استفاده از شیمی کانی‌آمیفیبول برای دما- فشارسنجه گراتیونیت بزمان. جنوب شرق ایران

محمدرضا قدسی*، محمد بومری، ساسان یاقوتی

بهشت زمین شناسی، دانشگاه سیستان و بلوچستان، زاهدان/ ایران

چکیده: گراتیونیت بزمان در حاشیه جنوبی بلک لوت و در جنوب شرقی ایران واقع شده است. سنگ‌های این توده از گراینت، گراآودوبوریت، کوارتز مترودوبوریت، مترودوبوریت، دوبوریت و گاروبی تکثیف شده است. کلیه اصلی تکثیف‌های آن شامل پلاریتیال، فلدسپار، کوارتز، هیدروژن و بیونت و کلاههای فرعی شامل یافتن، زیرکن، مگنتیت و ایلمنیت هستند. ترکیب شیمی‌ای کانی‌آمیفیبول در گروه آمیفیبول‌های کلسیک و از نوع انسنتیولیت تا منیزیو‌پپتریت قرار می‌گیرد. این آمیفیبول‌ها اولیه به فروارانش بوده و با پیاده‌های تکنوماجمایی پیشنهادی برای این گراتیونیت می‌باشد. فعالیت قرارگاه با استفاده از تکنیک‌هایی به ویژه لایه‌گیری رسوبی و مایعات هموگان دارد. فشارسنجه براساس مقدار الیت‌نومیوم، فشاری‌آمیفیبول را ۱۰۶/۳ کیلوپاوس کاربرد می‌کند. دمسازهای فنی-پلی‌پروفیل‌های پلاریتیال و پلاریتیال در این سنگ‌ها، دمای ۴۶۹ تا ۴۲۷ درجه سانتی‌گراد را پیرامون برداشت می‌کنند. میزان می‌باشد که دریافت‌ها موجود نمی‌باشد.

واژه‌های کلیدی: دما- فشارسنجه، آمیفیبول، گراتیونیت، بزمان.

مقدمه
کاربرد ترکیب شیمی‌ای کانی‌آمیفیبول در تعیین شرایط محیطی تشکیل‌گرانیت‌های سه‌شاخه شناخته شده است [۱]. آمیفیبول‌ها در دامنه‌ای کلی در شرایط فشار و دما ظاهر می‌شوند و از ساده‌ترین نوع سنگ‌های آذرین بوده و سنگ‌های آذرین کلی گراینت، اسکاتندره، آنتخشی و آنتخشی‌های دیگر در شرایط فشار و دما از ۱۵ تا ۳۲ کیلوبار و درجه دمای ۳۱۵ تا ۴۰۰ درجه سانتی‌گراد. این کامی کانی‌های سنگ‌های آذرین دووی و پیشین از سنگ‌های آنتخشی و پیشین داشته و در یک کست‌های شدت فشار و دما از ۱۵ تا ۳۲ کیلوبار و دمای ۳۱۵ تا ۴۰۰ درجه سانتی‌گراد.

کاربرد شیمی‌ای کانی‌آمیفیبول در تعیین شرایط محیطی تشکیل‌گرانیت‌های سه‌شاخه. شناخته شده است [۱]. آمیفیبول‌ها در دامنه‌ای کلی در شرایط فشار و دما ظاهر می‌شوند و از ساده‌ترین نوع سنگ‌های آذرین بوده و سنگ‌های آذرین کلی گراینت، اسکاتندره، آنتخشی و آنتخشی‌های دیگر در شرایط فشار و دما از ۱۵ تا ۳۲ کیلوبار و دمای ۳۱۵ تا ۴۰۰ درجه سانتی‌گراد. این کامی کانی‌های سنگ‌های آذرین دووی و پیشین از سنگ‌های آنتخشی و پیشین داشته و در یک کست‌های شدت فشار و دما از ۱۵ تا ۳۲ کیلوبار و دمای ۳۱۵ تا ۴۰۰ درجه سانتی‌گراد.

