Volume 29, Issue 1 (3-2021)                   www.ijcm.ir 2021, 29(1): 129-148 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faramarzi, Alipour, Khaleghi, Abedini. Mineralogical, alteration and fluid inclusion studies of the mineralization index at Yeylaghe Gharachi, northwest of Ahar, NW Iran. www.ijcm.ir 2021; 29 (1) :129-148
URL: http://ijcm.ir/article-1-1590-en.html
1- Department of Geology, Geology Department, Faculty of Sciences, Urmia University, Urmia, Iran
2- Department of Geology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Abstract:   (1968 Views)
The mineralization index of Yeylaghe Gharachi, as part of Arasbaran metallogenic belt, is located about 25 km northwest of Ahar, East-Azarbaidjan Province, NW Iran. The host rocks of this index consist of composite intrusive rocks with lithologic compositions of granite, quartz monzonite, granodiorite and diorite of Oligocene and Oligo-Miocene age. The alteration zones in this area are mainly potassic, phyllic, argillic, propylitic, silicic and carbonate. Mineralization occurred principally as disseminations, cross-cutting veins-veinlets and replacement in two separate stages of hypogene and supergene. Pyrite is the major hypogene sulfide mineral accompanied by magnetite, chalcopyrite, molybdenite, sphalerite and galena. The main supergene minerals in this area include hematite, goethite, limonite, bornite, chalcocite, covellite and malachite that accompany the hypogene mineral assemblage. In investigation of the phase contents of fluid inclusions in the quartz- sulfide veins-veinlets along with the potassic, phyllic and argillic alterations, five types of fluid inclusions have been recognized: mono-phase liquid (L), mono-phase vapor (V), liquid-rich two-phase (L+V), vapor-rich two-phase (V+L), and multiphase (L+V+S). Homogenization temperatures of the studied fluid inclusions vary from 190 to 530 °C. Considering the last ice-melting temperature of aqueous two-phase inclusions and halite melting temperature in the aqueous multiphase inclusions, the salinity ranges between 0.4 to 59 wt.% NaCl equivalent. Based on the microthermometric results of fluid inclusions, it can be conceived that episodic boiling and dilution by underground water of meteoric origin were the main mechanisms in development and evolution of this index. The zonation pattern of the alteration, mineralization and fluid inclusion data indicate that the Yeylaghe Gharachi mineral index is the most similar to porphyry copper deposits and the associated metallic veins.
Full-Text [PDF 8373 kb]   (540 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Arndt N., Ganino C., "Metals and Society: An Introduction to Economic Geology", Springer (2012) 160. [DOI:10.1007/978-3-642-22996-1]
2. [2] Roedder E., "Fluid inclusions", Reviews in Mineralogy 12 (1984) 646. [DOI:10.1515/9781501508271]
3. [3] Kouzmanov K., Pokrovski G.S., "Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems", Society of Economic Geologists, Special Publication 16 (2012) 573-618. [DOI:10.5382/SP.16.22]
4. [4] Richards J.P., "Magmatic to hydrothermal metal fluxes in convergent and collided margins", Ore Geology Reviews 40 (2011) 1-26. [DOI:10.1016/j.oregeorev.2011.05.006]
5. [5] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
6. [6] Khaleghi, F., Karimzadeh, Z., "Occurrence, Mineral chemistry and origin of Dumortierite in Ali Javad Porphyry Cu-Au Deposit, Sheivar Dagh Alteration System, NW Iran", Periodico di Mineralogia 88 (2019) 131-145.
7. [7] Stocklin J., "Structural history and tectonics of Iran; a review", The American Association of Petroleum Geologists Bulletin 52 (1968) 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
8. [8] Nabavi M.H., "An Introduction to Geology of Iran", Geological Survey of Iran publication, Tehran, Iran (1976) 1-110.
9. [9] Nezafati N., "Au-Sn-W-Cu-mineralization in the Astaneh-sarband Area, West Central Iran Including a Comparison of the Ores with Ancient Bronze Artifacts from Western Asia", PhD. Eberhard-Karls-Universitat Tübingen (2006) 116.
10. [10] Aghazadeh M., Hou Z., Badrzadeh Z., Zhou L.,"Temporal-Spatial Distribution and Tectonic Setting of Porphyry Copper Deposits in Iran: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology", Ore Geology Reviews 70 (2015) 385-406. [DOI:10.1016/j.oregeorev.2015.03.003]
11. [11] Mehr Asl (Manufactring Corporation)., "Geologic studies and drillings at Yeylaghe Gharachi", Unpublished (2015) 110 (in Persian).
12. [12] Simmonds V., Moazzen M., Mathur R., "Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re-Os age data for Sungun porphyry Cu-Mo deposit", International Geology Review 59 (2017) 1561-1574. [DOI:10.1080/00206814.2017.1285258]
13. [13] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., "Late Eocene-Oligocene Post-Collisional Monzonitic Intrusions from the Alborz Magmatic Belt, NW Iran. An Example of Monzonite Magma Generation from a Metasomatized Mantle Source", Lithos 180-181 (2013)109-127. [DOI:10.1016/j.lithos.2013.08.003]
14. [14] Aghazadeh M., "Petrology and Geochemistry of Anzan, Khankandi and Shaivar Dagh granitoids (North and East of Ahar, Eastern Azerbaijan) with References to Associated Mineralization", Unpublished Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, (2009).
15. [15] Hassanpour S., Sohrabi G., "Major-trace elements geochemical characterization, geochronology and radiogenic isotopes of Eocene magmatic rocks in Anique, Qaradagh pluton, NW Iran", Periodico di Mineralogia 87 (2018) 173-191.
16. [16] Aghazadeh M., Castro A., Badrzadeh Z., Vogt K., "Post-Collisional Polycyclic Plutonism from the Zagros Hinterland: The Shaivar Dagh Plutonic Complex, Alborz Belt, Iran", Geological Magazine, 148 (2011) 980-1008. [DOI:10.1017/S0016756811000380]
17. [17] Shiwei W., Taofa Z., Feng Y., Yu F., Noel C. W., Fengjie L., "Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis", Journal of Asian Earth Sciences 103 (2015) 252-275. [DOI:10.1016/j.jseaes.2014.08.004]
18. [18] Whitney, D.L. and Evans, B.W.," Abbreviations for names of rock-forming minerals", American Mineralogist, 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
19. [19] Govindarao B., Pruseth K.L., Mishra B., "Sulfide partial melting and chalcopyrite disease: An experimental study", American Mineralogist 103 (2018) 1200-1207. [DOI:10.2138/am-2018-6477]
20. [20] Edwards A.B., "Textures of the ore minerals and their significance", 2nd ed, Melbourne: Australian Inst. Mning Metallurgys (1965) 242.
21. [21] Shepherd T. J., Rankin A. H., Alderton D. H. M., "A Practical Guide to Fluid Inclusion Studies", Blackie and Son, Glasgow (1985) 239.
22. [22] Rusk B.G., Reed M.H., Dille J.H., "Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana", Economic Geology 103 (2008) 307-333. [DOI:10.2113/gsecongeo.103.2.307]
23. [23] Henley R.W., McNabb A., "Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement", Economic Geology 73 (1978) 1-20. [DOI:10.2113/gsecongeo.73.1.1]
24. [24] Morales S.R., Both R.A., Golding S.D., "A fluid inclusion and stable isotope study of the Moonta copper-gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system", Geology 192 (2002) 211-226. [DOI:10.1016/S0009-2541(02)00197-3]
25. [25] Ulrich T., Günther D., Heinrich C.A., "Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions, Bajo de la Alumbrera, Argentina", Economic Geology, 96 (2001) 1743-1774. [DOI:10.2113/gsecongeo.96.8.1743]
26. [26] Nash T.J., "Fluid inclusion petrology data from porphyry copper deposits and applications to exploration", U.S. Geological Survey Professional (1976) 907-923. [DOI:10.3133/pp907D]
27. [27] Bodnar, R.J., Burnham, C.W., and Sterner, S.M., "Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars", Geochimica et Cosmochimica Acta 49 (1985) 1861-1873. [DOI:10.1016/0016-7037(85)90081-X]
28. [28] Sourirajan, S., and Kennedy, G.C., "The system H2O-NaCl at elevated temperatures and pressures", American Journal of Science, 260 (1962) 115-141. [DOI:10.2475/ajs.260.2.115]
29. [29] Fournier, R.O., "Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment", Economic Geology, 94 (1999) 1193-1211. [DOI:10.2113/gsecongeo.94.8.1193]
30. [30] Pirajno F., "Hydrothermal processes and mineral system", Springer Science, New York (2009) 1273 p. [DOI:10.1007/978-1-4020-8613-7]
31. [31] Roedder E.,"Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado", Economic Geology 66 (1971) 98-120. [DOI:10.2113/gsecongeo.66.1.98]
32. [32] Reeves E.P., Seewald J.S., Saccocia P., Walsh E., Bach W., Craddock P.R., Shanks W.C., Sylva S.P., Pichler, T., Rosner M., "Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea", Geochimica et Cosmochimica Acta 75 (2010) 1088-1123. [DOI:10.1016/j.gca.2010.11.008]
33. [33] Norton, D.L.,"Sourcelines, sourceregions, and path lines for fluids in hydrothermal systems related to cooling plutons", Economic Geology 73 (1978) 21-28. [DOI:10.2113/gsecongeo.73.1.21]
34. [34] Norton D.L., "Fluid and heat transport phenomena typical of copper-bearing pluton environments, southeastern Arizona. In: Titley, S. R., ed., Advances in Geology of Porphyry Copper Deposits", Southwestern North America: Tucson, AZ, United States, University Arizona Press (1982) 59-72.
35. [35] Hedenquist J.W., Arribas A., Reynolds J., "Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines", Economic Geology 93 (1998) 373-404. [DOI:10.2113/gsecongeo.93.4.373]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb