Volume 28, Issue 4 (12-2020)                   www.ijcm.ir 2020, 28(4): 963-978 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahangiryar, Alipour, Simmonds, Towalcherlidzeh. Petrological and geochemical study of trace and rare earth elements in the Miardan Gold mineralization, Bostanabad, East Azarbaidjan Province. www.ijcm.ir 2020; 28 (4) :963-978
URL: http://ijcm.ir/article-1-1561-en.html
Abstract:   (1478 Views)
The Miardan gold deposit is located near the Miardan village, 15 km west of the Bostan Abad town in the East Azarbaidjan Province. The main rock units in the area include andesitic tuffs and lavas of Eocene age, which host vein-type gold mineralization. The orebody is formed within the altered, crushed and sheared andesitic rocks, in contact with porphyry diorite stock. These rocks have been subjected to siliceous and sericitic alteration by hydrothermal fluids and converted to quartzite and hornfels under the metasomatism related to the intrusive body. Gold mineralization within these rocks occurs as almost vertical sulfide-bearing silicic zones and quartz veins with N300W to N320W trend. Chondrite and primitive mantle-normalized spider diagrams of trace and rare earth elements indicate differentiation of LREE from HREE and enrichment of LREEs. Geochemical indices, such as TiO2 and (Ce+Y+La)-(Ba + Sr), show that supergene fluid played the most important role in the development of alteration zones and mineralization in this area.
Full-Text [PDF 7597 kb]   (381 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Palacios C.M., Hein U.F., Dulski P., "Behaviour of rare earth elements during hydrothermal alteration at the Buena Esperanza copper-silver deposit, northern Chile", Earth Planetary Science Letter, 80 (1986) 208-216. [DOI:10.1016/0012-821X(86)90105-6]
2. [2] Michard A., "Rare earth element systematics in hydrothermal fluid", Geochimica et Cosmochimica Acta, 53 ) 1989( 745-750. [DOI:10.1016/0016-7037(89)90017-3]
3. [3] Lewis A.J., Komninou A., Yardley B.W.D., Palmer M.R., "Rare earth element speciation in geothermal fluids from Yellowstone National park, Wyoming, USA", Geochimica et Cosmochimica Acta 62 )1998( 657-663. [DOI:10.1016/S0016-7037(97)00367-0]
4. [4] Alderton D.H.M., Pearce J.A., Potts P.J., "Rare earth element mobility during granite alteration: evidence from south- west England", Earth and Planetary Science Letters, 49 )1980( 149-165. [DOI:10.1016/0012-821X(80)90157-0]
5. [5] Haas J. R., Shock E. L., Sassani D. C., "Prediction of high-temperature stability constants for aqueous complexes of the rare earth elements", Geological Society of America Annual Meeting in Boston, Mass. Abs. A437 )1993(.
6. [6] Wood S.A., "The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoretical prediction of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure", Chemical Geology 88 )1990( 99-125. [DOI:10.1016/0009-2541(90)90106-H]
7. [7] McLennan S.M., "Rare earth elements in Sedimentary rocks. Influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A.(Eds.)", Geochemistry and mineralogy of rare earth element s. Reviews in Mineralogy, 21 )1989( 169-200. [DOI:10.1515/9781501509032-010]
8. [8] Mill R.A., Elderfield H., "Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge", Geochemical et Cosmochimica Acta, 59 (1995( 3511-3524. [DOI:10.1016/0016-7037(95)00224-N]
9. [9] Wilkinson J.J., Eyre S.L., Boyce A.J., "Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry and isotopic composition of sulfides at the Lisheen Mine", Economic Geology, 100 )2005( 63-86. [DOI:10.2113/100.1.0063]
10. [10] Aghanbati A., "Geology of Iran, (in Persian)", Geological Survey of Iran, 586 p.
11. [11] Winchester J. A., Floyd P. A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 245-252. [DOI:10.1016/0009-2541(77)90057-2]
12. [12] Muller D., Groves D. I., "Potassic igneous rocks and associated gold-copper mineralization", Springer, )1997( 238 pp
13. [13] Pearce J.A., "Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkes worth C.J., Nurry M.L. (Eds.), Continental basalts and Mantle Xenoliths", Shiva, Nantwich. pp. 230-249.
14. [14] Helvacı C., Ersoy E.Y., Sözbilir H., Erkül F., Sümer Ö., Uzel B., "Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source", Western Anatolia. Journal of Volcanology and Geothermal Research, 185(3) )2009( 181-202. [DOI:10.1016/j.jvolgeores.2009.05.016]
15. [15] Van Middelaar W.T., Keith W.T., "Mica chemistry as an indicator of oxygen and halogen fugacities in the Can Tung and other W-related granitoids in the North American Cordillera. In: Stein, H.J., Hannah, J.L., (eds.), Ore Bearing Granite System", Geological Society of America, Special Paper 246, 205-220. [DOI:10.1130/SPE246-p205]
16. [16] Hemley J.J., Hunt J.P., "Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some general geologic applications", Economic Geology 87)1992( 23-43. [DOI:10.2113/gsecongeo.87.1.23]
17. [17] Winchester J. A., Floyd P. A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 245-252. [DOI:10.1016/0009-2541(77)90057-2]
18. [18] Pearce J.A., "Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C.J., Nurry M.L. (Eds.), Continental basalts and Mantle Xenoliths", Shiva, Nantwich. pp. 230-249)1983(.
19. [19] Titley S.R., Beane R.E., "Porphyry copper deposits, Part 1. Geologic settings, petrology andtectonogenesis", Economic Geology, 75th Anniversary Volume )1981( 214-235.
