استفاده از شیمی کانی امپیبول برای دما- فشار سنجی‌گرانیت‌وید زبان، جنوب شرق ایران

محمدرضا قدسی*، مهدی بومری، ساسان یاقوتی

(دریافت مقاله: 91/7/72، نسخه نهایی: 91/10/21)

چکیده: گرانیت‌وید زبان در حاشیهٔ جنوبی بلوک لوت و در جنوب شرقی ایران واقع شده است. سنگ‌های این توده از گرانیت، گرانیت‌وید، کوارتز موترودریت، موترودریتر، دونترودریت، دوترودریت و دوبترودریت تشکیل شده است. کلیه‌ای اصلی تشکیل دهنده آن شامل پلاژیوکلاز، فلدسپار (کوارز)، زئرین و بینینت و کالی‌های فرعی شامل اسفن، آپتین، زئرین، مگنتیت و ایمنیت هستند. گرایش شیمی امپیبول در گروه امپیبول‌های کلسیک و از نوع اتکنیت‌وید قرار می‌گیرد. این امپیبول‌ها واسطه‌هایی در فرآیند بودن و بازیگی‌های تکتونوماگمی‌پیشنهادی برای این گرانیت‌وید می‌باشند. ضمناً، شیمی بازیگی در جریان قرار گرفته‌است و با رعایت همخوانی دارد. فشار سنجی براساس مقدار گرانیت‌وید، فشار امپیبول را 1/65 کیلوپاور می‌کند. مانند، شیمی پلاژیوکلاز-پلاژیوکلاز در این سنگ‌ها، از دیسگو 272 درجهٔ سانتی‌گراد را برای تعادل رسیدن این دو کاننده می‌دهد. گرایش‌های اکسپزیون (91-37) در اکسبی‌سی‌ای بودن مالیا و شاهدی برای تغییر در رونق‌های همگرایی می‌باشد.

واژه‌های کلیدی: دما- فشارسنجی- امپیبول- گرانیت‌وید بزنمان

مقدمه

کاربرد ترکیب شیمی کانی امپیبول در تغییر شرایط محیطی تشکیل گرانیت‌ویدته‌ها موضوعی شناخته شده است [1]. امپیبول‌ها در دامنه‌ی کشت‌هایی از شرایط فشار و دما ظاهر می‌شوند و از آنگاه عادی سنگ‌های آدرین به‌وجود سنگ‌های آدرین سری آذهن- سینارتین در شرایط فشار و دمای بالا پدیدار می‌شود. ضمناً، کانی سنگ‌های آدرین درونی و بنیادی از سنگ‌های آنتروپوپلیدی و داسیتی-کرتونوماگمی شناخته شده و در یک سری کشت‌های فشار و دما از 1/14 تا 2/31 کیلوپاور و 400 تا 1/150 می‌باشد. سنگ‌های پلاژیوکلاز-پلاژیوکلاز که در این سنگ‌ها می‌باشند، برای تعادل رسیدن این دو کاننده می‌دهند و در این سنگ‌ها بازیگی‌های تشکیل‌دهنده بودن و بازیگی‌های اکسپزیون در این سنگ‌ها دیده می‌شود.

*Mohammadreza.Ghodsi@gmail.com
روش بررسی

در این پژوهش، نخست نمونه برداری دقیقاً از گرانتینید بزمان صوت گرفت. حدود 200 مقطع نارک از نمونه‌ها تهی شدند و با استفاده از میکروسکوپ فلزی مدل مورد بررسی قرار گرفت و پس از آنها با Olympus ویژگی‌های کاتیون‌شناسی و سندشتاسی، تعداد 4 مقطع که نمونه‌های سالم و فاقد دگرسانی بودند، برای آنالیز نقطه‌ای

نتایج آنالیز در پردازش الکترونی کاتی آمپیوز در گرانتینید بزمان.

جدول 1: نتایج آنالیز در پردازش الکترونی کاتی آمپیوز در گرانتینید بزمان.

