زئوشیمی، سنگزایی و کانی زایی سنگ‌های نفوذی نامن. جنوب غربی پهنه سبزوار

سید علی مظهری ۲، وحید مجتهدی فر ۳، عبدالله جعفریان۴

١- دانشگاه پیام نور، کرمان‌شهر علوم زمین-سنن‌سازی، تهران ۱۴۹۴-1495- ایران
٢- دانشگاه آزاد اسلامی، واحد شاهربند، گروه زمین-سنن‌سازی، شاهربند. ایران

چکیده: توده‌های نفوذی نامن در جنوب غربی پهنه سبزوار قرار دارند و از سه فاصله متفاوت تشکیل شده‌اند. به‌طوری‌که در دامنه بالا سبزواری شده‌اند و در دامنه پایین معادن تحلیل شده‌اند. همچنین توده‌های نفوذی بر اساس فرآیند توده‌های سنگ‌ای مورد بررسی قرار گرفته‌اند.

مقدمه

پهنه سبزوار (SZ) در شمال شرقی ایران شامل پلت‌های زئوشیمی مجموعه‌ای از سنگ‌های دارای مراکزی است. علاوه بر سنگ‌های سنگ‌پوشان و آثار سنگ‌های سنگ‌پوشان، سیستم‌های سنگ‌های نفوذی و فرآیندهای توده‌های سنگ‌ای در این پهنه به‌وجود می‌آیند.

واژه‌های کلیدی: زئوشیمی، سنگ‌زایی، ماگنتیسم، توده‌های نامن، پهنه سبزوار

s_mazhari@pnu.ac.ir

تویپشده مسئول، تلفن: ۰۲۳۰۹۳۶۳۲۲۲۲، تاریخ: ۱۴۹۳/۰۴/۰۳، پسی مکانیکی، آذر ۱۴۹۳
باد شده است. با لحاق حالة داده‌ها سال سنی جدید حاصل از تطبیق سن تعداد نمونه‌های محدود از تعداد های اخا در جنوب غربی ایران و مجموعه‌ی نفوذی در جنوب غربی ایران، با وجود گستردگی کمی دارای نتایج قابل توجه است. پیداشکسو مکتوب در این تدوین می‌تویند بررسی سنجش‌های این نمونه‌ها می‌باشد. در این پژوهش برای اولین بار داده‌های زن‌شیمایی این تدوین ارائه شده و ویژگی‌های صحراپی، سنگ- نگاری و سنگ زایی این مورد بررسی قرار می‌گیرد.

زمن‌شناخت منطقه
منطقه مورد بررسی در شمال شرقی ایران واقع شده است و در تقسیم‌بندی مناطق زمین‌شناسی ایران در قلمرو ایران مرکزی قرار دارد. یکی از این ناحیه، علت نویسی پهنه‌ی سی‌م در شمال توده واقع شده‌اند. این مجموعه ای‌اف‌پی‌لی شامل یک بخش به‌نظر می‌رسد که شامل اپی‌پلی‌تیک فلور شاخه‌ی شمال مرکزی ایران واقع شده‌است. این توده نویدی نمایی بر یک‌گروه صحراپی می‌توان به‌سئه گروه ترتیبی در هر جزئیه‌ای اندک روزنها، شکل (1b) رنگ و ظاهری آن از روند شاخه‌ای تغییر می‌گردد. درک دریافت نشانه‌های رنگی روش هستند که روزنها، شکل (1a) گروه صحراپی شکل می‌توان در جنوب شرقی ایران مورد بررسی قرار گرفته شده. این توده نویدی شاخه‌ای ناحیه‌ی اسپاینوسنپوزه‌شده و دب‌نی‌ها دب‌نی‌سی‌م روسی- شیمایی- دایکه‌کودی‌روسی- و گنبد‌های لیافی و توده‌ای که سن این ناحیه به پایین‌تر را به‌نظر می‌رسد داده‌ای که این ناحیه را نشان می‌دهد. [۱۰] علی‌رغم سنگ‌های دایکه‌کودی‌گوش شده (شیپست آبی، شیپست سبز و ای‌پلی‌تیک) از افزایشگرهای مختلف در در ناحیه ای‌اف‌پلی‌تیک دیده می‌شوند (شکل آلفا). این سنگ‌های در کرتانه پیشین (الیو) دستخوش پیش‌تر

dگرفته شدند [۱۱].

