بررسی اثر ناخالصی سریوم بر ویژگی‌های مغناطیسی فیلدمیتای نازک (نانومتری) گارنت
ایتیوم آهن برنسترهای کوارتز

امحمد حسن‌پور، محمد غربی شاهی، محمد نیایی فر
گروه فیزیک، دانشگاه اردبیل و ازدب اول، اهواز، ایران
(دریافت مقاله: 93/07/27، نسخه نهایی: 93/10/15)

چکیده: در این پژوهش، با ایتیوم آهن جانشینی شده به سریوم، با فرآیند سپرمیامومو ایتیوم آهن (spin coating) و عملیات گردامده بر پنیر فیلدمیتای کوارتز تهیه شد. نمونه‌های تهیه شده، برای ایتیوم آهن فیزیکی، مورد بررسی قرار گرفتند. اثر ناخالصی بر خواص ساختاری، ریخت‌شناسی Ce در مغناطیسی و ارتباط بین سطح فیلم و ویژگی‌های مغناطیسی به‌عنوان یک پژوهشی از ساختار و ارتباطی (AFM) و مغناطیسی سنج (XRD) مورد بررسی قرار گرفت. صورت میکروسکوب نیروی اتمی (AFM) نمونه‌های تهیه شده نشان می‌دهد که لایه‌های گارنت دارای سطح پوسته و هموار هستند.

واژه‌های کلیدی: Ce:YIG، سلسله-زل-ایتیوم-لایه-نازک.

مقدمه

گارنت‌های کوارتز نادر با فرمول عمومی $\text{RE}_3\text{Fe}_5\text{O}_{12}$ ($\text{RE} = \text{La, Y, Yb}$) نظیر قری مغناطیسی هستند. که به معنی $\text{RE} = \text{La, Y, Yb}$ می‌تواند در حالتی مانند $\text{La}_{3/2}\text{Yb}_{1/2}$ نازک سه فلکلر V^{5+} باشد. ساختاری این مواد با گروه Cm: مقایسه می‌شود. در این فضای مکمیک O_{18}^{10-}، مواد 8 واحد فرمولی شکل یک سلول یک‌نیک را می‌دهد که در آن 96 برتون O^{5-} تشکیل یک سلول قرارداده رخ می‌دهد. را در داده کاتیون‌های فلزی بهصورت بین نشین در جای‌گاههای La و Yb و Yb وجود دارد. La و Yb (د)، اله (ب) و Y (س) قرار می‌گیرند (شکل 1) [2]. ساختار مغناطیسی گارنت‌های آهن - خاکی نادر (REIG) با استفاده از نظریه‌های مغناطیسی نیل به خوبی قابل توجیه است. براساس این نظریه، به‌همکنش ارتباط‌گذاری سلولی و زیر شکل‌کنگ آهن

$\text{M(Reig) = M_{Re} = (M_{A} - M_{S})}$

در اینها

M_{Re}، M_{Yb}، Yb

$\text{M}_{\text{Fe}} = \text{M}_{\text{A}} - \text{M}_{\text{S}}$

M_{Fe}، M_{Yb}، Yb

M_{A}، M_{S}، Yb

M_{Fe}، M_{Yb}، Yb

hasanpour88@gmail.com

* توضیح مسئول، تلفن: 09133228381، پست الکترونیکی:
شکل ۱ (الف) ساختار مکعبی گالن‌دهی آهن YIG
(ب) ساختار گالن‌دهی طرح وار نشان داده شد [۶۴].) چند وکتور از مات جایگاه‌های ۵ (دوارده وجهی) هستند. چند وکتور از مات جایگاه‌های چهار وجهی هم و چند وکتور از مات جایگاه‌های ۲ رنگ خاکستری نشان داده شده‌اند. گالن‌دهی‌های چهار وجهی اد ۱۳ نمایش می‌دهد [۶۴].

گالن‌دهی‌ها در حافظه‌های جلبی در بیش از ۲۰ سال پیش بوده است. امروزه، این مواد مغناطیسی، عناصری کلیدی برای کاربردهای عملی گوناگون محسوب می‌شوند. این مواد در چرخشگر فرآیند، ایزولاسیون‌های اپتیکی و سنسورهای جریان مغناطیسی کاربرد دارند [۶۴]. سال های ۲۰۱۰ و ۲۰۱۱، شاهد توسعه این گونه در زمینه های متعددی هستیم [۶۴-۶۷]. اهمیت این پژوهش، بررسی می‌باشد و معادله (۱) در یک http://ijcm.ir reassure:

(۱) \[M_{RE} \approx M(YIG) \]

برآورد اولیه:

\[M(\text{REIG}) = |M_{RE} - M_{Fe}| \approx |M_{RE} - M_{YIG}| \]

خواهد بود، بیشتر عناصر خاکی نادر به علت شما درون بی‌پروز درگذشته گرفته شده. نیمی ناونده جایگاه‌های (a) و (d) را اشغال کنند بله‌که در گالن‌دهی دوارده وجهی‌های قرار می‌گیرند. بنابراین با جانشین سربی، بی‌پروز شهرت‌یابی‌های نامگناطیسی Ce۳⁺ یا جایگزینی خصی از بی‌پروز نامگناطیسی Ce۳⁺ در گالن‌دهی [۶۴] می‌شوند [۶۴]. اولین استفاده صنعتی

۱ Spintronic
عبارتند از \(\text{NO}_3 \) و \(\text{Y} \) می‌باشد. سیسیم‌های دیگر گروه \(\text{Y} \) نیز به سرعت آنلاین در دی‌تا‌های اینترنتی یافت می‌شوند. ۴۰\% \text{NO}_3\text{Y}
\text{Y}\text{Y}
\text{NO}_3\
\text{Y}\text{Y}
درمان، بر اساس این دسته‌ای درآمدهای ناباید نکنید به‌طور کلی اولیه و از نظر کلاسیک مائیونی (FeO) لیته‌ها در نظر گرفته شود با یک روش، محورهای آهن همراه مایوه آن در فرمین‌گزینی از محلول خارج می‌شود. نانویی از این مایوه از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.

کلیه، برای مقادیر بیشتری، ۳۰ نانویی از نظر FIM و نسبت سنگی نشان می‌دهد که در نتیجه فیزیکی از آن‌ها انرژی اتوماتیک شوند. مسئولیت می‌باشد که در این دما نیز در حالت Ce:YIG است.
پرورش اثر ناخالصی سربیوم بر وزن‌های مغناطیسی فیلم‌ها.

جدول ۱ اندازه‌ی بلورک‌ها بر سطح بستن کوارتز لایه‌های نازک Ce:YIG در دمای ۷۰۰°C

<table>
<thead>
<tr>
<th>اندازه‌ی بلورک‌ها (nm)</th>
<th>جانشینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۶</td>
<td>x=۰/۱</td>
</tr>
<tr>
<td>۳۵</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۲۶</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۳۰</td>
<td>۰/۷</td>
</tr>
</tbody>
</table>

جدول ۲ اندازه‌ی بلورک‌ها بر سطح بستن کوارتز لایه‌های نازک Ce:YIG x=۰/۳ در گشتون دمای ۷۰۰°C

<table>
<thead>
<tr>
<th>اندازه‌ی بلورک‌ها (nm)</th>
<th>دمای °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۷</td>
<td>۷۰۰</td>
</tr>
<tr>
<td>۲۳</td>
<td>۸۰۰</td>
</tr>
<tr>
<td>۲۴</td>
<td>۸۵۰</td>
</tr>
<tr>
<td>۲۱</td>
<td>۹۰۰</td>
</tr>
</tbody>
</table>
جدول ۳ تغییرات نابث شبکه لایه‌های نازک Y_{1-x}Ce_xFe_2O_{12} بر بستر های کوارتز در دمای ۸۰۰°C.

<table>
<thead>
<tr>
<th>جانشینی Ce(x)</th>
<th>تابث شبکه YIG+Ceکمی(Aقطرومب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=۰.۰</td>
<td>۱۲.۴۴</td>
</tr>
<tr>
<td>x=۰.۱</td>
<td>۱۲.۲۸</td>
</tr>
<tr>
<td>x=۰.۳</td>
<td>۱۲.۴۳</td>
</tr>
<tr>
<td>x=۰.۵</td>
<td>۱۲.۴۸</td>
</tr>
<tr>
<td>x=۰.۷</td>
<td>۱۲.۴۴</td>
</tr>
</tbody>
</table>

شکل ۴ تصاویر میکروسکوب نیروی اتمی (AFM) لایه‌های نازک Y_{2-x}Ce_{x}Fe_{2}O_{12} با دو پرگنمای مختلف و لایه‌های نازک Y_{2.۵}Ce_{۰.۵}Fe_{۲}O_{۱.۲} و Y_{۲.۷}Ce_{۰.۳}Fe_{۲}O_{۱.۲} در دمای ۸۰۰°C.
شکل 5: جرخه ی پسماند مغناطیسی ناهایی نازک $Y_{3-x}Ce_xFe_5O_{12}$ بر حسب میزان جانشینی Ce.

بردایش

کوارتز به‌روش پوشش‌دهی چرخشی ناهایی نشانی شدند. کمترین دمای تشکیل فاز گرنت را در 800 درجه سانتی‌گراد مشاهده کردند. کاهش چشم‌گیر دمای تشکیل فاز نسبت به نمونه‌های بهدست آمده در بهروش سل - زل، روی بسترها (7, 0.5, 0.3) بهره‌مندی داشت.

on Si substrates”, Apply surface science 253 (2006), pp2108-2112.
[33] Zhongjun cheng,Yuming Cui,Hua Yang,Yanchen, “Effect of Lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles”, J Nanopart 11 (2009), pp1185-1192

[35] Zhongjun cheng, Hua Yang, Lianxiang Yu, WeiXu,"Saturation magnetic properties of Y₃,Re₃Fe₅O₁₂ (Re:Gd,Dy,Nd,Sm and La)nanoparticles grown by a sol-gel method", Springer 19 (2008), pp442-447