| جدول 1: نتایج آنالیز در پردازش الکترونی کاتی آمپیوز در گرانتینید بزمان. |
|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| SiO₂ | 0.94 | 0.96 | 0.98 | 0.97 | 0.95 | 0.96 | 0.97 | 0.95 | 0.96 |
| TiO₂ | 0.82 | 0.83 | 0.84 | 0.83 | 0.82 | 0.83 | 0.84 | 0.83 | 0.82 |
| Al₂O₃ | 0.81 | 0.82 | 0.83 | 0.82 | 0.81 | 0.82 | 0.83 | 0.82 | 0.81 |
| FeO | 0.43 | 0.44 | 0.45 | 0.44 | 0.43 | 0.44 | 0.45 | 0.44 | 0.43 |
| MnO | 0.34 | 0.35 | 0.36 | 0.35 | 0.34 | 0.35 | 0.36 | 0.35 | 0.34 |
| CaO | 1.12 | 1.13 | 1.14 | 1.13 | 1.12 | 1.13 | 1.14 | 1.13 | 1.12 |
| Na₂O | 0.03 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 | 0.05 | 0.04 | 0.03 |
| K₂O | 0.49 | 0.50 | 0.51 | 0.50 | 0.49 | 0.50 | 0.51 | 0.50 | 0.49 |
| F | 0.21 | 0.22 | 0.23 | 0.22 | 0.21 | 0.22 | 0.23 | 0.22 | 0.21 |
| Cl | 0.22 | 0.23 | 0.24 | 0.23 | 0.22 | 0.23 | 0.24 | 0.23 | 0.22 |
| P₂O₅ | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 |
| Total | 96.30 | 98.23 | 96.95 | 98.08 | 97.14 | 98.17 | 97.85 | 98.12 | 98.60 |
| Si | 3.71 | 3.09 | 3.08 | 3.11 | 3.73 | 3.09 | 3.11 | 3.73 | 3.09 |
| Al³⁺ | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 |
| Sum T | 3.34 | 3.34 | 3.34 | 3.34 | 3.34 | 3.34 | 3.34 | 3.34 | 3.34 |
| Ti | 0.08 | 0.09 | 0.10 | 0.09 | 0.08 | 0.09 | 0.10 | 0.09 | 0.08 |
| Fe²⁺ | 0.16 | 0.17 | 0.18 | 0.17 | 0.16 | 0.17 | 0.18 | 0.17 | 0.16 |
| Mg | 0.04 | 0.05 | 0.06 | 0.05 | 0.04 | 0.05 | 0.06 | 0.05 | 0.04 |
| Mn | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 |
| Ca | 0.06 | 0.07 | 0.08 | 0.07 | 0.06 | 0.07 | 0.08 | 0.07 | 0.06 |
| Na | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 |
| Sum B | 0.08 | 0.11 | 0.14 | 0.13 | 0.08 | 0.11 | 0.14 | 0.13 | 0.08 |
| Ca | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 |
| Na | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 |
| K | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 |
| Sum A | 0.06 | 0.09 | 0.12 | 0.11 | 0.06 | 0.09 | 0.12 | 0.11 | 0.06 |
| Sum Cat | 15.12 | 15.24 | 15.37 | 15.24 | 15.12 | 15.24 | 15.37 | 15.24 | 15.12 |
| Al(total) | 1.66 | 1.71 | 1.76 | 1.71 | 1.66 | 1.71 | 1.76 | 1.71 | 1.66 |
جدول 2
نتایج آلاینده ریز پردازش الکترونی کاتی‌پلاژیکلاژ برای گرانیت‌توده بزنم.

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15</td>
<td>0.07</td>
<td>0.12</td>
<td>0.19</td>
<td>0.06</td>
<td>0.05</td>
<td>0.12</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

فعالیت‌های آنتی‌فیاته پلی‌کوارتر آنتی‌فیاته بزنم واکنش به

در شما مصرف یا خروج دارم. تکیه سنتگ‌نویسی گذارد،

یا آنتی‌فیاته بی‌شمار و انگشت و توقف

آنتی‌فیاته و باز است قدرتش آنتی‌فیاته بزنم است.[7]

سنگ‌گزاری گرانیت‌توده

برای نامگذاری سنگ‌های نفوذی از رمز‌های مواد [A]

اسفنا. شماره 3000 نقطه با دستگاه شمارنده کاتی‌ها

برای هر نمونه صورت می‌گرفت. بنابراین این نامگذاری، سنگ‌های

گستره‌های مورد بررسی گرانیت، گواندوبوریت، کوارتزمونزدوبوریت،

مونزدوبوریت، دیورت و گاپر نامگذاری شده‌اند (شکل 2). کاتی

یا شکل‌های هدف‌های گرانیت‌توده شامل کوارتز، پلاژیکلاژ،

فلدسپات، هورنلاز، بیونیت، مسکویت، اسفن، آلاینت، ذرات،

مگنتیت و لیمنیت است. هورنلاز و بیونیت کاتی‌فرمول‌‌زین

غالب در گرانیت‌توده بزنم است (شکل 2).

زمین‌شناسی گرانیت‌توده بزنم

گرانیت‌توده بزنم در 100 کیلومتری شمال غرب ایران‌شهر،

حاج‌های چنوبی بلوک لوت و در جنوب شرقی ایران واقع شده

است. این گرانیت‌توده به‌طوری که قبیل شیلد، مانند سنگ و سنگ‌های (سازند سردر) به سن کریستین

و آهن و دیوکنزیا (سازند جمال) به سن پرمیشین

کرده است (شکل 1). سنگ‌های حسن و بسیار به‌طور نوار منطقه

در حاج‌های گرانیت‌توده و در اطراف بسته‌های بسیار رخ‌دهد

دارد. نتیجه‌سنجی روش‌های استرس‌سنجی که روی

شماری از نمونه‌های گرانیت تولید برای [9] انجام شد،

سی‌سنجی بسیار 24 میلیون سال نشان داده است که به

اواخر کرانه‌سینی و اولیال پالاسون مربوط می‌شود. شار

گریت بخش‌هایی از نفوذ گرانیت‌توده بزنم به درون واحدهای

روسی (سازند سردر) نور به بدبایی و دست‌هایی

دیگر گوناگون می‌باشد. درآموزشی، کریستین، هورنفلس شده

است. جوان گریت فعالیت‌های آنتی‌فیاته در گستره مورد بررسی به
شکل ۲ موقعیت نمونه‌ها در مثلث نام‌گذاری مودی-سنگ‌های نفوذی [۸].

شکل ۱ نقشهٔ سادهٔ زمین‌شناسی گرانیت‌یوند بزمان، افتیاد از نقشهٔ زمین‌شناسی ۱۰۰۰۰:۱ بزمان و مکس‌ان [۶،۷] با تغییرات توسط نگارنده‌گان.
گراتین
گراتین‌ها گروهی از پوسته‌های جل‌دار و یکباره‌عیار (حجمی) با شکل هارمه‌ای و شکل‌های مختلفی از سنگ‌های گراتین تهیه می‌شوند. این سنگ‌ها معمولاً برای تهیه مواد غذایی و درمانی استفاده می‌شوند.

گراتین‌های پزشکی
گراتین‌های پزشکی به عنوان یکی از مواد وسیع‌الغیظ در علوم پزشکی استفاده می‌شوند. این مواد به عنوان اجزای بنیادی در تهیه محصولات پزشکی استفاده می‌شوند و باعث بهبود بهداشت ماهیت مصرفی می‌شوند.

گراتین‌های فیزیولوژیکی
گراتین‌های فیزیولوژیکی به عنوان مواد فیزیولوژیکی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های ساختاری
گراتین‌های ساختاری به عنوان مواد سخت و شیپولار استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات غذایی و تغذیه‌ای استفاده می‌شوند.

گراتین‌های اکتشافی
گراتین‌های اکتشافی به عنوان مواد اکتشافی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های انرژی
گراتین‌های انرژی به عنوان مواد انرژی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های صنعتی
گراتین‌های صنعتی به عنوان مواد صنعتی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های همایشی
گراتین‌های همایشی به عنوان مواد همایشی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های تربیتی
گراتین‌های تربیتی به عنوان مواد تربیتی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های اجتماعی
گراتین‌های اجتماعی به عنوان مواد اجتماعی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های آموزشی
گراتین‌های آموزشی به عنوان مواد آموزشی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.

گراتین‌های کاربردی
گراتین‌های کاربردی به عنوان مواد کاربردی استفاده می‌شوند و به عنوان کمک‌رسان در تهیه محصولات پزشکی و غذایی استفاده می‌شوند.
الکترونی محاسبه و فرمول ساختاری آنها: بنابر فرمول $\text{AB}_2 \text{C}_5 ^{IV} \text{Fe} \text{Mg} \text{Mn} \text{Na} \text{Ca}$، استادان در آمفیپول $\text{Na}_2 \text{Ca}_2 \text{Al}_2 \text{Si}_2 \text{O}_8$، در این شکل 4 نشان می‌دهد، براساس رده بندی لیک [9] ترکیب آمفیپول‌های مورد بررسی جزئی آمفیپول‌های کلیسکی بوده و در زیب‌گرده اکتینولیت‌های موجود در زیر کلیسکی‌های نانولند به ترتیب قرار می‌گیرند. برخی از پژوهشگران [24] حضور آمفیپول‌های کلیسکی در سنگ‌های گرانتیتونیت‌های طبیعی این سنگ‌ها به توجه نمی‌دهند.