با توجه داده‌های آذری و استان به دنبال‌های ای‌اف‌پلی‌تیک که در پهنه‌ی سی‌م در شهرستان گسترش کلی ملاحظاتی از این ناحیه به سلسله سنگ‌های ماکونیائی ناپی‌نویسی‌زده شده است (شکل آلفا). این سنگ‌های با کروفت توده‌های نفوذی، نیمه‌برنده و بالاتر خروجی در تابع مجموعه‌ای ای‌اف‌پلی‌تیک رخنمون‌اف‌پلی‌تیک [۳] و یا در خارج از نواز ای‌اف‌پلی‌تیک [۱] نمی‌باشد. [۲] در نشانه‌های زمین‌شناسی خصوصی، [۳] قرار گرفته‌اند. [۴] شناخت، این تدوین به‌عنوان یکی از ماکونی‌سی‌م سنورینکی
گرانيتونیها وجود ندارند. در رخنمون مرکزی سنگ‌های مافیک (واحده شکل 1 اب) کانسک مگنتیت به صورت قطعات پراکنده می‌شود (شکل 23). این قطعات به شکل مدمر در درون گابروها جا گرفته‌اند و آثار دگرسان (منطقه‌های دوگانه) در سنگ‌ها مشاهده نمی‌شود.

شکل 1 (الف) موقعیت منطقهی مورد بررسی نشان داده شده در نقشه‌ی زمین‌شناسی ساده شده (تصویج شده از [11])

مجموعه افیولیتی درون بیضوی نشان داده شده است. OR = سنگ‌های غیر افیولیتی. (ب) نقشه ساده زمین‌شناسی توده نامی.
سنگ تگاری

براساس شمارش منی، گرانیتونده‌های واحد BG در گسترده‌ترین گروه‌بندی‌های کوارترنزوردوبلوریت و کوارترنز دوربیت قرار می‌گیرند. سنگ‌های BG متوسط تا درشت دانه (0-2 cm) با بافت اصلی دانه‌ای و گاه پورفیری هستند. پلاژیوکلاز (%V) 5-20، کوارترنز (0-2 cm)، آمفیبول (0-2 cm) و فلدسپار قلبی (0-2 cm) کاهی اصلی تشکیل دهنده واحد هستند.

سیوید سفید (patchy) و رطوبیت‌های پرتویی (oscillatory zoning) (S+C) گروه‌بندی‌های دانه‌ای کوارترنز را قطع کرده است. (ت) یک نمونه از کاستنگ SG بیدمانوی در هورنلند گانژه‌های دانه‌ای.

وسیله‌ی پرونده‌ای می‌شود. پرونده‌ی گروه‌بندی‌ها، آبی‌ایت و کانی‌های کاملاً خالی از غلیظ و کراتیت، کلسیت، سرپیت، تیتانیت نانوی و آبی‌ایت کانی‌های حاصل از دگرگویی آمیفیبوس و فلدسپار در این سنگ‌ها را تشکیل می‌دهند.

تابع به ترکیب کانی‌های سنگ‌پوشش و سنگ‌پوشش واحد SG به ترتیب تقریباً یکسانی کنترل می‌کند که کانی‌های اصلی کوارترنز (V) 45-20، فلدسپار قلبی (50) و پلاژیوکلز (200) دارند.

فرآیند پرتویی (patchy) و رطوبیت‌های پرتویی (oscillatory zoning) (S+C) گروه‌بندی‌های دانه‌ای کوارترنز را قطع کرده است. (ت) یک نمونه از کاستنگ SG بیدمانوی در هورنلند گانژه‌های دانه‌ای.
روش روش‌های پس از انجام مطالعات و بررسی دقیق میدانی و کتابخانه‌ای، نمونه برداری هدف‌مند از سنگ‌های توده نفوذی نام به عمل آمده و ۴۰ نمونه سنگی برداشت گردید. از نمونه‌های جمعی اولیه شده با صورت گرفته از سیانه‌ها برداشت شده شد که از آن‌ها ۱۲ نمونه در دامنه ی سلیمان ۴ نمونه نمونه‌برداری شد. برای انجام آزمایش (SG) نمونه‌های اول برداشت گردید و سپس نمونه‌های پاک‌سازی شدند. برش شده مداوم‌ها (Acme) در کتابخانه مورد نظر با نمونه‌های سوپر و کالی‌زیا سنگ‌های نفوذی نام...
جدول ۱
نتایج حاصل از تجزیه شیمیایی عناصر اصلی (wt%) و کمیابی (ppm) نمونه‌های انتخاب شده از توده نامی. ASI = ضریب اشباع

<table>
<thead>
<tr>
<th>Sample No</th>
<th>MO16</th>
<th>MO14</th>
<th>MO17</th>
<th>MO18</th>
<th>MO10</th>
<th>MO12</th>
<th>MO7</th>
<th>MO8</th>
<th>MO11</th>
<th>MO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>MHB</td>
<td>MHB</td>
<td>HB</td>
<td>HB</td>
<td>GB</td>
<td>GB</td>
<td>GB</td>
<td>GB</td>
<td>GB</td>
<td>SG</td>
</tr>
<tr>
<td>SiO₂</td>
<td>13.06</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.82</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.98</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.46</td>
</tr>
<tr>
<td>MnO</td>
<td>0.19</td>
</tr>
<tr>
<td>CaO</td>
<td>11.77</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.75</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.77</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.18</td>
</tr>
<tr>
<td>L.O.L</td>
<td>0.39</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.06</td>
</tr>
<tr>
<td>ASI</td>
<td>0.84</td>
</tr>
<tr>
<td>T.Zr</td>
<td>1.31</td>
</tr>
<tr>
<td>F</td>
<td>0.63</td>
</tr>
<tr>
<td>Cr</td>
<td>0.17</td>
</tr>
<tr>
<td>Co</td>
<td>0.13</td>
</tr>
<tr>
<td>Ni</td>
<td>0.05</td>
</tr>
<tr>
<td>Zn</td>
<td>0.11</td>
</tr>
<tr>
<td>Ga</td>
<td>0.19</td>
</tr>
<tr>
<td>Y</td>
<td>0.19</td>
</tr>
<tr>
<td>Nb</td>
<td>0.03</td>
</tr>
<tr>
<td>Ta</td>
<td>0.01</td>
</tr>
<tr>
<td>Zr</td>
<td>0.53</td>
</tr>
<tr>
<td>Hf</td>
<td>1.06</td>
</tr>
<tr>
<td>Pb</td>
<td>1.01</td>
</tr>
<tr>
<td>Th</td>
<td>0.72</td>
</tr>
<tr>
<td>La</td>
<td>0.06</td>
</tr>
<tr>
<td>Ce</td>
<td>0.19</td>
</tr>
<tr>
<td>Pr</td>
<td>0.02</td>
</tr>
<tr>
<td>Nd</td>
<td>0.19</td>
</tr>
<tr>
<td>Sm</td>
<td>0.06</td>
</tr>
<tr>
<td>Eu</td>
<td>0.07</td>
</tr>
<tr>
<td>Gd</td>
<td>0.12</td>
</tr>
<tr>
<td>Tb</td>
<td>0.01</td>
</tr>
<tr>
<td>Dy</td>
<td>0.06</td>
</tr>
<tr>
<td>Er</td>
<td>0.02</td>
</tr>
<tr>
<td>Tm</td>
<td>0.03</td>
</tr>
<tr>
<td>Yb</td>
<td>0.02</td>
</tr>
<tr>
<td>Lu</td>
<td>0.17</td>
</tr>
<tr>
<td>Sum REE</td>
<td>1.85</td>
</tr>
</tbody>
</table>
شکل ۲ تعبیری ماده‌ای سنگ‌های نفوذی توده نامن با استفاده از نمودارهای (الف) و (ب) با استعمال نکته ه وبالا، می‌تواند در اینجا مورد بررسی قرار گیرد.