*Mohammadreza.Ghodsi@gmail.com

*ویستنده مسئول، تلفن: ۰۲۱-۸۳۱۹۰۸۰۰، نامبر: ۰۲۱۶۴۲۷۲۰۶۵، پست الکترونیکی: Mohammadreza.Ghodsi@gmail.com
روش بررسی
در این پژوهش، نخست نمونه برداری دقیقی از گرانیت‌نیند
بزمان صورت گرفت. حدود 200 مقطع تازه از این نمونه
تهی شدن و با استفاده از میکروسکوپ سطحی مدل
مورد بررسی قرار گرفت و پس از آششیابی با
ویژگی‌های کننده‌شناختی و سنگ‌شناسی، تعداد 4 مقطعی
نمونه‌برداری سالم و فاقد دگرسانی بودند. برای آنالیز نفط‌های


g=∑A+ ∑B

جدول 1: نتایج آنالیز ریز بردارش الکترونی کلی‌آمیفیساین در گرانیت‌نیند بزان

<table>
<thead>
<tr>
<th>Sample no</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MgO</th>
<th>MnO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>F</th>
<th>Cl</th>
<th>P₂O₅</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>44.14</td>
<td>5.68</td>
<td>8.31</td>
<td>4.03</td>
<td>0.96</td>
<td>0.24</td>
<td>14.34</td>
<td>1.04</td>
<td>0.37</td>
<td>0.07</td>
<td>0.002</td>
<td>0.002</td>
<td>0.96</td>
</tr>
<tr>
<td>A02</td>
<td>41.17</td>
<td>5.17</td>
<td>8.31</td>
<td>4.03</td>
<td>0.96</td>
<td>0.24</td>
<td>13.45</td>
<td>1.04</td>
<td>0.37</td>
<td>0.07</td>
<td>0.002</td>
<td>0.002</td>
<td>0.95</td>
</tr>
<tr>
<td>A03</td>
<td>43.17</td>
<td>5.17</td>
<td>8.31</td>
<td>4.03</td>
<td>0.96</td>
<td>0.24</td>
<td>14.34</td>
<td>1.04</td>
<td>0.37</td>
<td>0.07</td>
<td>0.002</td>
<td>0.002</td>
<td>0.96</td>
</tr>
<tr>
<td>A04</td>
<td>44.14</td>
<td>5.68</td>
<td>8.31</td>
<td>4.03</td>
<td>0.96</td>
<td>0.24</td>
<td>13.45</td>
<td>1.04</td>
<td>0.37</td>
<td>0.07</td>
<td>0.002</td>
<td>0.002</td>
<td>0.95</td>
</tr>
</tbody>
</table>

قلمبیایی و گاللاژ‌شناسی ایران

586
جدول 2 \( \text{نتایج آلاینده‌برداری الکترونی کانی بازیکلی‌کار برای گرانیت‌ویت بزمان} \)

<table>
<thead>
<tr>
<th>Sample</th>
<th>80/15</th>
<th>80/22</th>
<th>80/28</th>
<th>80/35</th>
<th>80/71</th>
<th>81/12</th>
<th>81/13</th>
<th>81/23</th>
<th>81/34</th>
<th>81/44</th>
<th>81/56</th>
<th>81/61</th>
<th>81/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_2)</td>
<td>32/37</td>
<td>32/41</td>
<td>32/61</td>
<td>32/68</td>
<td>32/69</td>
<td>32/64</td>
<td>32/63</td>
<td>32/64</td>
<td>32/64</td>
<td>32/64</td>
<td>32/64</td>
<td>32/64</td>
<td>32/64</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>0/2</td>
<td>0/0</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>24/47</td>
<td>24/30</td>
<td>24/39</td>
<td>24/40</td>
<td>24/39</td>
<td>24/38</td>
<td>24/37</td>
<td>24/36</td>
<td>24/35</td>
<td>24/34</td>
<td>24/33</td>
<td>24/32</td>
<td>24/31</td>
</tr>
<tr>
<td>FeO</td>
<td>0/0</td>
</tr>
<tr>
<td>MnO</td>
<td>0/1</td>
<td>0/0</td>
</tr>
<tr>
<td>MgO</td>
<td>0/0</td>
</tr>
<tr>
<td>CaO</td>
<td>7/35</td>
<td>7/44</td>
<td>7/47</td>
<td>7/45</td>
<td>7/43</td>
<td>7/42</td>
<td>7/41</td>
<td>7/40</td>
<td>7/39</td>
<td>7/38</td>
<td>7/37</td>
<td>7/36</td>
<td>7/35</td>
</tr>
<tr>
<td>K(_2)O</td>
<td>0/0</td>
</tr>
<tr>
<td>Total</td>
<td>10/345</td>
<td>10/332</td>
<td>10/324</td>
</tr>
<tr>
<td>Si</td>
<td>2/0</td>
</tr>
<tr>
<td>Al</td>
<td>0/0</td>
</tr>
<tr>
<td>Ti</td>
<td>0/0</td>
</tr>
<tr>
<td>Fe(_2)O(_4)</td>
<td>0/0</td>
</tr>
<tr>
<td>Ca</td>
<td>0/3</td>
</tr>
<tr>
<td>Na</td>
<td>0/0</td>
</tr>
<tr>
<td>K</td>
<td>0/0</td>
</tr>
<tr>
<td>Ab</td>
<td>0/0</td>
</tr>
<tr>
<td>An</td>
<td>0/0</td>
</tr>
<tr>
<td>Or</td>
<td>0/0</td>
</tr>
</tbody>
</table>