20. [20] Sillitoe R.H., "Supergene oxidized and enriched porphyry copper and related deposits", Economic Geology 100th Anniversary Volume, (2005) 723-768. [DOI:10.5382/AV100.22]
21. [21] Simmons V., Calagari A.A., Moyed M., Jahangiri A., "Investigation of porphyry alteration zones and their geochemical behavior in trace elements and rare earths in Kigal area (North of Varzaghan, East Azerbaijan)", (in Persian). Iranian Journal of Crystallography and Mineralogy, 19 (4) (2011) p. 578-565.
22. [22] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. London", Geological Society, Special Publication, 42 )1989( 313- 345 [DOI:10.1144/GSL.SP.1989.042.01.19]
23. [23] Martin H., "Adakitic magmas: modern analogues of Archaean granitoids", Lithos 46)1999) 411-429. [DOI:10.1016/S0024-4937(98)00076-0]
24. [24] Rapp R.P., Shimizu N., Miller C.F., "Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites", Precambrian Research, 51 (1991) 1-25. [DOI:10.1016/0301-9268(91)90092-O]
25. [25] Wolf M.B., Wyllie O.J., "Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time", Contributions to Mineralogy and Petrology, 115 (1994) 369-383. [DOI:10.1007/BF00320972]
26. [26] Zamora D., "Fusion de la croute oceanique subductee: Approche experimentale et geochimique [Ph.D. thesis]", Clermont-Ferrand, University Blaise Pascal (2000) 314 p.
27. [27] Barth M.G., Foley S.F., Horn I., "Partial melting Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between deogitic minerals and tonalitic melts under upper mantle conditions", Precambrian Research, 113 (2002) 323-340. [DOI:10.1016/S0301-9268(01)00216-9]
28. [28] Pe-Piper G., Piper D. J. W., Matarangas D., "Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece", Lithos 60 (2002) 47-66. [DOI:10.1016/S0024-4937(01)00068-8]
29. [29] Chappell B.W., White A.J.R., "I- and S- type granites in the Lachlan Fold Belt", Transactions of the Royal Society of Edinburg: Earth Science, 83 (1992) 1-26. [DOI:10.1017/S0263593300007720]
30. [30] White A.J.R., Chappel B.W., "Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia", Geological Society American Memory,159 (1983) 21-34 [DOI:10.1130/MEM159-p21]
31. [31] You C.F., Catillo P.R., Gieskes J.M., Chan L.H., Spivack A.J., "Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depth in subduction zones", Earth and Planetary Science Letters, 140 (1996) 41-52. [DOI:10.1016/0012-821X(96)00049-0]
32. [32] Jutteau T., Maury R., "Geologie de la croute oceanique, petrology et dynamique endogens Paris", Mason, (1997) 367 p.
33. [33] Brenan J.M., Shaw H.F., Ryerson F.J., "Exerimental evidence for the origin of lead enrichment in convergent -margin magmas", Nature, 378 (1995) 54-56. [DOI:10.1038/378054a0]
34. [34] Keppler H., "Constraints from partitioning experiments on the composition of subduction zone fluids", Nature, 380 (1996) 237-240. [DOI:10.1038/380237a0]
35. [35] Rio R., Dupuy C., Dostal J., "Geochemistry of coexisting alkaline and calk-alkaline volcanic rocks from Northern Azarbaijan (NW Iran)", Journal of Volcanology and Geothermal Research, 11 (1981) 253-275. [DOI:10.1016/0377-0273(81)90026-3]
36. [36] Dill H.G., Bosse H.R., Kassbohm J., "Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central America Cordillera (Western Salvador)". Economic Geology, 95 (2000) 517-538. [DOI:10.2113/gsecongeo.95.3.517]
37. [37] Maiza P. J., Pieroni D., Marfil S. A., "Geochemistry of hydrothermal Kaolin's in the SEarea of Los Menucos, Province of Rlo Negro, Argentina", Clay Odyssey Elsevier, Amsterdam (2001) 123-130. [DOI:10.1016/B978-044450945-1/50105-6]
38. [38] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. London", Geological Society, Special Publication, 42 )1989( 313- 345. [DOI:10.1144/GSL.SP.1989.042.01.19]
39. [39] Yang W., Li Sh., "Geochronology andgeochemistry of the Mesozoic volcanic rocksin Liaoning: Implications for lithospheric thinning of the North China Craton", Lithos, 102(1-3) (2008) 88-1. [DOI:10.1016/j.lithos.2007.09.018]
40. [40] Giese U., Bau M., Dulski P., "Trace element availability during experimental leaching of mid-ocean ridge basalt at 70°C', Terra Nova, 5 (1993) 54.
41. [41] Giese U., Bau M., "Trace element accessibility in mid-ocean ridge and ocean island basalt: an experimental approach", Mineralogical Magazin, 58A (1994) 329-330. [DOI:10.1180/minmag.1994.58A.1.173]
42. [42] Armstrong-Altrin J.S., Verma S.P., Madhavaraju J., Lee Y.I., Ramasamy S., "Geochemistry of Late Miocene Kudankulam Limestones", South India. Int Geol Rev 45(2003) 16-26. [DOI:10.2747/0020-6814.45.1.16]
43. [43] Rollinson H.R., "Using geochemical data: evaluation, presentation, interpretation", Longman scientific and technical publication, (1993) 352 p.
44. [44] Cooke D. R., Mcphail D. C., Bloom M. S., "Epithermal gold mineralization, Acupan, Baguio district, Philippines: Geology mineralization, alteration, and thermochemical environment of ore deposition", Economic Geology 243-272(1996)91. [DOI:10.2113/gsecongeo.91.2.243]
45. [45] Reyes A.G., "Petrology of Philippine geothermal systems and the application of alteration, mineralogy to their assessment", Journal of Volcanology and Geothermal Research (1990) 43279-309.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb