آلی می‌توان به تعداد کنار، زئوشیمیایی این کانسار از دیدگاه طی جوانی انرژی می‌توان بررسی فراز گرفته این کانسار از دیدگاه طی جوانی بررسی فراز گرفته است.

m_jamshidi@pnu.ac.ir

*تویسنت مسئول، تلفن: 09123757555، تاریخ: 2007، پست الکترونیکی: mjamshidi@pnu.ac.ir
روش بررسی

در این پژوهش، تعداد 12 مقطع نارک و صیقلی از کانسک تهیه و از نظر سنگی‌گذاری مورد بررسی قرار گرفتند. با توجه به کانسک‌شناسی مقاطع بررسی شده، تعداد 8 نمونه از کانسک و 23 نمونه از سنگ‌های آذرین پیروان آن انتخاب و بررسی شدند. از دستگاه‌های ELAN 9000 MPR (بررسی سطح‌های یادداشتی) و ICP-AES\(^1\) بروری مورد آنالیز قرار گرفتند. برای تعیین شکست صنایع معدنی پارس کالی، آنتی‌ز درصد برای SEM نمونه کاپ زایی 4 مقطع صیقلی تهیه و بررسی شد. همچنین Success Mapping در دانشگاه جنف شده با مشکلاتی از EDX JSM 6300 و X-5010 Bruker نیز استفاده شد. طی این آزمایشات Quantax 200 برای تعیین خاصیت شاره کالیاژ بال و شیب حاکم در زمان کانسک‌زنی، 6 مقطع دو صیقلی از زره‌های کوارتز و با فلز کندنی کانسک تهیه شدند. بررسی‌های میکرو دمانتیژ روى 50 نمونه از بریوپهن کوارتز در استفاده از سیستم سرمایش-گرمایش لیکم مدل 6000 تکنل کنده به کُنده LNP TMS940 و زرد کننده صورت گرفت. دقت اندازه‌گیری دستگاه در طول سرد گردان حداکثر 20° بوده است.

بحث

زمین‌شناسی

کانسک جارو در حد فاصل منطقه‌های ساختاری ایران مرکزی و کرمان آشنا شد. نهفته اروپه دخت واقع شده است. در منطقه مورد بررسی سنگ‌های قدمتی تاز ایران دیده نشدند. فعالیت‌های کانسک‌زنی در این منطقه داشته‌اند. این سنگ‌های پیشرفت‌ها نشان دهنده اپی‌دراسی در این منطقه بودند. نتایج این تحقیق نشان می‌دهد که با توجه به احتمال کانسک‌زنی در این منطقه، مناسب‌ترین کانسک‌زنی‌ها به عنوان روشی برای کنار گرفتن سنگ‌های پیشرفت‌ها در محل استفاده شده است. برای تعیین شکست صنایع معدنی پارس کالی، آنتی‌ز درصد برای SEM نمونه کاپ زایی 4 مقطع صیقلی تهیه و بررسی شد.

\(^1\) Inductively coupled plasma atomic emission spectrometry
\(^2\) Institute of Solid State Chemistry, Russian academy of Sciences, Ural's Branch
\(^3\) Atomic absorption spectrometry
بررسی خاستگاه کانسار جارو با کاربرد داده‌های زئوپتروپی...
کانال‌پایی

به‌دلیل هم‌جواری کانال‌های جارو با گرانت مرداپاد و دیگر سنگ‌های آدنین‌منشین و ماهیت زیستی و آب‌درمانی در کانال‌های جارو اغلب در راستای گلی و در ارتفاع بیرونی و در ارتفاع غیره، مشاهده شده است (شکل ۳- الف) طول‌فایل‌های زیست‌ساختی

نقط مهی‌های ابزار مناطقی کم فشار داشته و به‌عنوان حجمی مناسبی را برای استقرار عناصر کانال‌ساز قرار ده است. به‌عنوان مثال سقف دیواره‌ی معدن مروکه‌ی جارو به شدت تکنیک است و منطقه‌ی گلی که کانال‌پایی در آن انجام شده به‌خوبی دیده می‌شود. حرکت آب از این منطقه به سقف تونل شرایط ایجاد در گردشی شدید را فراهم کرده است. در این بخش گل‌های نانویی چون کالکتوپریت، ماسیت، آزوریت سیلیس، سیلیس، مشاهده می‌شود (شکل ۲- ب).

بررسی مقطع‌های نازک نیز نشانگر‌هایی نشان‌داده‌های نازک و منبج روندی در دره‌ها و شکاک‌های سنگ‌های این منطقه مورد بررسی بود.

جدول ۱: نتایج آلاین‌سنج‌های آدنین منطقه مورد بررسی بود

<table>
<thead>
<tr>
<th>نشانگر</th>
<th>Cu (ppm)</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Sn (ppm)</th>
<th>Mo (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF3</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF6</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF8</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF9</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF10</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF12</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF18</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF21</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF22</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF23</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF29</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF32</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF36</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF37</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF42</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF44</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF46</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF53</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF55</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF57</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF59</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF66</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>NF72</td>
<td>0.5</td>
<td>55</td>
<td>11.2</td>
<td>9.6</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
سنج را بر چندان می‌تواند معرف وجود ترکیبات آهکی در منطقه باشد (نکلیه ۲۴ ج). سنج کل کانسکس مس در کانسار ICP-AES در بررسی جارو، عبارت میانگین مس حدود ۲ درصد، عبارت میانگین نتره ppm ۴۶۶ ppm، میانگین سرب ppm ۲۹۴ و مقادیر متوسط روی ppm ۱۷۳ ppm اندازه‌گیری شده. همچنین با توجه به نتایج انالیز جذب اتمی (AAS) عبارت میانگین طلا حدود ppm ۲۰۲ به دست آمد (جدول ۲). به منظور بررسی دقیق‌تر کانسکس مس SEM Mapping استفاده شد. با استفاده از این روش، شیمی ۱۹ نقطه از کانسکس مس در کانسار جارو به دست آمده نمونه در شکل ۶ ارائه شد. همان‌طور که مشاهده می‌شود نتایج حاصل از بررسی SEM کانسکس مس می‌تواند برای انتخاب مکانیکی در پانه‌واره هیدروفلزیت به سمت انتخاب کانسکس جارو به مدت مدت به‌کلیه پرسه‌های ماشینی مورد بررسی قرار گرفته که کانسکس در کانسار جارو بیشتر به ماهیت آزاد (مس بی‌بی‌پرکند) می‌باشد. کلسیمیت، کالکوپیریت، کالکوپیریت، اسکالریت، کرینتیت، کالکوپیریت، کالکو پیریت، کالکوپیریت، کالکوپیریت، کالکوپیریت، کالکو پیریت، کالکوپیریت، کالکوپیریت، کالکو پیریت، کالکوپیریت، کالکو پیریت، کالکوپیریت، کالکوپیریت، کالکوپیریت، کالکوپیریت، کالکوپیریت، کالکوپیریت، کالکو پیریت، کالکوپیریت، کالکوپیریت
کالکوپیریت در نمونه 1-N6 (شکل 1-۴) این ادعا را تایید می‌کند (جدول ۳).

شکل ۴: کاتی های کالکوپیریت (Cpy)، اسفالتیت (Sph)، (He) و همانیت (Bor) (ب) بلور درشت نیمه خود شکل پیریت همرنگ با کالکوپیریت (پ) تبدیل کالکوپیریت به کالکوستین (C) و کوژولین (Cv) (ت) کاتی های مالاکیت (Mal) و کریپوکلا (Chr) همرنگ کاتی های بورنیت (Cpy) (ج) تشکیل مالاکیت در داخل درزها و شکاف‌ها (نور.