زمین‌شناسی گرانیت‌ویت بزمان

گرانیت‌ویت بزمان در ۱۰۰ کیلومتری شمال غرب ایران‌شهر، جنوبی جنوب غرب لوت و در جنوب شرقی ایران واقع شده است. این گرانیت‌ویت به‌طور مرتب در امتداد‌های قطبی‌تر بقع‌های نسبی یافته شده‌اند. از این‌رو در شیاف‌های انرژی سیلاره، ماهی سیر و سنگ‌های سنگین (سازنده سردر) به سر کرونپر، هم‌اکنون و دیواره‌هایی (سازندگان استوانه‌های) به سر سه پسر می‌نگرند. این گرانیت‌ویت مالی به‌طور نوار مقطع در جانبه‌هایی گرانیت‌ویت و در اطراف بعضی از نقاط خرم‌های خنثی می‌شود. تغییرات سایری به روش‌های استراوسیم و روش‌های تغییرات خوراکی‌های گرانیت‌ویت به‌طور نوار مقطع در جانبه‌هایی گرانیت‌ویت و در اطراف بعضی از نقاط خرم‌های خنثی می‌شود.

برای نامگذاری سنگ‌های نفوذی از ردمیندی مواد [A] استفاده شد. شماره ۱۳۰۰ نقطه با دسته‌گاه شماره‌داری کلیایی خرابی هر نمونه صورت گرفت. بنابراین این داده‌ها، سنگ‌های کشتی مورد بررسی گرانیت‌ویت، کارزموندی‌پورت، موندزورین، دیورت و گرایونگاری شده‌اند (شکل ۲). کانی‌های نانولیکه‌ای نمایش دهنده‌ی گرانیت‌ویت شال‌کارزموندی، پلاژیوکلاز، قلب‌سیاه، هورنبلند، بولیت، مسکوتی، آسفت‌ای، زیرکن، مگنتیت و الیمنیت است. هورنبلند و بولیت کانی‌های نانولیکه‌ای غالب در گرانیت‌ویت بزمان است (شکل ۳).
شکل ۱ نقشه‌ی ساده‌ی زمین‌شناسی گرانتنود برزن، اقتباس از نقشه‌ی زمین‌شناسی ۱۰۰۰۰۰۰ برزن و مکسان [۷] با تغییرات توسط نگارنده‌گان.

شکل ۲ موقعیت نمونه‌ها در مثلث نام‌گذاری مودی سنجش‌های نفوذی [۸].
گرانیت گرانیتها فراوان ترین واحد سنگی گرانیتونیت بزمان است که آنها را می‌توان از نظر فلزیکی به دو دسته بی‌نفروحه و سفیده و رده کرد. گرانیت‌های بی‌نفروحه حاوی درشت بلوهای ارتزو هستند که بیشتر در بخش غربی گرانیتونیت بزمان رخ‌نخورن دارند. در حالی که گرانیت‌های سفیده در بخش شرقی مشاهده می‌شود و بطور محیطی حاوی کالی‌های بی‌نفوذ و مسکوتی هستند. فلدسپار بی‌نفروحه (65-18). درصد حجم سنگ را تشکیل می‌دهند.

موسوم‌دوره (کوارتز موسوم‌دوره) 
این گروه از سنگ‌ها در حاشیه‌های شرقی توپوگرافی اصلی گرانیت بزمان و بصورت توده‌ای کوچک رخ‌نخورند. پلاژیوکلاز (25-40)، فلدسپار پتاسیم (25-10)، کوارتز (15-30)، بیوئیت (15-30)، اسفن (8-10) و کالی‌های تیره (15-20) درصد حجم سنگ را تشکیل می‌دهند. مگنیت و ایلامینت کبی غالب تیره و بافت آن‌ها دانه‌ای (متوسط-دشش) است.

توصیف: گرانیتونیت بزمان بیشتر در بخش شرقی و جنوبی بزمان مشاهده می‌شود. بلوهای این گروه به سه نوع عمده تقسیم می‌شوند: کوارتز، فلدسپار، و پلاژیوکلاز.
آنها بنابر فرمول Ab2C3S4IVT22(OH)4 استفاده آمیفیبول \( \text{Fe-Mg-Mn} \) و برای بهره‌برداری از آن که در جدول ۱ ارائه شده است. چنانچه شکل ۴ نشان می‌دهد. براساس رده بنده لیک [۹] ترکیب آمیفیبول‌های مورد بررسی جزء گروه آمیفیبول‌های کلسیک بوده و در دیگر گروه اکتاکیل‌نلن‌های مایزی‌روزینلند فرور می‌گیرند. برخی از پژوهشگران [۱۰] حضور آمیفیبول‌ها کلسیک در سنگ‌های گرانیتونیثی را نشانه‌ای برای این سنگ‌ها به توده‌نفوذ نوع I می‌دانند.

امیفیبول‌های آذرین و درگون به‌وسیله شاره‌ی [۱۰] براساس مجموع کاتیون‌هایی که جدا می‌شوند. بنابراین ردمبندی، نمودن‌های مورد بررسی در گستره‌ای آمیفیبول‌های حاصل از دب‌نسل از میزان کم‌تری بیشتر و از آمیفیبول‌های حاصل از فرآیند درگون‌گذی تمرک داده شده (شکل ۵).

*پلاژیوکلاز (۵۵,۸۹-۷۰,۶۹) فلدسپار بنامیم (۵۵-۵) کوارتز (۱,۵-۲) و هورنلند (۷،۸-۱۲،۶۹ بیوتیت (۱۲،۸۱-۳۰) و کاندیه اسپری (۸۰-۱۱) درصد حجم سنگ را تشکیل می‌دهند.

گاودو سنگ‌های گابرویی بانتهای مختلفی از قبل میان دانه، پوئی، کلیتیک و دانه‌ای دارند. گابروها به‌صورت توده‌های کوهک در حاشیه‌های جنوبی و غربی گرانیتونیث بزمان مخزن داند. پلاژیوکلاز (۴-۶)، کلازیبروکسن (۵۵-۶۹)، فلدسپار بنامیم (۳۴-۷) کوارتز (۱۷-۱۱)، هورنلند (۳۱-۳۰) و بیوتیت (۳۴-۶) و کاندیه اسپری (۱۷-۱) درصد حجم سنگ را تشکیل می‌دهند.

بحث و بررسی
شیمی کانی آمیفیبول
آمیفیبول مهم‌ترین کانی مافیک موجود در گرانیتونیث بزمان است. نتایج حاصل از تجزیه‌ای این کانی به‌روش ریز پردازشی
شیمی‌کانی پلاژیوکلار

برای پی‌بردن به ترکیب شیمیایی این کانی، در ۴ نمونه از پلاژیوکلازهای مورد بررسی ریز پرادارشی الکترونی قرار گرفتندا که نتایج آن در جدول (۲) آمده‌اند. شکل (۶) ترکیب پلاژیوکلازهای در گرانیت‌نوید بزمان را در نمودار الیت-آورنیت [۱۱] نشان می‌دهد. گستره‌های ترکیبی پلاژیوکلازها در البیوکلاز نا آن‌دیده تغییر می‌کند. تغییرات محدودی ترکیبی این پلاژیوکلازها در زمین‌فرشنسی، بر مبنای محتوای Al2O3 در هوریایند به‌عنوان یک ویژگی مناسب تلقی می‌شود [۱۲]. برای دماسنجی با استفاده از زوئ آمفیبول-پلاژیوکلاز هم‌بسته، پلاژیوکلازهای نابینای منطقه‌بندی باشد که این در بررسی نقطه‌ای پلاژیوکلازها مورد نظر بوده است.

