تأثیر جانشینی روی تغییرات ساختار میکروسکوپی و خواص مغناطیسی فریت منیزیم
$\text{Mg}_{1-x}\text{Zn}_{x}\text{Fe}_2\text{O}_4$
روی

محمد نیایی فر، سمیه نظری، احمض حسن بور

دانشگاه اردبیل-اصفهان، واحد اهواز، گروه فیزیک، اهواز

دریافت مقاله: ۱۳۸۷/۰۸/۲۹ (درخواست تاریخی ۱۳۸۷/۰۸/۲۹)

چکیده: در این پژوهش نانوذرات فریت منیزیم روی به روش سل زل تهیه شدند. تحلیل برای بروت ایکس (XRD)، نشان می‌دهد که تمام نمونه‌ها به صورت تک فاز در ساختار اسپینل مکعبی منتقل شدند. میانگین اندازه بلوک‌ها ۱۲۲ نانومتر بودند. مقدار R_g (پهلوی جایگاهی در توده‌ی آرامشی) و R_h (پهلوی جایگاهی به فیزیکی) نمونه‌ها تعیین شدند. مقدار R_g (پهلوی جایگاهی در توده‌ی آرامشی) و R_h (پهلوی جایگاهی به فیزیکی) نمونه‌ها تعیین شدند. مقدار R_g (پهلوی جایگاهی در توده‌ی آرامشی) و R_h (پهلوی جایگاهی به فیزیکی) نمونه‌ها تعیین شدند. افزایش میزان روی افزایش (کاهش) باعث بیان سنج فروسرخ (FT-IR) یون پدیده v در گستره‌ی $v=450$ را بناه ترکیب‌های جارجی روشی نشان می‌دهد. تصویر میکروسکوپ الکترونی بر روی (SEM) توزیع یکنواخت آن از راه درای نشان می‌دهد. مغناطیس اشناب و نیروی واداراندی فریت منیزیم روی نیز با استفاده از مغناطیس سنج ارتعاشی (VSM) مورد بررسی قرار گرفتند. مغناطیس اشناب نمونه‌ها نخست نتایج $x=0.2$ افزایش و حس کاها می‌باشد. این تغییرات به افزایش گستردگی مغناطیسی و کشش‌گی اسپین در جایگاه B نسبت داده می‌شود.

واژه‌های کلیدی: فریت منیزیم روی، بروت بروت ایکس، مغناطیس سنج ارتعاشی، بیان سنج فروسرخ.

مقدمه
مواد مغناطیسی نانو برای در سال‌های اخیر به عنوان خواص جدید و منحصر بفرد شان مورد بررسی قرار گرفته است. در این میان، فریت‌ها می‌توانند به‌عنوان یکی از نانوذرات فریت منیزیم روی در مسیر بررسی قرار داده شده با روش سریالی در بودن بنا به روش دانشگاهی شده باشد. بنا به روش دانشگاهی، در مقدار مغناطیسی، می‌توان از این روی با روی خواص سنتی و ویژگی‌های کپسولاریت، فیزیکی و فیزیکی فریت منیزیم روی را مورد بررسی قرار دادن که با روش سریالی اندازه‌گیری شده‌اند. سپس رویداد منیزیم روی با روی حالت جامد با ساختار منیزیم روی را با روی حالت جامد با دست آورده. در گزارش‌های این پیوسته است که مقدار مغناطیسی اشناب نانوذرات با افزایش x افزایش یافته و سپس کاها می‌باشد. اشتباه این این این فریت که به روی حالت جامد ساخته شده بود

md.niyaiifar@gmail.com

تویینده مسئول: تلفن: ۷۲۳۲۶۴۰۶۰، نامبر: ۱۲۴۴۷۲۵۱۸۵۸۸۲، پست الکترونیکی: md.niyaiifar@gmail.com
روش کار
برای تهیه نانوذرات فیبری مس-روی نخست محلول‌ها از نکته‌های نیترات‌های Mg, Zn, Fe، Ni، Cu، Si، Mg(NO₃)₂.6H₂O و Fe(NO₃)₃.9H₂O پخت تهیه شده بود. عضو محلول‌ها به دست آمده توسط سپس FT-IR و FT-IR مونیتر برابر شدند. در نهایت در تهیه نانوذرات فیبری مس-روی مواد اصلی در شرایط آب و باران پختگی مس-روی شده بود.

روش کار
برای تهیه نانوذرات فیبری مس-روی نخست محلول‌ها از نکته‌های نیترات‌های Mg, Zn, Fe، Ni، Cu، Si، Mg(NO₃)₂.6H₂O و Fe(NO₃)₃.9H₂O پخت تهیه شده بود. عضو محلول‌ها به دست آمده توسط سپس FT-IR و FT-IR مونیتر برابر شدند. در نهایت در تهیه نانوذرات فیبری مس-روی مواد اصلی در شرایط آب و باران پختگی مس-روی شده بود.

روش کار
برای تهیه نانوذرات فیبری مس-روی نخست محلول‌ها از نکته‌های نیترات‌های Mg, Zn, Fe، Ni، Cu، Si، Mg(NO₃)₂.6H₂O و Fe(NO₃)₃.9H₂O پخت تهیه شده بود. عضو محلول‌ها به دست آمده توسط سپس FT-IR و FT-IR مونیتر برابر شدند. در نهایت در تهیه نانوذرات فیبری مس-روی مواد اصلی در شرایط آب و باران پختگی مس-روی شده بود.
جدول 1 مقادیر اندازه بلورک‌ها (nm)، تناوب شکل، (Å)، مغناطیس شکل، (emu/g) و اندامنه (Oe)، فریت منیزیم روی پوسته‌های جایگشتی روی

\[(\chi_x) = \frac{6}{1} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>اندازه بلورک</th>
<th>تناوب شکل</th>
<th>Ms</th>
<th>وادارنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.35</td>
<td>13</td>
<td>18.5</td>
<td>47.82</td>
</tr>
<tr>
<td>0.2</td>
<td>8.77</td>
<td>15</td>
<td>24.6</td>
<td>51.69</td>
</tr>
<tr>
<td>0.4</td>
<td>8.38</td>
<td>17</td>
<td>29.5</td>
<td>58.02</td>
</tr>
<tr>
<td>0.6</td>
<td>8.39</td>
<td>21</td>
<td>34.1</td>
<td>24.91</td>
</tr>
<tr>
<td>0.8</td>
<td>8.40</td>
<td>21</td>
<td>34.5</td>
<td>17.24</td>
</tr>
<tr>
<td>1</td>
<td>8.41</td>
<td>21</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>1.2</td>
<td>8.42</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

شکل 1 1 تغییرات تناوب شکل (a) و اندازه بلورک‌ها فریت منیزیم روی (Mg\(_1-x\)Zn\(_x\)Fe\(_2\)O\(_4\)) بر حسب مقادیر جایگشتی (x) = 0.2.

شکل 2 1 تغییرات تناوب شکل (a) و اندازه بلورک‌ها فریت منیزیم روی (Mg\(_1-x\)Zn\(_x\)Fe\(_2\)O\(_4\)) بر حساب مقادیر جایگشتی (x) = 0.2.
جایشانی ری در فریت منیزیم باعث آشفتگی در ساختار میکروسکوپی شکه می‌شود. با استفاده از تابع شبکه، می‌توان طول پیوند در چاپگرهای چارچوبی هشته‌وجی، فاصله‌ای بین پیوند و زاویه‌های پیوندی که احتمالاً سهم زیادی در تغییرات شبکه اسپیلیک درند را محاسبه کرد. در شکل 3 زاویه‌های پیوندی و فاصله‌های بین پیوند مشخص شده است. طول پیوند جایگاه چارچوبی، R_e و طول پیوند جایگاه هشت وچهی R_h به دست می‌آید [19]:

$$R_d = \alpha \sqrt{3(\delta + \frac{1}{8})}$$

$$R_b = \alpha \sqrt{3\delta^2 - \frac{\delta}{16} + \frac{1}{16}}$$

$$\delta = u - 0.375$$

که انحراف پارامتر اکسپانژن δ, u تابع شبکه و α اکسپانژن است. پارامتر اکسپانژن ابدال برای $\beta = 375$ است [20]. با توجه به اینکه پارامتر اکسپانژن برای فریت منیزیم 0.381 [21] و برای فریت می‌آید [22]. مقادیر u برای فریت

شکل 3 فاصله بین پیوند، زاویه بین کاتیون-کاتیون، کاتیون-کاتیون به وسیله در چاپگرهای چارچوبی و هشت وچهی در فریت اسپیلیک [21]

جدول 2 مقادیر در دو چاپگرهای جایگاه شده با روی R_e و R_h. u، δ، R_d، R_b، R_h، R_e

<table>
<thead>
<tr>
<th>δ</th>
<th>u</th>
<th>R_d</th>
<th>R_b</th>
<th>R_h</th>
<th>R_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

(*) انحراف پارامتر اکسپانژن δ, u برای پارامتر اکسپانژن طول پیوند جایگاه چارچوبی R_e, طول پیوند جایگاه هشت وچهی R_h, طول پیوند جایگاه هشت وچهی R_e, طول پیوند جایگاه چارچوبی R_e, طول پیوند جایگاه هشت وچهی R_h, طول پیوند جایگاه چارچوبی R_e, طول پیوند جایگاه هشت وچهی R_h.
ب رای هم فریت‌های اسپینلی درایی سرتی‌نی‌ها مشترکی هوشیاری [۲۱۵]. این گرایش‌هایی ارتعاشات بی‌ست‌های بلوشی را تعیین می‌کند [۲۲۳]. پیوند سالمی ۷۷ فریت مینیم رويت که در شکل ۴ نشان داده شده است در گرایش ۴۰۰۰۰۰ سی‌وی‌سی قرار دارد. عدد موج پيوند ۱۷ خارج از گرایش–ب رای آزادی‌گیری است. چنانچه از شکل ۴ پیداست، موقعیت پيوند ۱۷ تغییر جهت قطعی خطي به سمت عدد موج کمتر ۲۳۷۲.۳۲۶ سی‌وی‌سی نیروی جاذبیت خلاص شروع شده و به تا ۱۵۴۰۰۰ سی‌وی‌سی خوشه کاهش یافته است. این گرایش (پیوند ۱۵) ارتعاش‌های انسانی دیگر در جایگاه چاپرچی را مشخص می‌کند. تغییر منحنی این پيوند با جایگاهی چاپرچی، تغییرات ساختاری جایگاه چاپرچی را تبریک را نشان می‌دهد. این عدد‌های تغییر مشاهده شده است که مهندسی پرتو فریت ساختاری دیگر است که به مسیر سازمانی به دست امکان گرفت. این پیوند ۱۷ نیز متواری به افزایش در طول پيوند اکسیزن کانیون (A-O) نسبت داد. سپر استفاده در بافت نیروی جاذبیت جزء خود این است که کاهش در پيوند اکسیزن فلز در جایگاه مینیم یونا Fe۵+ با باسیم چاپرچی به غلظت جایگاه‌برداری باسیم Fe۲+ در جایگاه چاپرچی است. در این قرار گرفتن پيوند اکسیزن ۲۳۷۲.۳۲۶ سی‌وی‌سی در جایگاه چاپرچی سپر مشود تا تعادل از یونهای Fe۵+ در جایگاه چاپرچی به جایگاه هوشیاری منحنی که به افزایش سبک پیوند اکسیزن –فلز در جایگاه چاپرچی در ساختار اسپینلی منحنی شود زاکی و همانطوری تغییرات بین پرتو فریت مس روز گرایش شده اند [۲۳۳].

در شکل ۵ تغییرات میکروسکوپی الکترونی رویه نانوذرات فریت مینیم جایگاهی شده با روز نشان داده شده است. ذرات دارای ریخت‌شناختی کروی شکل هستند. توزیع اندازه ذرات در آنها تقریباً پیکسان است. اندازه ذرات با افزایش جایگاهی بزرگتر شدهاند. میزان اندازه ذرات ۴۷، ۴۷ و ۶۶ نانومتر تغییرات به وجود می‌آید. کیفیت بودن توزیع اندازه ذرات را می‌توان در نمودار ساختار ناحیه شهره در شکل ۶ مشاهده کرد.

1. Raghavender
2. Zaki

طول‌های چاپرچی‌های Rلیتو و Rلیتو هشتوتوهی مشترکی Rلیتو چاپرچی‌های ریز به روابط ۶ تا ۸ دست می‌آید [۲۱۶].

\[
R_{\alpha} = a\sqrt{2} (u - 0.5)
\]

\[
R_{\beta} = a\sqrt{2} (1 - 2u)
\]

\[
R_{\gamma} = a\sqrt{4u^2 - 3u + \frac{11}{16}}
\]

مقادیر

که مقدار با افزایش جایگاهی ریز، افزایشی. کاهش و افزایشی می‌باشد. مشاهده که علت قدرت‌های چاپرچی و نیکل ریز کدامیک قدرت شده است [۲۱۷] و در بررسی آری لن داد که عنوان افزایش طول افزایش مقدار ۶. این پیوند ۱۷ و ۵۳ چاپرچی Rلیتو افزایش‌های نیروی به این معناست که فضای نشان شده به وسیله پیوند آن در جایگاه چاپرچی با جایگاهی پون ریز افزایش پیدا می‌کند [۲۱۸].

به منظور بررسی نوع پیوندهای موجود در پودرهای در درامی اتاق و برای تأیید ساختار فاز اسپینلی شده و در پودرهای سنتز شده، طیف FT-IR به استفاده از سیستم‌فوروروسیس مورد بررسی قرار گرفته است. در پودرهای که در نمودار ۴=v۱۷۰۰ سی‌وی‌سی با مقدار جایگاهی ۲۳ از مغز، Zn۲+Fe۲O۴ افزایش مقدار R۱۰۰۲ از مغز Mg۱-xZnxFe۲O۴ و مقدار ۲۴۷ از مغز Fe۲O۴ در گرایش سالمی ۲۳۰ سی‌وی‌سی افزایش مقدار ۴=v۱۷۰۰ سی‌وی‌سی به فرمول ۶۰۰۰ سی‌وی‌سی در FT-IR در پودرهای نانوذرات در طیف FT-IR به استفاده از سیستم‌فوروروسیس مورد بررسی قرار گرفته است. در پودرهای که در نمودار ۴=v۱۷۰۰ سی‌وی‌سی با مقدار جایگاهی ۲۳ از مغز، Zn۲+Fe۲O۴ افزایش مقدار R۱۰۰۲ از مغز Mg۱-xZnxFe۲O۴ و مقدار ۲۴۷ از مغز Fe۲O۴ در گرایش سالمی ۲۳۰ سی‌وی‌سی افزایش مقدار R۱۰۰۲ از مغز Mg۱-xZnxFe۲O۴ و مقدار ۲۴۷ از مغز Fe۲O۴ در گرایش سالمی ۲۳۰ سی‌وی‌سی
شکل ۴ طیف فروسرخ نانوذرات فریت منیزیم جاینشانی شده با روی \(\text{Mg}_1-x\text{Zn}_x\text{Fe}_2\text{O}_4 \) \(\gamma = 0, 0.2, 0.4, 0.6 \).

شکل ۵ تصاویر میکروسکوپ الکترونی روبشی نانوذرات فریت منیزیم جاینشانی شده با روی \(\text{Mg}_1-x\text{Zn}_x\text{Fe}_2\text{O}_4 \) \(\gamma = 0, B, \gamma \).
شکل ۶ نمودار تعداد نانوذرات بر حسب اندازه نانوذرات فيت فرم مغناطیسی روی $x = 0.0$ می‌باشد.

به منظور بررسی تأثیر جای‌نشانی روی بر خواص مغناطیسی نمونه‌های فیت مزئی‌سازی چرخی پسماند همه‌ی نمونه‌ها در ادامه اثر مورد بررسی قرار داده شد. ممانعت به علت رقیقی زیرشکل A به جای‌نشانی روی، بهره‌کش تبدیل μ به مخوس کاهش می‌یابد. جایگاه کاهش می‌ابد. امین غیر متغیر مغناطیسی نه به متأثر مغناطیسی کاهش هسته‌جویی یا بررسی‌های خود افزایش مغناطیسی موثر در جایگاه‌های جارچویی و هسته‌جویی نیست. بررسی‌های افزایشی نشان داد که با جای‌نشانی روی زواها و طول بینون در جایگاه‌های جار و هسته‌جویی نیز کمک می‌کند.

شکل ۷ نغمه‌نیری و اداردنگی فیت مزئی‌سازی روی x می‌باشد. ممانع افزایش جای‌نشانی روی نشان می‌دهد. مفادات نغمه‌نیری و اداردنگی در جدول ۱ آورده شده است. نشانه‌های به $x = 0.4$ می‌باشد. می‌یابد. با اندام جای‌نشانی کاهش می‌یابد. با توجه به این که نغمه‌نیری و اداردنگی به نهایی ناگردد رابطه مستقیم دارد

$$\left(1 - x \right) = \frac{M_H}{k_1} H$$

که تغییرات نمایندگی از فیت مزئی‌سازی نیز از فیت روی $x = 0.3$ تا $x = 0.5$ باید به این شکل بوده است.

واقعگرایی کشتار مغناطیسی هر ترکیب از نمونه‌ها به توزیع بین های Fe^{3+} بین دو زیر شکل A و B باسته است. با توجه به جای‌نشانی روی به جایگاه ترکیبی به یک یا فیت مزئی‌سازی روی. ممانع جای‌نشانی روی به جایگاه‌های $x = 0.3$ تا $x = 0.5$ می‌باشد. با اجرای مشابه به جایگاه جارچویی به جایگاه‌های و جایگاه جارچویی به جایگاه‌های $x = 0.3$ تا $x = 0.5$ می‌باشد.
برداشت
در این تحقیق نمونه‌های سیستمی از Mg1-xZnxFe2O4 طراحی شد. N = 10 تا N = 0.5 از افزایش نسبت داده شود. نیروی وادارنگی نمونه‌ها نیز تغییراتی نسبت به سیستم‌های مشابه دارد. نمونه‌ها از 20 تا 30 نانومتر بزرگ‌تر می‌باشند.

افزایش نسبت داده نمونه‌ها به تغییرات آلاتیکی تشکیل نمودند. با تغییر نسبت داده نمونه‌ها داده که نمونه‌های که دارای سطح کاهش‌یافته و رواک در کوچک‌ترین ذرات حالت شتاب و توزیع این‌ها در سطح نشانده. SEM نشان داد که ذرات تقسیم‌کرده شکل کوچک‌تری داشته و توزیع این‌ها در سطح نشان داد. این نکته از دیدگاه افزایش نسبت داده N = 0.4 می‌باشد. N = 0.4 نمونه‌ها از نمونه‌ها به سبب افزایش نسبت داده N = 0.4 می‌باشد.

rapid microwave combustion method", Super
lattice and microstructures 64 (2013) 118-131.
[14] Bhandare M.R., Jamadar H.V., Pathan A.T.,
Chougule B.K., Shaik A.M., “Dielectric
properties of Cu substituted Ni0.5–Zn0.5Mg0.5Fe2O4
ferrites”, Journal of Alloys and Compounds 509
“Cation distribution in nanosized Ni–Zn ferrites”,
J. Appl. Phys. 95 (2004) 5746
[16] Navrotsky A. K., Kleppa O. J.,
“Thermodynamics of formation of simple spinels”,
J. inorg.nucl. chem, 30 (1968) 479-498.
and magnetic characterization of nanocrystalline
Ni–Zn ferrite synthesis by co-precipitation route”,
Journal of Magnetism and Magnetic Materials 320
ferrite nanoparticles synthesized using egg white",
magnetic materials” (1990).
Diffraction Study of Magnesium Ferrite”, Physical
diffraction studies of zinc ferrite and nickel
ferrite”, Reviews of modern physics, 25 (1953)
114-119.
A.M., Sellai A., Widatallah H.M., Yousef A, Elzain
M.E., Shongwe M., “Infrared and structural
studies of Mg1–xZnxFe2O4 ferrites”, Physica B 407
“Structural and Mossbauer Spectral Studies of
Nanosized Aluminum Doped Manganese Zinc
Ferrites”, Advances in Condensed Matter Physics,
Susceptibilities and Ionicities”, Physical Review
B, 7 (1973) 2591- 2600.
[26] Otero Arean C., “Crystal Chemistry of
Cadmium-Zinc Ferrites”, Journal of solid state
[27] as Electromagnetic Source”, American J. of
Bakalarska M.g., Babiarz J., “Microstructure and
properties of Mg–Zn ferrite as a result of sintering
temperature”, Journal of the European Ceramic
characterization and phase transformation kinetics
of ball-milled prepared nanocrystalline Mg–Zn-
ferrite at elevated temperatures”, Physica E 33
[6] El Hiti M.A., "Dielectric behaviour in Mg-Zn
ferrites", Journal of Magnetism and Magnetic
magnetic and electrical properties of MgCuZn
ferrite nanocrystalline powders prepared by sol-gel,
auto-combustion method”, Journal of Alloys and
[8] Mazen S. A., Mansour S. F., Zaki H. M.,
“Some physical and magnetic properties of Mg-Zn
[9] Ounnukad S., Winotai P., Phanichphant S.,
“Cation distribution and magnetic behavior of
Mg1–xZnxFe2O4ceramics monitored by Mossbauer
“Effect ofZn+ substitution on the magnetic
properties of Mg1/2Zn1/2Fe2O4 ferrites”, Physica B 404
[11] Ailin Xia, ShunkaiLiu, LuChen,
YaohuiLv, "Hydrothermal Mg1/2Zn1/2Fe2O4 spinel
ferrites: Phase formation and mechanism of
saturation magnetization", Materials Letters105
(20013) 199–201.
S., Daruka Prasad B., Rudraswamy B., "Structural
and magnetic studies of Mg1/2Zn1/2Fe2O4
nanoparticles prepared by a solution combustion
method", Journal of Alloys and compounds”,
M., Meganathan C., John Kennedy L.,
Bououdine M., " Optical and magnetic properties
of Mg-doped ZnFe2O4 nanoparticles prepared by