مقدار اکسیدات نزم‌های اکسیدهای اصلی در بر اساس دنیای سلیسی برای سنگ‌های نفوذی توده نامن، علاوه بر این شکل ۴ است.
نمودار عنکبوتی بهترین نسبت به گوشتخانه اولیه در سنگ‌های گراین‌تندهای توده‌ای نامی حاکی از گونه‌های عنصر Ti و P نیوتنفل بزرگ بون (LILE) و تپی شدگی عنصر Na، Mg و Al است (شکل 6). فرآیندهای میکروآی دار به عنصر عنصر نادر خاکی (REE) به‌نظر می‌رسد که به وسیله گوگرد در سنگ‌های گراین‌تندهای REE نسبت به نحوه شیب بکارگیری و غنی شدن عنصر نادر (HREE) به عنصر نادر خاکی سنگین (LREE) و کمی نهایی در پروپوزیت (1/0 - 1/5) در REE (شکل 6). همچنین شکل 6 نشان می‌دهد (شکل 6) که به وسیله گوگرد و غنی شدن عنصر نادر (HREE) به عنصر نادر خاکی سنگین (LREE) و کمی نهایی در پروپوزیت (1/0 - 1/5) در REE (شکل 6).}

۵۲۴

شکل ۶ نمودارهای دوتایی تغییرات برخی عنصر کمیاب نسبت به سیلیس برای سنگ‌های توده‌ای نامی.

نمودار عنکبوتی بهترین نسبت به گوشتخانه اولیه در سنگ‌های گراین‌تندهای توده‌ای نامی حاکی از گونه‌های عنصر Ti و P نیوتنفل بزرگ بون (LILE) و تپی شدگی عنصر Na، Mg و Al است (شکل 6). فرآیندهای میکروآی دار به عنصر عنصر نادر خاکی (REE) به‌نظر می‌رسد که به وسیله گوگرد در سنگ‌های گراین‌تندهای REE نسبت به نحوه شیب بکارگیری و غنی شدن عنصر نادر (HREE) به عنصر نادر خاکی سنگین (LREE) و کمی نهایی در پروپوزیت (1/0 - 1/5) در REE (شکل 6). همچنین شکل 6 نشان می‌دهد (شکل 6) که به وسیله گوگرد و غنی شدن عنصر نادر (HREE) به عنصر نادر خاکی سنگین (LREE) و کمی نهایی در پروپوزیت (1/0 - 1/5) در REE (شکل 6).
بحث و برداشت
سنگهای نفوذی نام دارای نوع کستره‌ای بوده و به گروه- های مختلف باری (کابروما) و اسیدی (واحدهای گرانیتونی) قابل تقسیم اند. این سنگهای مشخصه یکسان تشکیل شده باشند. با این که در نمونه‌های مختلف سنگهای مشکل شده باشند. در حالت اول می‌توان توده‌ی نفوذی نام را حاصل جدایی ماکماهی اولیه بر روی نیز کش. در این صورت هورنین‌گر را با بید کومول آمیبو و پلاژیولیت در نظر گرفت و سینو گریتونی‌ها (واحد) را محصول نهایی جدایی این ماکماهی دانست. بنابراین، جدایی آمیبو باید به شکل اصلی در 40 درصد می‌باشد در هورنین‌گر را با میزان ناجی در سنگ‌های گرانیتونی‌ها تغییر کند. از آنجا که در این صورت 1.D(Nb)/D(Ta)>1 و 1.D(Dy)/D(Yb)>1. (در آن D(Nb)/D(Ta) است، جدایی آمیبو در ماکماهی بازه کاشت نسبت ماکماهی>Dy/Yb و Ta/Nb باقی مانده خواهد شد. بنابراین اگر فرض جدایی ماکماهی اولیه- ی یکسان صحیح باشد، باید سنگ‌هایی دارای کمترین

مقادیر از این نسبت‌ها باشند و هورنین‌گر را نسبت به سنگ‌ها دیگر به شدت غی شده باشد. اما چنین پدیده‌ای در سنگ‌های نفوذی نام مشاهده نمی‌شود. نسبت سنگ‌های اولیه نام (T. 2007) 8 0 و این روند کامل‌ عکس آن که ایست که در جدایی آمیبو از ماکماهی مادر

واحد باید رخ دهد. بنابراین خاستگاه ماکماهی اولیه سنگ‌های ماکمیک و فلاسفی از سنگ‌های نام و سنت که در بخش‌های مورد بررسی قرار گرفت نیز سنگ‌های ماکمیک و فلاسفی و ماکمیک روندها و ویژگی‌های کاملی متفاوت نیز رنگ می‌دهند که مؤید خاستگاه متفاوت این سنگ‌ها است.

سنگ‌های گرانیتونی‌ها
اگر واحدهای SG و BG از یک فاز ماکماهی مشترک ریشه گرفتند باشد، سنگ‌های گرانیتونی (SG) را باید شکل گرفته ترین اعدا نشان که از جدایی ماکماهی گرانیتونی‌ها اولیه حاصل شده است. در این صورت با توجه به تفاوت ترکیب کاتی
شناشی سنگ‌تراش‌های واحد، این سنگ‌تراش‌ها از سه مجموعه جداگانه تشکیل شده‌اند: مجموعه بدینه، مجموعه کاییر و مجموعه آنتارکتیک.

برای اینکه این سنگ‌تراش‌ها را تعریف کنیم، نیاز به ارائه اطلاعاتی از بافت‌شناسی و مکانیزم‌های تشکیل‌دهنده آنها دارد.

اولین سنگ‌تراش‌های واحد مربوط به ساختارهای آناتورمیک (اناتورما) هستند که از ساختارهای آتشفشانی تشکیل شده‌اند. یکی از این سنگ‌تراش‌ها، واحدهای تکه‌داران از برخی از آتشف‌سرده‌ها، مانند آتشف‌سرده‌های سنگ‌تراش‌های واحد، در اینجا به توضیح می‌رسد.

در این سنگ‌تراش‌ها، اثراتی از فعالیت‌های آتشف‌سوزی و دیگر فعالیت‌های زمین‌شناسی به طور مشابه به همکاری با کاربردهای مصرفی در آشکار شده است.

در این سنگ‌تراش‌ها، اثراتی از فعالیت‌های آتشف‌سوزی و دیگر فعالیت‌های زمین‌شناسی به طور مشابه به همکاری با کاربردهای مصرفی در آشکار شده است.

در این سنگ‌تراش‌ها، اثراتی از فعالیت‌های آتشف‌سوزی و دیگر فعالیت‌های زمین‌شناسی به طور مشابه به همکاری با کاربردهای مصرفی در آشکار شده است.
سنگزایی واحد

چنانه پیش از این اشاره شد، سنگ‌گریزی‌هاي در داده‌ها تمام، وجود فازهای مختلف ماگماکی (دبوریت تا دیوریت کریپتو) در توسعه‌های مختلف اطراف پهنی سیور توسط محققین مختلف در جهت مدار اینگونه بود که در روش سیوریان از پراکنده‌ترین این پدیده‌ها و سیورگرایند هFsE به دنبال اشکال دوررسی شناخته شوند. این ویژگیهای مشابه با شاخه‌های تعریف شده برای گراندیونده‌های آلومین A در نقاط مختلف دنبال معرفی شده‌اند. [25]. گراندیونده‌های آلومین A متفاوت از گراندیونده‌های پرآگالین هستند.

امکان تشکیل این نوع گراندیونده‌ها در همزمان و طی هر یک از مراحل تشکیل دهنده‌هایی که وجود دارند و باقیراین نمی‌توانند پانگی‌های متغیر سیوریان داشته باشند [25]. برای تعیین خاصیت گراندیونده‌های گذشته همچون سنگ‌گریزی‌ها، های نیاز به داده‌های دقیق ارزیابیی، است. ولی با توجه به خواص زنده‌نشینی (همچون پرآگالین‌بند ودیده و دمای بالا) و تشکیل آنها در یک محیط فروآیندی‌پیش به‌یک سیستم فلزیکی پوست‌های دانته که به وسیله ورود گرم‌های گوش‌هایهای شکل گرفته‌اند [27].

سنگزایی هوریتلنگ کارپوها

گابراها در نمونه‌های کومولیا از آمپیلین و پلاژیوکلاز‌های سنگ‌گریزی‌ها نمی‌توانند مربوط به این اشاره شده و وجود یک منطقه از فروآیندی در یک محیط سیوریانی به این اشاره نمی‌تواند. داده‌های زنده‌نشینی، در سیوریانی بازیلی تیغ‌های فرااندازه تکثیرگامای منفعته هجوم و رقی سردنlab) و شکستن ورود فروآیندی شده (delamination) نیز شکل‌گیری [28]. صعود این ماگماهای تولید شده در عمق طبیعت از سمت پایین گرم‌های لازم برای ذوب پوسن آمپیلینی را فراهم کرده و موجب تشکیل ماگما گریزیشهای شد. این پدیده در مناطق همگرا بیشتری از این اشاره است.
به راهیتی در هماهنگی فلورور حل می‌شوند. بنابراین جنینی مغز که در گیربکس‌های نامی بخش این عناصر ناسازگار در نمونه‌های HB هستند انتشارات و نمونه‌های غنی از MHB و غنی از هر دو این دوره مصرف شدند.

فرایندهای مختلف زمین‌ساختی و زنده‌سازی می‌توانند در تشکیل کانال‌های مگنتیت از ماگمای گاروبی نش داشته باشند [13]. مگنتیت‌های موجود در داخل گاروبی نشکل گریچه‌های علامت آن مگنتیت بعضاً می‌توانند در کانی‌های کلی شامل چنین عناصری از معنای همچون جدایی، تغییر در گریزندگی اکسنت و بر جو دارد. این شواع در گاروبی‌های نام مواد خاص‌گاه ماگمایی مگنتیت‌ها و جذابی بخش اکسیدی همان گرای بکرهاست. تشکیل گمین تکیک اکسیدی از ماگمای سیلیکاتی از طریق فرایندهای مختلف همچون جدايش که تکیک ماگمایی تغییر در گریزندگی اکسنت و بر جو در پیدایش این پدیده در نمونه‌های نام برسبی‌های بیشتر (برسی کانی‌گذر و زنده‌سازی کانسک) دارد ولی حضور برگرداند کانی‌گذر سولفیدی و آپاتیت در گاروبی‌های نام پیانکر این است که گوگرد و فسفر می‌تواند به عنوان عامل شاری (fluxing agents) عمل کرده و گسترش آیون‌های غیرقابل ترکیب را سرعت بخشیده باشد [31]. همراهی آمپیلوی و مکنتیت نش دیده که آب و شناوری دیگر نیز در این فرایندهای دنیا در آب و دی‌کسیدرکین می‌تواند از طریق مناسب دیاره و طی جابجایی ماگمای گاروبی‌های دیگر از آن وارد محیط شوند [32]. فرایندهای آب‌دار در گاروبی‌های نام پیانکر و رود شاره‌های به سیستم در طول تپانه است.

اگر نوع کانال‌های مگنتیت در هورمینند گاروبی‌های نام با انتزاع معامل کاناسراه به آهن (اسکارن، رسوبی، گرما و گاروبی) مقابله شود، باید گفت که شباهت بین کاناسراهان های MHB و گاروبی‌های فاقد آن (HB) و اغلب در مینه‌های MHB از نظر گوگرد و عناصر فلزی V، Co، Cr و آهن از نظر همکاری و نمونه‌ها، به عنوان مس هست که این مس از مس اقتصادی (جدول 1) می‌باشد. در این مس مولکول MHB در بافت هودین (میله‌هایی) در خروجی تغذیه HB و Cu به مس هود (شکل‌های 6 ب و چ) نمایش می‌دهد. با توجه به این تحقیق‌های زنده‌سازی بنیانگذاری ترکیب ماگمایی HB و MHB نمونه‌ها که از طریق مقایسه زیان‌های خوشه‌های مواد فلز به ورود شاره‌های پنیریزد یک باز هستند، نشان دهنده دقت مولکول فلزی دارد. دقت همگی‌اند و نمایش آن‌ها. تجزیه‌ای که می‌تواند نمونه‌ها، بنادر نمایش چشم‌وندیر میزان فلورور در این دو دسته‌ها از گاروبی‌های نام است (جدول 2) میزان در F از 648-800 ppm HB از MHB و میزان در HB از 647 ppm (میزان 825 نا است. این پیشرفت از این انرژی شده، میزان مس اقتصادی در HB و MHB اینی چنین مس اقتصادی در ایست وا برای گوگرد غلط این موضوع می‌تواند سازنده را برای HB (L.O.I. 629٪) بنابراین باید جذابیت فاز فلز در ماگمایی مافیک نش دیده گاروبی رخ داده باشد که با خشک میزان گوگرد از HB (keh از KMB و F از MHB تیکیک Ra) داده را (keh از آب و گوگرد) (keh تیکیک Ra) تیکیک شد. این پیشرفت دیده شد که MHB در REE و LILE متمرکز فلزی بطور ترجیحی در نمونه‌های HB و MHB تیکیک شدند. این فرضیه با داده‌های جنبه‌های نیز همخوانی دارد. آزمایش‌های نشان می‌دهند که عناصر REE و LILE
اسکاران و رسوبی کناره‌ای نام‌دیده نمی‌شود. منطقه‌بندی و
دگرسانی خاص کاسپرها در این منطقه مشاهده
نمی‌شود و کانی‌های آبی رنگ در نوع کاریون نیز در تام
ظاهر نشده است. ویژگی‌های زئونیستیک‌های هورنلینگ کاروهای
نام وکاسپرها این کولا در روسیه [31] و ایالت‌های بزرگ
آدرین چین [32] پیشتر هم‌خویی نشان می‌دهند.

برداشت
داده‌های زئونیستیک حاصل از تجزیه نمونه‌های توهدی
نام، بین‌گیر و حمایت سه فاز مختلف با ماهیت آفتی-فلایی و
ویژگی مِگا‌های مناطق فروانش است. اکثر سینوزیستینی
که دست‌کم دگرسانی چندگانه شدیدتر، شامل
گرانیتهای آلومین A در مفصل بالایی فلسیک‌ساز، کوارتز و
کُرک شیمیایی قنی از عناصر HFSE و همی از
می‌شود. هم گرانیتهای حاصل تبلور مِگا‌های با دمای بالای
تشکیل شده از دبیه سنگ‌های سقوطی‌های هستند.

T., Gerdes V., Razavi M. H., Moin Vaziri H.,
"Early Cretaceous magmatic mafic granulites from the Sabzevar range (NE Iran): implications
for the closure of the Mesozoic peri-Tethyan oceans in central Iran", Terra Nova, 22 (2010) 26-
34.
[2] Rossetti F., Nasrabadi M., Theye T., Gerdes A.,
"Adakite differentiation and emplacement in a
subduction channel: The late Paleocene Sabzevar
magmatism (NE Iran)", Geological Society of
[3] Alaminia Z., Karimpour M.H., Homam S.M.,
Finger F., "The magmatic record in the Arghash
region (northeast Iran) and tectonic implications",
Int J Earth Sci (Geol Rundsch), 102 (2013) 1603-
1625.
"Geochemical evidence for Late Cretaceous
marginal arc-to-backarc transition in the Sabzevar
ophiolitic intrusive sequence, northeast Iran",
Journal of Asian Earth Sciences, 70-71 (2013a)
"Geology, petrology and tectonomagmatic
evolution of the plutonic crustal rocks of the
Sabzevar ophiolite, northeast Iran", Geological
Magazine, 150 (2013b) 862-884.

