رهیافتی بر ویژگی‌های مادگان سازنده گابروهاي شمال خمین برپایی شيمی کانیایی کلینوپوروسن

زنن سخا*

abi علیرضا داودیان دهکردی ۱

T بهتران شیبانیان ۱

محمد پایداری۲

۱ دانشکده منابع طبیعی و علوم زمین دانشگاه شهید چهاردانگه تبریز

۲ دانشگاه پایتخت تهران، دانشکده شیمی

چکیده: سنگ‌های گابروپوروسن منطقه سربکوه به صورت مجدد توده‌هایی در شمال شهر خمین با سنی سپسی کرانه بالایی در بشکه پهن‌ی سیندج - سیرجان رخ داده‌اند. این سنگ‌های آذرین در واحدهای شیلی و آهکی به سن سرانه توده کرانه‌ای کلی است. کلیه‌ها اصلی تشکیل‌دهنده این سنگ‌ها شامل گابروپوروسن، کلینوپوروسن و کدر هستند. این سنگ‌های نطنزی‌های انجام شده روی گابروپوروسن و کلینوپوروسن های این سیرجان گردیده، و نارنج نشان دهنده شیفت نسلی در فشار برای برای ماگما گابروپوروسن در این ناحیه است. از نظر تکنو‌فوگوماسیک، تکنسیون کلینوپوروسن های این گابروپوروسن نشان دهنده ماگماتی باری از نوع اکتالی درون صحنا (WPA) است. همچنین، در این ناحیه گیپیدی اکسیده ماگما نیز نسبتاً بالا بوده است.

واژه‌های کلیدی: شیمی کانیایی کلینوپوروسن، تکنو‌فوکوماسیک، سربکوه، شمال خمین - سیرجان

مقدمه

پیروکسک‌ها در گروه سپیلاکت‌های زنجیره‌ای قرار دارند که به ازار ماتریس مها یا Mg2SiO4 مشابه دو اکسید کلی است. به‌طور کلی، قرار گرفتن بین کلینوپوروسن و کلینوپوروسن یک مادگاه در توده‌های مجدد در پهن‌های سیرجان. در این پادکست، ما به بررسی پیروکسک‌ها، کلینوپوروسن و کلینوپوروسن در ناحیه خمین بالای شمال ایران می‌پردازیم.

*zeynab.sakhaei@gmail.com

نویسندگان: مسیحی، تبریز

تاریخ دریافت: 1390/6/23

تاریخ نهایی: 1393/6/23

خطای ماهی: 0.5

شماره صفحه: 332

شماره پیست: 544

شماره پستی: 13936648249

شماره تماس: 021-33422244444

شماره اکسترنی: 021-334222444444

شماره اکسترنی: 021-334222444444
به شدت در اثر جدایی کاتیویونها و ساختار آگونی که از آن می‌باشد، کنترل می‌شود [5]. تاکنون بررسی‌های بی‌سیاری در خصوص زلخیمی توده‌های نفوذی به‌هم‌سازی سندب منجر به ایجاد کمیته‌های بیماری در خصوص بررسی ویژگی‌های شیمی‌کی‌فی‌کی‌های به‌هم‌سازی کلیوپپرکسین در گسترش مورد پژوهش اطلاعات سندب‌های در سدروست‌نیست. هدف این مقاله بررسی نسبی کلیوپپرکسین در گارپورپ در بررسی برای بحثی باید شاخص پترونژیکی ملظتمعن برای تشخیص محیط زمینی‌سختی و نوع ماگما است و هم‌خوانی آنها با داده‌ها و نتایج به‌دست‌آمده از شیمی‌سنج کل است.

زمین‌شناسی منطقه

منطقه‌ی مورد بررسی از نظر تقسیمات واحدهای زمین‌شناسی و ساختاری ایران در پنهان سندب - سیرجان قرار گرفته است [6]. توده‌های نفوذی گارپورپ در 16 کیلومتری شمال شهرستان شخص این مرکزی قرار گرفته و به صورت تبادلی دیده می‌شوند. معمولاً این توده‌های نفوذی گارپورپ بخش‌های بلند شده را تشکیل می‌دهند. مسدح بی‌پرونزگی‌های این توده‌های نفوذی محدود و تکچک است. به

شکل 1 نقشه زمین‌شناسی ساده شده از منطقه‌ی مورد بررسی بر پایه نقشه زمین‌شناسی 1:10،000 می‌باشد [7].

ظرفی که برگزیدنی توده‌های مورد بررسی دارای گسترش 12 کیلومتر مربع است. برخی از این گارپورپاها دستخوش دگرگونی درجه‌ی پایین شدهان که با کالی‌های آگاه‌تری، ایجاد، کلریت و کلسیت مشخص می‌شود. مختصرات جغرافیایی این توده‌ها برای خود عرض جغرافیایی 36°۴۲′۳۳″ تا ۳۵°۱۷′۳۳″ شمالی و طول جغرافیایی ۵۰°۰۷′۳۳″ تا ۴۹°۰۰′۰۰″ شرقی است در نسبه ۱۰۰۰:۱ مخلوط [7] به عونان گارپورپ در قلابی گزارش شدهان (شکل ۱). این توده‌های آذرین به سی‌کاسپیه‌ پایانی و احتمالاً اتموس در منطقه‌ی مورد بررسی گسترش دارند و در شیل‌ها و آهک‌های کرتاسه زیرین تریق شدهان [7]. کوارتز‌ها و آهک‌های تجدید تلبور یافته سقف توده‌های گارپورپ را تشکیل می‌دهند و در واقع این واحدها در بر گردیدنی توده‌های گارپورپ هستند. این سنگ‌ها تحت تأثیر گرمای توده‌ها قرار گرفته و علاوه بر دگشکی آثار پخش‌می‌شوند. می‌دهند و بنظر می‌رسد در برخی موارد توده‌های گارپورپ آن‌ها در خود ضمن کشیده است. به‌طوری که در نتیجه این واحدها در برگیرند. سنگ‌ها گارپورپ روش‌تن‌دیده می‌شوند.
روش بررسی
در این پژوهش به‌منظور بررسی این توهم‌ها از دیدگاه سنگ‌شناسی، نخست از آن به‌صورت سازمان‌پیوسته با استفاده از نمودارهای شش و سه‌بعدی به‌منظور بررسی شیمی‌کیفی کولونی‌ها GPS پس از تهیه مقادیر نازک و بررسی‌های میکروسکوپی آنها، پیک‌ها از نمودارهای گلبرگ‌ها به‌کمک اندازه‌گیری کدامیک از تهیه مقادیر نازک ممکن است با استفاده از رژیم‌های الکترونی و اکتیو نفوذکننده شد. واکنش‌ها رژیم‌های الکترونی گلبرگ در گروه زمین‌شناسی‌دانشگاه‌های اکلاهما امریکا با استفاده از Cameca SX50 تهیه شد. ۳۰ کیلو ولت جریان ۲۰ نانو‌امپر و ۱۰۰ تایه زمان شارش با اندازه‌گیری پس از انجام ترهمان، پیک‌ها با نمودار کامپیوتری Energy-Dispersive X-Ray Analysis پردازش شد. این کلی‌های کولونی از نوع ایلمنیت‌های هستند (شکل ۱). ایلمنیت‌های کلی‌های کولونی شده‌اند لکوهکس نیز این پدیده را تأیید "کولونی پلی‌ژن"، "کولونی‌های کلینیک"، "کولونی‌های پلی‌ژن" و "کولونی‌های مواد را تشکیل می‌دهند.

سنگ‌های کولونی کلینیک که توسط نفوذی سرکوب سازمان‌پیوسته اصلی‌با وقت ایجاد (شکل ۲) گفته می‌شود که نیازی به رفتار پیش‌بینی شده را ندارد و با ساختار خاصی به‌صورت تنها برای سنگ‌های دوربردی می‌تواند یافت برای سنگ‌های پریتونوی‌کامپیوتری و کلینیکی است و در مورد این سنگ‌ها نیز ساختار پیش‌بینی شده و کالی‌های اصلی آن شیاه، پلاژیوکالا و پلی‌ژن‌کولونی‌های کلینیکی و کلینیکی است. آن‌ها منطقه‌بندی دانه و در یک میجی درون‌ساختاری قاره‌ای تشکیل شده‌اند.

[۱۰۱]

شکل ۲: نمایش پیش‌بینی کولونی، پلاژیوکالا، پلی‌ژن‌کولونی‌های کلینیکی، ایلمنیت، (عکس اختصاصی برگرفته از [۱۱۰]).
شیمی کاتیون کلیونیوروسکن
نتایج آنالیزهای ریزپردازی الکترونی کلیونیوروسکن‌های توده-های نقده مواد بررسی در دو جدول 1 و 2 آورده. چنانچه در
این جدول مشاهده می‌شود ترکیب انتهایی کلیونیوروسکن‌ها از این توده‌های بارا با
با است. ترکیب کلیونیوروسکن‌ها یکسان بوده و
همه آن‌ها در میان دیوپسید [1] قرار دارند (شکل 3). در
نمونه‌های (J = 2Na, Q = Ca + Mg + Fe2+) Q-J
نمودار
مور بررسی در گسترده‌تر یک کلیس-اهن-حومه مواد بررسی این گسترده‌تر یک کلیس-اهن-حومه

جدول 1. نتایج تجزیه ترکیبی کلیونیوروسکن و محاسبه فرمول‌سازی آن.

<table>
<thead>
<tr>
<th>Label</th>
<th>SK2-11 D1-Cpx1</th>
<th>SK2-11 D1-Cpx2</th>
<th>SK2-11 D1-Cpx3</th>
<th>SK2-11 D1-Cpx4</th>
<th>SK2-11 D1-Cpx5</th>
<th>SK2-11 D1-Cpx6</th>
<th>SK2-11 D1-Cpx7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>51.44</td>
<td>51.32</td>
<td>51.19</td>
<td>51.76</td>
<td>50.78</td>
<td>51.13</td>
<td>50.96</td>
</tr>
<tr>
<td>TiO2</td>
<td>5.04</td>
<td>5.06</td>
<td>5.11</td>
<td>5.14</td>
<td>5.07</td>
<td>5.12</td>
<td>5.10</td>
</tr>
<tr>
<td>Al2O3</td>
<td>1.47</td>
<td>1.57</td>
<td>1.47</td>
<td>0.64</td>
<td>0.63</td>
<td>0.64</td>
<td>0.63</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>MgO</td>
<td>11.41</td>
<td>11.43</td>
<td>11.37</td>
<td>11.33</td>
<td>11.33</td>
<td>11.37</td>
<td>11.41</td>
</tr>
<tr>
<td>CaO</td>
<td>0.98</td>
<td>0.94</td>
<td>0.94</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>K2O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>99.61</td>
<td>100.03</td>
<td>99.73</td>
<td>100.29</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

محاسبات بر مبنای 6 آم‌آکسین

<table>
<thead>
<tr>
<th>ماده</th>
<th>SK2-11 D1-Cpx1</th>
<th>SK2-11 D1-Cpx2</th>
<th>SK2-11 D1-Cpx3</th>
<th>SK2-11 D1-Cpx4</th>
<th>SK2-11 D1-Cpx5</th>
<th>SK2-11 D1-Cpx6</th>
<th>SK2-11 D1-Cpx7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>1.91</td>
<td>1.91</td>
<td>1.91</td>
<td>1.91</td>
<td>1.92</td>
<td>1.92</td>
<td>1.92</td>
</tr>
<tr>
<td>Ti</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Al</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Cr</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Fe</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Mn</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Mg</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Ca</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Na</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>sum</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>AlIV</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>AlIII</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Q</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
</tr>
<tr>
<td>J</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Q + J</td>
<td>1.96</td>
<td>1.96</td>
<td>1.96</td>
<td>1.96</td>
<td>1.96</td>
<td>1.96</td>
<td>1.96</td>
</tr>
<tr>
<td>J/(J + Q)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>MolWo</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>MolEn</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>MolFs</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

جمع quad-Px quad-Px quad-Px quad-Px quad-Px quad-Px quad-Px
شکل ۳ موقعیت کلسیم‌پروکسنس های نوپدید در سروده [۱].

شکل ۴ کلسیم‌پروکسنس های موجود مورد بررسی در نمودار J (J=2Na, Q=Ca+Mg+Fe²⁺) Q-J قرار می‌گیرند [۱].

شکل ۵ در نمودار Al در برای Al کلسیم‌پروکسنس‌ها ماهیت آنرین نشان می‌دهند [۱۲].
محتویات Al و Ti کلینوپیروکسن‌ها به فعالیت سیلیس ایگوئین که از آن متینور شده و به نسبت این عنصر به تربن در احواک ماده‌های تولیدی، فلایتی و بر آلکان افزایش می‌یابد، بستگی دارد [12,13]. با توجه به نمودار IV, Mg-Al Ti سیلیس میزان پایین تینیتی در کلینوپیروکسن‌ها بیانگر وجود کلیه‌ای تینیتی‌دار (آیلمنیت) در سنگ است (شکل V) که با احاطه شدن کانال‌های کدر به وسیله تینیتی‌تایید می‌شود. گریزندگی اکسیژن تایید و زدهای در تغییر دمای آیگوئین و ترکیب آیگوئین و بلور دارد [15,16] و عامل موثری در کنترل فرآیندهای ماده‌ای است [12-16] و بر دنبال‌های تیمور و نوع کانال‌های تیمور یافته تاثیرگذار است.

در نمودارهای تغییرات فراوانی اکسیدهای عنصر نسبت به عنوان عاملی که بیانگر پیشرفت جدایی ماده‌ای است (شکل IV). فراوانی اکسیدهای عنصر نیز هم‌خوان با روند پیشرفت جدایی ماده‌ای خواهد بود. محاسبه عدد متغیر به‌صورت Mg# = Mg/(Mg + Fe2+) بوده است دیده می‌شود که اکسیدهای عنصر و سازدهای که بیانگر پیشرفت جدایی ماده‌ای هنگام تیمور کلینوپیروکسن‌ها هستند شامل برابر (SiO2, TiO2, MgO, MnO, CaO, Na2O, K2O) و Na2O, CaO, MnO, Fe2O3, SiO2 و Fe2O3 بوده و Mg# نزولی را از نظر طبیعت می‌دهند.

[شکل ۶] نمودارهای تغییرات ترکیب کلینوپیروکسن در برای Mg#

[شکل ۷] چگالی نمودار تغییرات Mg-Al TiIV میزان پایین تینیتی در کلینوپیروکسن‌ها بیانگر وجود کلیه‌ای تینیتی‌دار (آیلمنیت) در سنگ است [14].
نتیجه فرآیند Fe3+/Fe2+ در پیروکسند بستگی به میزان AlIV دارد و به عبارت دیگر، تابع موادهای آلومینیم در موقعیت جهاروچی قرار گرفته و مشخص می‌شود. بنابراین هرچه آنکه کلینیپیروکسند به طور کامل به آن‌های Si و وسیله Al (AlIV) پس می‌شوند و نمی‌توانند به سیلیز Al، تشکیل شود، اغلب شود. همچنین تابعی از گریزندگی اکسیژن و میزان Si در موقعیت جهاروچی نا + AlIV + 2Ti + Cr و Na + AlIV گروه با واحد تئوری گریزندگی با توجه به فاصله نمونه‌ها با خط 0 = Fe3+ گریزندگی محیط تشکیل یافته است. با توجه به شکل 9 شکل 8 پیروکسند های توده‌های مورد بررسی در نمودار توزیع Si و Al در بالای خط اشباع جایگاه جهاروچی قرار می‌گیرند. [۲۷] نمودار توزیع Si و Al در نمودار توزیع Si و Al بررسی نمونه‌ها در بالای خط اشباع جایگاه جهاروچی قرار می‌گیرند (شکل 8). بنابراین موقعیت جهاروچی این کلینیپیروکسند به طور کامل به وسیله Si و وسیله Al (AlIV) پس می‌شوند و نمی‌توانند به سیلیز Al، تشکیل شود. همچنین تابعی از گریزندگی اکسیژن و میزان Si در موقعیت جهاروچی نا + AlIV + 2Ti + Cr و Na + AlIV گروه با واحد تئوری گریزندگی با توجه به فاصله نمونه‌ها با خط 0 = Fe3+ گریزندگی محیط تشکیل یافته است. با توجه به شکل 9 شکل 8 پیروکسند های توده‌های مورد بررسی در نمودار توزیع Si و Al در بالای خط اشباع جایگاه جهاروچی قرار می‌گیرند. [۲۷]
حذفی مشاهده‌ی روند اسکارگارد و افولیت استعمل در عمان هستند [۲۷]. بر اساس نمودار توزیع آلومنیوم در موقعیت چهارچه و هشت‌چهی (AlIV) نسبت به AlVI (نسبت به AlIV) به منازع آب در ماگما هنگام تبلور متغیر و در حدود کمتر از ۱۰٪ است و همچنین فشار حاکم بر محیط تبلور کمتر از ۵ کیلوبار بوده و نشان‌دهنده یک محیط کم فشار است [۲۹٪] (شکل ۱۲). روند تشخیص ماهیت Ti در برابر Ca + Na از نمودار Maگمای مادر بر اساس شیمی کاتی پیروکسن استفاده شد. این نمودار قلبیای بودن ماگمای سازنده نمونه‌های کلینوپیروکسین را نشان می‌دهد [۲] (شکل ۱۳).

ترکیب AlVI در کلینوپیروکسین‌های آذرین همانطور که بررسی‌های تجربی دوب از بزالتی‌ها نشان داده، وابسته به فشار است [24]. مقادیر کم AlVI در دوب‌سیده‌ای بزالتی‌ها سازگار با فشار‌های پایین تیپ است. نسبت AlIV/AlVI در این کلینوپیروکسین‌های مورد بررسی بین ۲۰۳ تا ۵۰٪ متغیر بوده و در کسره‌ی کلینوپیروکسین‌های فشار پایین قرار می‌گیرند [۲۷]. (شکل ۱۰)، این نسبت کمتر از ۱۰٪ است که در واقع مرز بین پیروکسین‌های است که بین فشار کم و متوسط (۵-۷ kbar) متغیر شده‌اند [26]. روند تغییر Al2O3 در مقابل برای Mg# گابروهای قلبیایی در شکل ۱۱ ارائه شده است. کلینوپیروکسین قلبیایی گابروگن Al2O3 نسبت‌‌های بین سه دهنده و تا

![Diagram](image_url)

شکل ۱۰ نمودار تغییرات در برابر AlIV و AlVI از [۲۵] برای تخمین فشارهای کلینوپیروکسین‌ها نسبت به MP = میدان فشار بالا، HP = میدان فشار بالا، LP = میدان فشار متوسط و Mg# = میدان فشار بالا.

![Diagram](image_url)

شکل ۱۱ نمودار تغییرات Mg# در کلینوپیروکسین‌های گابروگن قلبیایی سرکوب داده‌های پریدوشیت با فشار بالا از [۲۷] و رویداد اسکارگارد از [۲۸].
شکل 12 نمودار توزیع آمونیم در موقعیت چهار و هشت‌ویژه میزان آب ماگما هنگام تبیور در حدود کمتر از 10/0% و با فشار حاکم بر محيط تبیور کمتر از 5 کیلو با استاد [129].

با استفاده از مقادیر Cr و Na واحد ساختاری کلینوبیروکس‌های مورد بررسی در گلاروهای شهرک‌های مشاهده می‌شود که تمامی آنها در محدوده قرار می‌گیرند (شکل 14). کشورهای مشابه شده در نمونه پیشنهاد شده توسط [130] است. به‌منظور تعیین دمای تبیور پپروکس‌ها از مدل YPT [131] کمک گرفته و با استفاده از مقادیر گستردگی دمای که موجب تبیور کلینوبیروکس‌ها در گلاروها می‌شود از 130 تا 140 درجه سانتی‌گراد است. با توجه به فقدان یک دگرگونی مجازاتی گستردگی و فراگیر در اطراف این توده‌های رودی، به‌نظر می‌رسد، دمای بدست امده در این روش بخاطر قابل توجهی زیادتر از میزان واقعی باشد. با توجه به شکل 15، دمای تبیور کلینوبیروکس‌ها برای فشار 0 کیلوبار که توسط [132] ارائه شده است نشان می‌دهد که تبیور کلینوبیروکس‌های مورد بررسی در گستردگی دماهای

541
شکل ۱۴ مقداری Cr و Na واحد ساختاری کلیوپپروسکنها را در محیط فازهای نشان می‌دهد [۱۰۰].

شکل ۱۵ دماي تبلور کلیوپپروسکن‌های مورد بررسی روي نمودار تئیم‌پندی دمايی کلیوپپروسکن‌ها از [۲۳] گسترده از ۵۰ تا ۷۰۰ درجه سانتی‌گراد را در فشار ۵ کیلوبار نشان مي‌دهد.

شکل ۱۶ تعیین فشار پپروسکن‌ها با استفاده از روش [۳۱].
برداشت
توجه به ماهیت کلی نیتروپروکسین و بررسی کاتیون‌های دیگر در سنگ‌های بازی سیرکون‌ریز ناشناچربه‌های کلی نیتروپروکسین انتخاب مناسبی برای بررسی ماهیت سنگ خاتمی، مشخصات ماهیت اولیه و سرشت ذوب بخشی است. کلی نیتروپروکسین‌های این نوع در کلین پیروکسن‌ها دارای ترکیب دیوپسیس بوده و در کلین پیروکسندی سیلیکات‌های کلی نیتروپروکسین-مینیز-اسیدیه‌ی در قرار جایگذاری کلین پیروکسندی سیلیکات‌های با فشار باین قرار می‌گیرند. نسبت فیزیکی‌های میزان قاره‌ای یک ساختمان کلی نیتروپروکسین را در محفظه Cr و Na میزان واحد ساختاری کلین پیروکسین‌ها در محیط قاره‌ای ماهیت ناشناچربه‌های قاره‌ای دارای ترکیب دیوپسیس بوده و در کلین پیروکسندی سیلیکات‌های با فشار باین قرار می‌گیرند. نسبت فیزیکی‌های میزان قاره‌ای یک ساختمان کلی نیتروپروکسین را در محیط قاره‌ای ماهیت ناشناچربه‌های قاره‌ای دارای ترکیب دیوپسیس بوده و در کلین پیروکسندی سیلیکات‌های با فشار باین قرار می‌گیرند. نسبت فیزیکی‌های میزان قاره‌ای یک ساختمان کلی نیتروپروکسین را در محیط قاره‌ای ماهیت ناشناچربه‌های قاره‌ای دارای ترکیب دیوپسیس بوده و در کلین پیروکسندی سیلیکات‌های با فشار باین قرار می‌گیرند. نسبت فیزیکی‌های میزان قاره‌ای یک ساختمان کلی نیتروپروکسین را در محیط قاره‌ای ماهیت ناشناچربه‌های قاره‌ای دارای ترکیب دیوپسیس بوده و در کلین پیروکسندی Sx

مراجع
[6] آفلکانی ع.، زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معنی‌دار کشور، تهران، (1385) ص 1-58.
[8] رهیافتی بر ویژگی‌های مامگای سازندگی کاربردهای شمال خمین...
[29] Helz R.T., "Phase relationships of basalts in their melting range at \(pH_2O = 5 \) \(\text{kb} \) as a function of \(\text{oxygen fugacity} \)", Journal of Petrology 14 (1973) 249-302.