مقدمه
کاربرد ترکیب شیمی‌کائی آمفیپود در تعیین شرایط محیطی تشکیل گرانتونیدها موضوعی شناخته شده است [1]. آمفیپودها در دامنه‌ای کسترد آبی از شرایط فشار و دما ظاهر می‌شوند. از این نظر، گرانتونیدها از سوی اکتیپ-آمریک و سوی سیخل در گونه‌های می‌شوند. این کاتی در سنجش آدرنین درونی و پرسیاری از سنگهای انسانی و وجود داشتن در یک کسترد کستردی فشار و دما از 1 تا 3 میلی‌بار در 400-1500 درجه سانتی‌گراد پایدار است. این کاتی مفیدترین کاتی برای زیست‌شناسی فشار سنجی بوده و دمای فدولوز-پلیژکلاژ. زمین فشار سنگهای آمفیپود و در هورلیند برای اشکال‌های دمایی که گرانتونیدها جایگیری می‌کنند، مناسب است [4]. گرانتونید اکسپرس در هورلیند، با توجه به شیمی‌کائی آمفیپود، جنوب شرق ایران مجدداً کمیسیون محققان ایران مدعی می‌باشد.
نتایج آنالیز ریز بردارش الکترونی کاتی آمفیمول در گرانیت‌بند زمین.

<table>
<thead>
<tr>
<th>Sample no</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>44/41</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.21</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>83/1</td>
</tr>
<tr>
<td>FeO</td>
<td>12/3</td>
</tr>
<tr>
<td>MnO</td>
<td>0.23</td>
</tr>
<tr>
<td>CaO</td>
<td>12/3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.41</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.51</td>
</tr>
<tr>
<td>F</td>
<td>0.6</td>
</tr>
<tr>
<td>Cl</td>
<td>0.12</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.22</td>
</tr>
<tr>
<td>Total</td>
<td>98/10</td>
</tr>
<tr>
<td>Si</td>
<td>7/1</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>0.19</td>
</tr>
<tr>
<td>Sum T</td>
<td>8/10</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>0/19</td>
</tr>
<tr>
<td>Ti</td>
<td>0/19</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0/14</td>
</tr>
<tr>
<td>Mg</td>
<td>0/19</td>
</tr>
<tr>
<td>Mn</td>
<td>0/19</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0/5</td>
</tr>
<tr>
<td>Ca</td>
<td>0/6</td>
</tr>
<tr>
<td>Sum C</td>
<td>5/10</td>
</tr>
<tr>
<td>Fe</td>
<td>0/19</td>
</tr>
<tr>
<td>Ca</td>
<td>1/19</td>
</tr>
<tr>
<td>Na</td>
<td>0/19</td>
</tr>
<tr>
<td>Sum B</td>
<td>0/19</td>
</tr>
<tr>
<td>Ca</td>
<td>0/19</td>
</tr>
<tr>
<td>Na</td>
<td>0/19</td>
</tr>
<tr>
<td>K</td>
<td>0/19</td>
</tr>
<tr>
<td>Sum A</td>
<td>0/19</td>
</tr>
<tr>
<td>Sum_Cat</td>
<td>15/16</td>
</tr>
<tr>
<td>Al(total)</td>
<td>0.21</td>
</tr>
</tbody>
</table>
جدول ۲ نتایج آلیاس ریز بردارش الکترونی کانی پلاژیکلاز برای گرانیتوبند بزمن.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Na₂O</th>
<th>CaO</th>
<th>FeO</th>
<th>SiO₂</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.15</td>
<td>0.23</td>
<td>0.34</td>
<td>0.15</td>
<td>0.23</td>
</tr>
<tr>
<td>B</td>
<td>0.12</td>
<td>0.25</td>
<td>0.36</td>
<td>0.12</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>0.14</td>
<td>0.24</td>
<td>0.35</td>
<td>0.14</td>
<td>0.24</td>
</tr>
</tbody>
</table>

زمین‌شناسی گرانیتوبند بزمن

گرانیتوبند بزمن در ۱۰۰ کیلومتری شمال غرب ایران‌شهر، حاشیه جنوبی بلوک لوت و در جنوب شرقی ایران واقع شده است. این گرانیتوبند به درون سنگ‌های قدیمی تر قرار دارد. شیل، ماسه سنگ و سنگ آهک (سازند سردر) به سن کریتیفر و آهن و دولومیت‌های (سازند جمال) به سن پرمیفر کرده است (شکل ۱). سنگ‌های حاوی به‌صورت نوار منطوق در حاشیه‌گرانیتوبند و در طرفین بعضی از سنگ‌های قدیمی رخ‌نیستند. منطقه سنجش روش هیدروامپ-استرسیوم به روش شماری از نمونه‌های گرانیتوبند مورد بررسی قرار گرفت دارد. سنی متوسط تا ۰۴ میلیون سال را نشان داده است که به اواخر کرتاسه پسین و اولین پالئوس طبقه‌بندی شده است. شار گرمایی برخوردار از نفوذ گرانیتوبند بزمن به درون واحدهای رسوبی (سازند سردر و سردر) در میان به پایان رسیده‌اند. سنگ‌های دوگون مجاور از قبیل انزالوژی، کریتیفر هوکرنس شده است. جوان‌ترین فعالیت ماگمایی در گستره مورد بررسی به گروه‌های
شکل 1 نقشه‌ی ساده‌ای زمین‌شناسی گرانیتی‌های بزنمان، اقتباس از نقشه‌ی زمین‌شناسی 10000 1:1 برمان و مکسان [7] با تغییرات توسط نگارنگان.

شکل 2 موقعیت نمونه‌ها در مثلث نام‌گذاری مودی سنگ‌های نفوذی [8].
گرانتیها: گرانیت‌ها فراوان‌ترین واحد سنگی گرانتیوتید ذوبیان است که این گروه از سنگ‌ها در حاشیه‌های شرقی توده‌ای اصلی گرانتیب پژمان و به‌صورت توده‌های یک‌چک رخ‌نام دارند. پلاژیوکلاز (66-76 %)، فلدسپار پتاسیمی (21-31 %)، کوارتز (15-32 %)، فلدسپار تانسیمی (18-28 %)، کوارتز (26-35 %)، اسفن (45-50 %)، کوارتز (12-23 %) درصد حجم سنگ را تشکیل می‌دهند. مغنتیت، ایملنیت، کلسیت واقع بر یک سنگ جامع دانایی (متوسط-رشته) است.

پاتوپورپورت
گرانیتهای اصلی گرانیت‌های به‌صورت توده‌های یک‌چک رخ‌نام در حاشیه‌های گرانیت‌های ذوبیان مانند پترونوپورپورت و نسبتاً گرانیت‌های بی‌گرانتیبی قطع می‌شوند. پلاژیوکلاز (67-42 %)، فلدسپار پتاسیمی (21-31 %)، کوارتز (15-32 %) و اسفن (45-50 %) درصد حجم سنگ را تشکیل می‌دهند.

شکل ۳ تصاویر میکروسکوپی انتخابی از رخ‌نام‌های مختلف سنگی (الف: کوارتز و ب) تصاویر میکروسکوپی از سنگ‌های گرانیتی همراه با پلاژیوکلاز.
کلیه‌ها گیاهی پایه‌ای متمایل به تغییر میزان، پوست کلیتیک و دانه‌ای دارند. گیاه‌ها به‌صورت توده‌های چوبی در حاشیه‌های جنوبی و غربی گرانیت‌های بزمان وخم می‌دانند.

پلاژیوکلاز (55.59-27.45)، فلدسرپ یتاسیم (5.5-1.5) کوارتز (1.5-3.9)، دورنیلند (7.89-12.17) و کانی‌های نیمه (1/5-1/3) درصد حجمی سنگ را تشکیل می‌دهند.

گزاره
سنگ‌های گیاهی پایه‌ای مختلفی از قبیل میزان دانه، پوست کلیتیک و دانه‌ای دارند. گیاه‌ها به‌صورت توده‌های چوبی در حاشیه‌های جنوبی و غربی گرانیت‌های بزمان وخم می‌دانند.

بحث و بررسی
شیمی‌کاوبایی گیاهی
آمپیلوی مهم‌ترین کانی مافیک موجود در گرانیت‌های بزمان است. نتایج حاصل از تجزیه‌ای این کانی به‌روش ریز پردازشی، سنگ‌های گیاهی پایه‌ای مختلفی از قبیل میزان دانه، پوست کلیتیک و دانه‌ای دارند. گیاه‌ها به‌صورت توده‌های چوبی در حاشیه‌های جنوبی و غربی گرانیت‌های بزمان وخم می‌دانند.

شکل ۴ رده بندی آمپیلویهای گیاهی بزمان براساس ترکیب شیمیایی آن‌ها.

شکل ۵ جداسازی آمپیلویهای حاصل از فراورده‌های آذرین و آمپیلویهای حاصل از دگرگونی به روش شماری [10].
شیمی کانی پلازوکلاز

برای بردن به ترکیب شیمیایی این کانی، در 4 نمونه از پلازوکلازها مورد بررسی ریز پردازشی الکترونی قرار گرفتند که نتایج آن در جدول (2) آمدهاند. شکل (۶) ترکیب پلازوکلازها در گرانیتونیت بزمان را در نمودار آبی-آوریت [۱۱] نشان می‌دهد. گسترده ترکیب پلازوکلارها از آب‌وآبگیری تا اندزین تغییر می‌کند. تغییرات محدود ترکیبی این پلازوکلازها در زمین فشارسنجی بر مبنای محتوای Al به‌عنوان یک ویژگی مناسب تلقی می‌شود [۱۲]. برای دماسنجی با استفاده از زوج آمیفیول-پلازوکلاز همزیست پلازوکلازها نیاز دارای منطقه‌بندی باشد که این در بررسی نقطه‌ای پلازوکلازها مورد نظر بوده است.

تعیین محیط زمین ساختی گرانیتونیت بزمان با استفاده از ترکیب آمیفیول

از ویژگی‌های شیمیایی آمیفیول این کانی برای برداشت پلازوکلازها گیاهشناسی حامل شده و برای محیط‌های ویژگی‌های دگرگونی محیط‌های تکانوماگماکی مخلوط به ویژگی محیط‌های قاره‌ای راش (subduction) و درون صفحه‌ای (intraplate) فیچرهای خاصی داشته و در فرمول حاصل‌شده در قالب آمیفیول هستند که با نتایج حاصل از بررسی شیمیایی سنج کل خمایی دارد [۵].

![نمودار رابطه نمودار انجمن‌های آمیفیول‌های گرانیتونیت بزمان.](image-url)

![شماره ۶. نمودار رابطه نمودار انجمن‌های آمیفیول‌های گرانیتونیت بزمان.](image-url)
برایان و همکاران (17) با استفاده از شواهد زمین‌شناسی نشان دادند که در گرانیت‌های دیگر، ماکم‌هایی به‌وجود آمده‌ند که داشته و ترکیب شیمیایی آن حاشیه‌هایش به‌وجود می‌آید و ترکیب‌های فلزی و غیر فلزی را نشان می‌دهند.

در این بررسی برای بروآورد فشار تبلور آمفیبولی نتایجی جدیدی از چهار روش متروس زمین‌شناسی در هوندلند مورد استفاده قرار گرفت. این روش‌ها شامل دو روش متروس زمین‌شناسی و روش‌های متروس تبلور شده‌است.

c_{K} = 0.167 ± 0.005

از این‌جایی، می‌توان گفت که در این مطالعه ترکیب فشار تبلور آمفیبولی نتایج قابل توجهی داشته و می‌توان به این نتایج بازنگری کرد.

ناحیه‌های تفریق‌کننده فلزی و غیر فلزی در هوندلند نشان داد که این روش‌ها با توجه به دقت و هم‌پیوندی دقیق می‌توانند نتایج قابل‌توجهی را ارائه دهند.

\[P \approx \frac{2.31 + 0.92}{0.85} \]
زمن دماسنجی هورنلند- پلاژیکلاژ

روش بلوندی و هولاند [22]؛ روشی را برای دماسنجی براساس واکنش ادیت- ترموپتجیزی با استفاده از زوج آمپیول- پلاژیکلاژ همزست ارائه کرده. این زمان دماسنج برای دمایه بین 500 تا 1100 درجه سانتی گراد قابل استفاده است. این ابزار بهبود دادن محاسبه دما در این روش زمان دماسنجی نتیجه از فشار است. لازم است تا فشار نیز محاسبه شود به همین منظور آمپیول- پلاژیکلاژ همزست را انتخاب کرده و محاسبات زمان دماسنجی و زمان فشار فشرده برای آنها انجام شد. فشار در همه روابط دماسنجی با استفاده از زمان فشرده اشتباه [20] محاسبه شد. این دماسنج براساس رابطه زیر استوار است:

\[T (\pm 311 \text{ kbar}) = 0.677P (\text{kbar}) - 48.98 + 0.142 \log_{10}(\text{Fe}^*/(\text{Fe}^* + \text{Mg})) > 0.3 \]

\[\log f_{O_2} = -30930/T + 14.98 + 0.142 \log_{10}(P-1)/T \]