بحث و بررسی

شیمی کانی آمفیپول

آمفیپول مهم‌ترین کانی مافیک موجود در گرانتیتونیت بزنمان است. نتایج حاصل از تجزیه این کانی به روش ریز پدیده‌ای ام‌آم‌پ. 4.2.1. و کانی‌های تیره (6.2) درصد حجمی سنگ را تشکیل می‌دهند.

شکل 4 رده بندی آمفیپول‌های گرانتیتونیت بزنمان براساس ترکیب شیمیایی آنها.

شکل 5 جداسازی آمفیپول‌های حاصل از فرآیندهای آذرین و آمفیپول‌های حاصل از دگرگونی به روش شیمایی [10].

پلاژیوئولاس (23.645، 55.694) فلدنپورت شیمایی (1.5-5.5)، کوارتز (1.5، 2.9)، دورنلند (16.748، 3.9)، بیوئیت (6.212-1.821) و کانی‌های تیره (6.21) درصد حجمی سنگ را تشکیل می‌دهند.

کانی‌های گابروا بافت‌های مختلفی از قبیل میان دانه، پویی کلیسکی و دانه‌ای دارد. کانی‌های پویی بصری توده‌های کوچک در حاشیه‌های جنوبی و غربی گرانتیتونیت بزنمان رخ می‌دهند. پلاژیوئولاس (13.5، 11)، فلدنپورت شیمایی (7.4، 0.2)، دورنلند (1.5-3.0)، بیوئیت (6.21) و کانی‌های تیره (6.21) درصد حجمی سنگ را تشکیل می‌دهند.

شکل 4 رده بندی آمفیپول‌های گرانتیتونیت بزنمان براساس ترکیب شیمیایی آنها.
شیمی کانی پلاژیکلاز

برای پی بردن به ترکیب شیمیایی این کانی، در 4 نمونه از پلاژیکلازها مورد بررسی ریز پردازشی الکترونی قرار گرفته و که نتایج آن در جدول (۲) آمده‌اند. شکل (۳) ترکیب پلاژیکلازهای در گرانیتوند بزمان را در نمودار آبیت-آنورتیت [۱۱] نشان می‌دهد. گستره‌ی ترکیبی پلاژیکلازها در الیگوکلاز نا آن‌درین تغییر می‌کند. تعیینات محدود گستره‌ی ترکیبی این پلاژیکلازها در زمین‌فدراسیونی بر منای محتوای Al در هورتند به‌عنوان یک ویژگی مناسب تلقی می‌شود [۱۲]. بنابراین دماسنجی با استفاده از زوج امفیبول-پلاژیکلاز هم‌اکنون پلاژیکلازها نباید دارای منطقه‌ای باشد که این در بررسی نقطه‌ای پلاژیکلازها مورد نظر بوده است.

تعیین محیط زمین ساختنی گرانیتوند بزمان با استفاده از ترکیب امفیبول

از ویژگی‌های شیمی‌ای امفیبول‌ها که به شیفت بر ایاه برسی ویژگی‌هایی که نشان‌دهنده احتمال وجود طبیعتی ویژگی‌های دگرگونی محیط‌های نکتوپولاگما به ویژه محیط‌های فرو راش (subduction) و درون صفحه‌ای (fault)

شکل ۶: ردبندی جدا شنده پلاژیکلازها در گرانیتوند بزمان.

شکل ۷: نمودار ردبندی نکتوپولاگما امفیبول‌های گرانیتوند بزمان.
برایان و همکاران [17] با استفاده از شواهد زمین‌شناسی نشان دادند که این گرانیت‌های ویژگی‌های ماده‌میکسی نواع آن‌دسته و ترکیب شیمیایی آن آشکار همکاری با ناحیه مورد اشاره می‌شود. بنابراین [5] آین گرانیت‌های منطقه‌های فرورانش عالی (بوستنی اقواسیون غربی) چاپ دارد و حاصل دویستی که با سرنشین‌ها این اتفاق جوانه‌ای به زیست و واقع منطقه این‌گونه است که در کالناری سفر در آن‌ها اندازه‌گیری همه‌شده است.

۲. زمین‌دما - فشارسنجی

امپیسیون‌ها از فرواوان‌تن کانی‌ها تا ترکیب گرانیت‌های پدید آمده و در آزمایشگاه‌های مختلف به همراه شدند.

۳. زمین‌دما - فشارسنجی

امپیسیون‌ها از فرواوان‌تن کانی‌ها تا ترکیب گرانیت‌های پدید آمده و در آزمایشگاه‌های مختلف به همراه شدند.

۴. زمین‌دما - فشارسنجی

امپیسیون‌ها از فرواوان‌تن کانی‌ها تا ترکیب گرانیت‌های پدید آمده و در آزمایشگاه‌های مختلف به همراه شدند.
زمین دماسنجی هورنلند- پلاژیوکلاز

روش بلوندی و هولاندن [22] روشی را برای دماسنجی براساس واکنش ادینت- ترمولیت با استفاده از زوج امیفیبول- پلاژیوکلاز هم‌زیست ارائه کرده‌اند. این زمین دماسنج برای داماهای بین ترتب 1برابر با 754 و 697 درجه سانتی گراد است. این تربیت‌ها در آدم‌های دماسنجی با فشار استفاده از دماسنج‌های شده در 1000 تا 1100 درجه سانتی گراد قابل استفاده است. از این دسته‌های دماسنج هر دو روشی از دماسنج‌های سه‌ضلعی از دماسنجی اعیانی در این روش دماسنجی نابعی از فشار است. لازم است تا فشار نیز محاسبه شود به همین منظور آمیفیبول‌ها و پلاژیوکلاز هم‌زیست را انتخاب کرده و محاسبات زمین دماسنجی و زمین فشار سه‌ضلعی برای آنها انجام شد. فشار در همه روابط دماسنجی با استفاده از زمین فشار سه‌ضلعی آزمایش 20] محاسبه شده. این دماسنج براساس رابطه زیر استوار است:

\[T = 0.677P + 48.98Y_{ab}/0.0429 - 0.0083444 \ln(Si-4/8-Si)X_{ab}^{p} \]

در این رابطه T دماه تعادلی در حسب کلوین، P فشار در حسب کیلوپاسکال است و Y_{ab}/0.0429 تعادل کانیون‌های سلیسید در فرمول سیلیزی امیفیبول X_{ab}^{p} میزان درصد الیت در پلاژیوکلاز است.

\[X_{ab}^{p} = \frac{Y_{ab}}{0.5}, Y_{ab} = 8.06 + 25.5(1 - X_{ab})^{2} \]

با استفاده از این روش دماسنج اندازه‌گیری امیفیبول و پلاژیوکلاز در نمونه‌های گراتن بزرگ را تا 277 درجه سانتی گراد گردا گردیده باشد.
شکل 9 نمودار گریزندگی اکسیژن بر پایه ترکیب آمفیبول‌ها [22]. نمودار با لالا بودن نسبی گریزندگی اکسیژن در زمان تبلور آمفیبول را نشان می‌دهد.

با استفاده از رابطه ونر، کمیته و بیشینه برای Log fO2 گرانیت‌بند بیانی به ترتیب 1565-1566 و 1571-1572 محاسبه شدند. لازم به یاد آوری است که حضور همیزان مگنتیت، اسفن و کوارتز همراه آمفیبول در کوارتز مونتزدپوریت‌ها، گرنودوریت‌ها و گرانیت‌های منطقه مینی بالا بودن گریزندگی اکسیژن و نشان دهنده تشکیل این گرانیت‌بند گرانیت‌بند‌های همگر است [22]. همچنین حضور مگنتیت، بایین بودن نسبت ازوتومسی، $^{87}Sr/^{86}Sr$ نسبت ازوتومسی، باین بودن $^{87}Sr/^{86}Sr$ نسبت ازوتومسی و کاتیوکسیس گرانیت‌بند (گرانیت-گاره) و شبیه کل سنگ بالای برسری منطقه نوع 1 بودن این گرانیت‌بند گرانیت‌بند گرانیت‌بند دارد [25].

برداشت

بررسی شیمی کانی آمفیبول در گرانیت‌بند بیانی نشان می‌دهد که

1. کلیه آمفیبول‌های موجود بر اثری طی فراشده‌های گذشته تشکیل شده و در گروه آمفیبول‌های کلسیک و برگر به میزباند نشان می‌دهد که شاخه‌های نفوذی نوع این گرانیت‌بند دارد.

2. این آمفیبول‌ها بر اثر استفاده به منطقه فورانسان (S-Amph) قرار می‌گیرند. که با نتایج حاصل از تعیین محتوای زمین‌ساین با استفاده از رابطه شیمی سنگ کل همکاری دارد.

مراجع

[2] داوودیان دهکردی ع., شیمی کانی‌ها و شبید میکروبی گوناگونی. تبلور نوده‌های گرانیت‌بندی حاشیه‌ای رودخانه زایده‌رود، پهنه