جدول ۲: نتایج آنالیز نمونه‌های کلسار مس چارو دروس

<table>
<thead>
<tr>
<th>شماره</th>
<th>Cu (ppm)</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Mn (ppm)</th>
<th>Mo (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>۴۰۳۶۷.۹</td>
<td>۲۵۸.۷</td>
<td>۴۹.۸</td>
<td>۴۶.۷</td>
<td>۵۰۰.۵</td>
<td>۱۰۰.۵</td>
<td>۹۰۵.۸</td>
<td>۳۶۷۳.۱</td>
<td>۱۹۷.۲</td>
<td></td>
</tr>
<tr>
<td>M-3</td>
<td>۴۵۰۴</td>
<td>۵۸۴</td>
<td>۴۲.۴</td>
<td>۴۲.۲</td>
<td>۳۳۲.۲</td>
<td>۴۳۲.۲</td>
<td>۳۳۲.۲</td>
<td>۵۵۳۳.۰</td>
<td>۱۶۵.۷</td>
<td></td>
</tr>
<tr>
<td>M-8</td>
<td>۳۴۹</td>
<td>۲۲.۲</td>
<td>۵۵.۹</td>
<td>۵۵.۹</td>
<td>۵۵.۹</td>
<td>۵۵.۹</td>
<td>۵۵.۹</td>
<td>۵۵۳۳.۰</td>
<td>۱۶۵.۷</td>
<td></td>
</tr>
<tr>
<td>M-9</td>
<td>۴۵۵۲۲.۲</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
<td>۷۷.۷</td>
</tr>
<tr>
<td>M-12</td>
<td>۴۰۸۷۲.۷</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
<td>۱۰۴.۲</td>
</tr>
<tr>
<td>M-13</td>
<td>۲۳۲۸۱.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
</tr>
<tr>
<td>M-17</td>
<td>۲۳۸۲۱.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
<td>۱۱۶.۵</td>
</tr>
<tr>
<td>M-20</td>
<td>۲۶۲۶۶.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
<td>۱۴۹.۱</td>
</tr>
<tr>
<td>میانگین</td>
<td>۲۸۱۷۱.۵</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
<td>۲۶۰.۲</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نقطه</th>
<th>O</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>K</th>
<th>Mn</th>
<th>Fe</th>
<th>Ca</th>
<th>Ti</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2_1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N2_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.05</td>
<td>-</td>
</tr>
<tr>
<td>N2_3</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>N2_4</td>
<td>33.6</td>
<td>-</td>
</tr>
<tr>
<td>N2_5</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>1%</td>
<td>-</td>
</tr>
<tr>
<td>N2_6</td>
<td>32.3</td>
<td>-</td>
</tr>
<tr>
<td>N4_1</td>
<td>24.8</td>
<td>-</td>
</tr>
<tr>
<td>N4_2</td>
<td>30.7</td>
<td>-</td>
</tr>
<tr>
<td>N4_3</td>
<td>32.85</td>
<td>-</td>
</tr>
<tr>
<td>N4_4</td>
<td>42.57</td>
<td>-</td>
</tr>
<tr>
<td>N4_5</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>1%</td>
<td>-</td>
</tr>
<tr>
<td>N6_1</td>
<td>-</td>
</tr>
<tr>
<td>N6_2</td>
<td>-</td>
<td>-</td>
<td>31.5</td>
<td>-</td>
</tr>
<tr>
<td>N6_3</td>
<td>23.99</td>
<td>-</td>
</tr>
<tr>
<td>N6_4</td>
<td>-</td>
<td>-</td>
<td>9.92</td>
<td>-</td>
</tr>
<tr>
<td>N6_5</td>
<td>37.55</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>N6_6</td>
<td>-</td>
</tr>
<tr>
<td>N6_7</td>
<td>5.519</td>
<td>-</td>
</tr>
<tr>
<td>N6_8</td>
<td>5.2</td>
<td>-</td>
</tr>
</tbody>
</table>

| کاتی | (CuFeS2) کاتوکوپریت | کاتوکوپریت آکسید شده | کاتوکوپریت آکسید شده | کولبولا | ارتوکلاژ هزاره | کولبولا | کولبولا | ارتوکلاژ هزاره | اکسید مس (نوریت) | اکسید مس (نوریت) | کولبولا | ارتوکلاژ هزاره | کولبولا | کولبول
نمونه‌های مختلفی از این سطح از تنش‌های مختلفی در زمینه‌های مختلفی در شکل 7 تصویر Element mapping نشان داده می‌شود.
بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

پیش‌بینی گزارشی در گزارش‌های فیزیولوژی، سلول‌پریپت و شرایط فیزیولوژیک ماهیت و کانسوس گردیده که اغلب قرار ندارند و معمولاً به‌طور گسترده‌ای گرفته می‌شوند.