در این رابطه، با توجه به حساب دو کل، پلاژیکلاژ P فشار در این رابطه T دمای تعادلی بر حسب کلوین، برحسب کیلوبار، SI تعادل کاتلونی های سلیسیس در فرمول ساختاری آمپیول X_{Ab}^{P_{Ag}} میزان درصد الیت در پلاژیکلاژ است. پلاژیکلاژ از روابط زیر به دست می‌آید:

\[X_{Ab} > 0.5, \quad Y_{Ab} = 0 \]

\[X_{Ab} < 0.5, \quad Y_{Ab} = 8.06 + 25.5(1 - X_{Ab})^2 \]

بایستی فشار از این روش دمای تعادل آمپیول و پلاژیکلاژ در نمونه‌های گرانتونی برمان را از 649 تا 577 درجه سانتی گراد تا 277 درجه سانتی گراد تغییر می‌کند.
شکل 9 نمودار گریزندگی اکسیژن بر پایه ترکیب آمفیبول‌ها [22]. نمودار با لامدای بودن نسبی گریزندگی اکسیژن در زمان تبلور آمفیبول را نشان می‌دهد.

3-زمن فشارسنجی بر اساس مقادیر نمودار موجود در آمفیبول‌های خاک‌سرایی، شبیه به یک خط مجهز. ترکیب آمفیبول در این زمان تغییر کرده است و البته نسبی گریزندگی اکسیژن نشان دهنده تغییر در نسبت آرامشی آسمانی با مرزهای ورقه‌های همکار است [22]. همچنین نسبت 87Sr/86Sr نسبت ایزوتوپی 87Sr 86Sr، ترکیب سنگ‌ساختاری و کانی‌سانسی (آمبیت-گارنی) و شبیه کل سنس دلایل بررسی مگنتیت نوع 1 و بودن گریزنتی‌های دارد [25].

برداشت

بررسی شیمی کلی آمفیبول در گریزنتی بولن نشان می‌دهد که:

1-کلیه آمفیبول‌ها مورد بررسی طی فرآیندهای ادرین تشکیل شده و در گروه آمفیبول‌های کلسیک و زیر گروه مینی‌پوندرنلد قرار می‌گیرند که شاخه‌های نفوذی نوع I هستند.

2-این آمفیبول‌ها بیشتر در کناره آمفیبول‌های سابقه به مناطق فروارش (S-Amph) قرار می‌گیرند که با نتایج حاصل از تعبین محیط زمین‌ساختی با استفاده از ترکیب شیمی سنگ کل همخوانی دارند.

مراجع

[2] داوودیان دهکردی غ. شبیه‌سازی و تبار-تبار فشار-دمای نتیجه‌‌گیری‌های گریزندگی آستینی حساسی رودخانه زاینده رود، پیشنهاد نمودار 9 آن برای $\log f_{O_2}$ برای گریزندگی بولن به ترکیب $15.62-19.67$ محاسبه کرده است. لازم به یاد آوری است که این حضور همکار نسبی گریزندگی، اسفین و کاورنت همکار آمفیبول در کناره وسیله‌پزیت ها و گریزندگی‌های منطقه بیشتر بودن گریزندگی اکسیژن و نشان دهنده تشکیل این گریزندگی‌ها در ارتباط با مرزهای ورقه‌های همگار است [22]. همچنین نسبت 87Sr/86Sr، باین گوند نسبت ایزوتوپی 87Sr 86Sr، ترکیب سنگ‌ساختاری و کانی‌سانسی (آمبیت-گارنی) و شبیه کل سنس دلایل بررسی مگنتیت نوع 1 و بودن گریزنتی‌های دارد [25].