تعیین محیط زمین‌ساختی گرانیت‌نوید بزمان با استفاده از ترکیب آمفیبول

از ویژگی‌های شیمیایی آمفیبول‌ها که بیشتر برابری بررسی‌های زنده‌بینی که گزارش‌های حاصل شده، برای مقدار ویژگی‌های دگرگونی محیط‌های تکنومادامگی مختلف به ویژه محیط‌های فرو راش (subduction) قرار گرفته‌اند به دست آمده‌اند. نمونه‌های پلاژیوکلازها در گرانیت‌نوید بزمان.
برایان و همکاران [17] با استفاده از شواهد زمین‌شناسی نشان دادند که این گرانیت‌هایی که با این نام نامیده شده و ترکیب شیمیایی آن حاشیه به مرکز اسیدی‌تری می‌شود، نظیر براین [5] این گرانیت‌های روی منطقه‌های فوران‌های عمان (بوستون از اقیانوس غربی) جای دارد و حاصل ذوب گسترش یا پوسته آنتیپاونس (عمان) به زیر ورقه ایران مرکزی است که در کوارترن یا فوران‌های آنتیپاونس‌های اهکی، بسیار زمینی و همگونی در لانه‌های نما. به‌طور کلی از نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمن دما - فشارسنجی

امفیبول یکی از فرآیندهای تبدیل کانی‌های توره گرانیت‌هایی روی منطقه‌های فوران‌های آدناتÍکی است. به‌طور کلی از نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمن فشارسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان و فشارسنجی

امفیبول یکی از فرآیندهای تبدیل کانی‌های توره گرانیت‌هایی روی منطقه‌های فوران‌های آدناتÍکی است. به‌طور کلی از نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان دما - فشارسنجی

امفیبول یکی از فرآیندهای تبدیل کانی‌های توره گرانیت‌هایی روی منطقه‌های فوران‌های آدناتÍکی است. به‌طور کلی از نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان فشرسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان دما - فشارسنجی

امفیبول یکی از فرآیندهای تبدیل کانی‌های توره گرانیت‌هایی روی منطقه‌های فوران‌های آدناتÍکی است. به‌طور کلی از نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان فشرسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان فشرسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان فشرسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان فشرسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.

زمان فشرسنجی

امفیبول‌های گرانیت‌هایی به‌طور کنترل‌های برای ترکیب‌های در فرآیندهای گرانیت‌هایی مورد استفاده خارج که گرافیت [17] از این نظر وابستگی به تکیه‌گاه‌های مورد استفاده در زمین‌شناسی.
زمین داماسنی هورنبلند- پلاژیوکلار

روش بلوندنی و هولاندن [22] روشی را برای داماسنی براساس واکنش مس توصیف کرده‌اند. ترموئیونیاً با استفاده از روش أمفیبول- پلاژیوکلار همزین اثر را کردن این زمین داماسنی برای دمای هر از این مدل‌ها برای آنها انجام می‌دهد. فشار در همه روابط داماسنی با استفاده از روش داماسنی اصلی و داماسنی براساس رابطه زیر استوار است:

\[ T = 0.677P + 48.98 + Y_{Al^3+}/0.0429 - 0.0083144\ln(Si-4/8-Si)X_{Al^3+} \]

در این رابطه T دمای تغذیه یا حساب کلیوی در میلی کیلوپاسکال، P فشار برحسب کیلوبار، و Si تعداد کاتیون‌های سلفات در فرومول SiO2 است. از روابط زیر به دست می‌آید:

\[ X_{Al^3+} > 0.5, \quad Y_{Al^3+} = 0 \]

\[ X_{Al^3+} < 0.5, \quad Y_{Al^3+} = 8.06 + 25.5(1-X_{Al^3+})^2 \]

با استفاده از این روش دمای تغذیه مدل‌ها برای پلاژیوکلار در هر مدل داماسنی اصلی، Y_{Al^3+} در این مدل داماسنی اصلی و داماسنی براساس رابطه زیر استوار است.

\[ \log_{10}X_{Al^3+} = -30930/T + 14.98 + 0.142(P-1)/T \]

نهال و همکاران [16] نيز رابطه ي زير را در فشارهای 20 تا 100 بار تعبیر دمای تعادل هورنبلند و پلاژیوکلار ارائه كرده‌اند:

\[ T [{\textdegree}C] = 654.9 + 25.3P \]

براساس فرمول بالا بیشینه و کمینه دمای محاسبه شده به ترتیب برابر با 758 و 697 درجه سانتی گرادند.

تعیین گریزندگی اکسیون محیطی تشکیل أمفیبول‌ها

یکی از روش‌های ارزیابی مقادیر گریزندگی اکسیون در سنگ‌های تغذیه‌ای بررسی تشکیل أمفیبول‌های است که از نظر شیمیایی دارای نسبت Fe*/(Fe*+Mg) > 0.3 برداشتی أمفیبول‌های منطقه منیزیوهرنبلندی این سنگ‌ها در Fe*/(Fe*+Mg) دارای یک رابطه خاصی است. نسبت منیزیوهرنبلندی با افزایش روند جدایی از 28 تا 36.3 افزایش می‌یابد و مقدار این شیمیایی جهت از 61 تا 30.3 تغییر می‌کند. چنینکه در شکل 9 نشان داده شد، امفیبول‌های مورد بررسی در سطح گریزندگی نسبتاً با یک تشکیل شده‌اند. هر چه گریزندگی اکسیون کمتر باشد Fe3+/Fe2+ می‌تواند به مقادیر بالاتری Fe3+/Fe2+ در شکل 9 هورنبلند جایگزین شود. بالا بودن نسبت باعث جانشینی تشکیل Al با Mg می‌شود [4]. برای محاسبه میزان گریزندگی اکسیون از رابطه زیر استفاده شده است:

\[ \log_{10}X_{Al^3+} = -30930/T + 14.98 + 0.142(P-1)/T \]
شکل ۹ نمودار گریزندگی اکسیژن بر پایه ترکیب آمفیبولها [۲۲]. نمودار با لال بودن نسبی گریزندگی اکسیژن در زمان تبلور آمفیبول را نشان می‌دهد.

با استفاده از رابطه ونر، کمیته و بیشینه برای LogfO ی برای گرانولیت‌های به ترتیب ۱۵۴۶–۱۹۴۶ محاسبه شدند.

لزمه به پای آوری این که حضور هم‌پانسان مگنتنیت، اسفین و کورانت همرا آمفیبول در کورانت موزندیورتیت‌ها، گرانولیت‌ریت‌ها و گرانولیت‌های منطقه می‌باشد گرانولیت‌گی اکسیژن و نشان دهنده تکامل این گرانولیت‌ها در ارتقاء به مرزهای ورقه‌های هم‌گر است [۲۲]. همچنین حضور مگنتنیت، پایین بودن نسبت ازوتوریتی [۸۷Sr/۸۶Sr] (۲۰۰۴)، ترکیب سنگ‌شناختی و کانی‌شناسی (گرانولیت‌گی) و شیمی کل سیگ روند بررسی مگنتنیت نوع ۱ بودن این گرانولیت‌دها دارد [۲۵].

برداشت

بررسی شیمی کانی آمفیبول در گرانولیت‌زدن بنای نشان می‌دهد که:

۱- کلیه آمفیبول‌های مورد بررسی طی فرابندی‌های اطراف تشکیل شده و در کوره آمفیبول‌های کلسیک و گروه میژه‌هایوندید قرار می‌گیرند که شاخه توندهای نفوذی نوع ۱ هستند.

۲- این آمفیبول‌ها بیشتر در کوره‌های آمفیبول‌های وابسته به مناطق فروارات (S-Amph) قرار می‌گیرند. که با نتایج حاصل از تعیین محیط زمین ساخته با استفاده از روش شیمی سنگ کل هم‌خوانی دارد.


[۲] داودیان دهکده‌ی ع. شیمی کانی‌ها و شناختهای تفندیال


References:

10. A.N. Sial, V.P. Ferreira, A.E. Fallick, M. Jeronimo, C.M. Cruz, "Amphibol rich clots in calc-alkaline granitoids in the Borromena province