بررسی شاره‌های درکی رگ‌های کووازی در کانسار جارو

بررسی انجام گرفت که فرانسیس کانسیاری به‌وسیله عواطف مهمی از قبل، اغلب قرار ندا
جدول ۴: نتایج به دست آمده از آزمایش‌های میکروتروپومتری شاره‌های درگیر کوارتز در کانسارد گردو.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>شماره شاره</th>
<th>Tice</th>
<th>TH</th>
<th>(wt% NaCl eq.)</th>
<th>نوع فاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-S11</td>
<td>7</td>
<td>124</td>
<td>115</td>
<td>L+V</td>
<td></td>
</tr>
<tr>
<td>2-S11</td>
<td>5</td>
<td>161/5</td>
<td>V+L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-S11</td>
<td>10</td>
<td>144/2</td>
<td>V+L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-S11</td>
<td>5</td>
<td>11/8</td>
<td>L+V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-S11</td>
<td>4</td>
<td>141/5</td>
<td>V+L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-S11</td>
<td>9</td>
<td>9/3</td>
<td>L+V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-S13</td>
<td>6</td>
<td>121</td>
<td>9/3</td>
<td>V+L</td>
<td></td>
</tr>
<tr>
<td>2-S13</td>
<td>8</td>
<td>136</td>
<td>7/8</td>
<td>L+V</td>
<td></td>
</tr>
<tr>
<td>3-S13</td>
<td>13</td>
<td>114</td>
<td>11/8</td>
<td>L+V</td>
<td></td>
</tr>
<tr>
<td>4-S13</td>
<td>2</td>
<td>148</td>
<td>7/0</td>
<td>V+L</td>
<td></td>
</tr>
<tr>
<td>1-S18</td>
<td>2</td>
<td>154</td>
<td>8/5</td>
<td>L+V</td>
<td></td>
</tr>
<tr>
<td>2-S18</td>
<td>6</td>
<td>22/5</td>
<td>12/1</td>
<td>V+L</td>
<td></td>
</tr>
<tr>
<td>3-S18</td>
<td>7</td>
<td>111/5</td>
<td>10/5</td>
<td>L+V</td>
<td></td>
</tr>
<tr>
<td>4-S18</td>
<td>6</td>
<td>95/8</td>
<td>11/0</td>
<td>V+L</td>
<td></td>
</tr>
</tbody>
</table>
مشاهدی کانی‌های پریت، کالکوپرتیت و استفالیت و نتایج حاصل از بررسی شاره‌های درگیر کوارتز در منطقه نشان دهندی اهمیت نقش هیماتیت‌های سولفیدی و آنیون‌های HS⁻ و SO₄²⁻ در انتقال عناصر فلزی است. در نهایت با نظر می‌رسد فازات کانسار ساز پس از مگماتیسم بوسیله گرانیت‌ها صعود کننده از منیا پی سنگ دگرگونه و سنگ مایه گردیده‌های مرزی اثر بین عبور کرد و در مسیر خود با شاره‌های جوی آمیخته شدهاند. وجود شاره‌های دو فازی غنی از مايع در کانسار شاره‌ها دو فازی غنی از گاز نسبتی به پدیده جوش و آمیختگی شاره‌های مالیمبی و جوی در منطقه است. احتمالاً آمیختگی این شاره‌های بارور با شاره‌های جوی در نزدیکی سطح زمین، مواجه شدن با فضاهای گستده سنگ میزان و شکستگیهای موجود در آن و در نهایت کاشش فشار به‌طور مختلف که دما و شوری یک شار درگیر با ترکیب 8 را تحت تأثیر فرآوردن دهد [16].

شکل 9 نتایج شرایط حاصل از مکروتروموتری شاره‌های درگیر کوارتز در کانسار جارو. (الف) نمودار دمای همگن شادگی - بزنگانی به منظور تعیین فشار با توجه به شرایط شاره‌های درگیر [14]. (ب) نمودار دمای همگن شادگی - شوری شاره‌های به منظور تعیین کمیتک (آبی) موردنی در حمل عناصر کانسار ساز [15].

نمونه‌برداری زنی کانسار بر اساس دمای همگن شدید-شوری شاره‌های درگیر [14]. (ت) مدل شبیه‌سازی برای نشان دادن رویدادهای حاصل از فرآیندهای مختلفی. که دما و شوری یک شار درگیر با ترکیب 8 را تحت تأثیر فرآوردن دهد [16].
[12] [ماهرباش و شاهد کانی، جمشیدی بدر م. صالحی، کاربرد شواهد کانی شناسی و بافتی در تشخیص متسوئاتپیک کانی در استوک گرانتولیدی دودهک (شمال شرق محلات)، مجله بلور شناسی و کانی شناسی، شماره 2 (1386) ص 45-77-1386.
[17] [صالحی، م. جمشیدی بدر، "پترولولوژی و زئوشیمی سنگهای آذرین جنوب شرق اشتهرود و ترکستان بر کانی رازی منطقه، رساله دکتری دانشگاه آزاد اسلامی واحد تهران شمال (1393) ص 270.
[23] [صالحی، م. جمشیدی بدر، "پترولولوژی و زئوشیمی سنگهای آذرین جنوب شرق اشتهرود و ترکستان بر کانی رازی منطقه، رساله دکتری دانشگاه آزاد اسلامی واحد تهران شمال (1393) ص 270.