بررسی اثر ناخالصی سریوم بر ویژگی‌های مغناطیسی فیلم‌های نازک (نانومتری) گارنت
ایتیوم آهن بر پیسترهای کوارتز

احمد حسن‌پور، محمد غربی‌شاها، محمدرضا نوقف

گروه فیزیک، دانشگاه ازاد اسلامی واحد اهواز، اهواز، ایران

(دریافت مقاله: ۱۳۹۳/۹/۱۷، نسخه نهایی: ۱۳۹۴/۵/۱۷)

چکیده: در این پژوهش، لیافته‌های نازک گارد-ایتیوم آهن جانشانی شده با سریوم، با استفاده از سپین کوانتینگ (spin coating) به روش سل-زد و پوشش چربی‌های هپتال‌بی‌ای و دیگر مغناطیسی، بر ناحیه‌های خاصی از Ce۲O۳، Ce۲۰۳، Fe۲O۳، Ce۲۰۳، Fe۲۰۳ و Ce۲۰۳، Fe۲۰۳ و Ce۲۰۳، Fe۲۰۳ شکل داده شده‌اند. این لیافته‌های نازک علی‌رغم تفاوت‌های مکانیکی و هیدرولوژیکی، می‌توانند در مروارده، ساختار چندگانه و مولکولی، مغناطیسی، فیزیکی، پیسترهای مغناطیسی و همچنین سطح صفحه و مواد ساخته شوند.

واژه‌های کلیدی: سریوم، Ce۲O۳، Ce۲۰۳، Fe۲O۳، Ce۲۰۳، Fe۲۰۳ و Ce۲۰۳، Fe۲۰۳ و Ce۲۰۳، Fe۲۰۳، Ce۲۰۳، Fe۲۰۳ و Ce۲۰۳، Fe۲۰۳، Ce۲۰۳، Fe۲۰۳، Ce۲۰۳، Fe۲۰۳ و Ce۲۰۳، Fe۲۰۳، Ce۲۰۳، Fe۲۰۳، Ce۲۰۳، Fe۲۰۳

مقدمه

گارنت-هایی که آن‌ها با فرمول عمومی Ce۲O۳(Fe۲O۳)۳(Fe۲۰۳)۳با ارائه شده‌اند.

M(ReIG) = |M(Re) - (M(Fe) - M) |

(1)

M(Re) = (La۳+,, Yb۳+) (M(Fe) = M(Fe) - M)

موفقیت پیسترهای مغناطیسی این آهن- با استفاده از نظرخانه‌هایی مغناطیسی نیل به خوبی فعال توجه است. بر اساس این نظریه، برهمگشتهای ابرداری‌ای شدید در میان دو رز ساخته‌ای آهن-
شکل 1 (الف) ساختار مکعبی گرانیت ایترین اهن YIG، (ب) ساختار گرانیت طرح وار نشان داده شد. [6] چند وچاله ی مات چایگاههای 5 (دوامده وچاله) هستند. چند وچاله ی های که با خط بیشه روزی آنها مشخص شده‌اند چایگاههای هشت وچاله 8، و چند وچاله‌هایی که با رنگ خاکستری نشان داده شده‌اند چایگاههای هشت وچاله 8 را نمایش می‌دهد. [7]

است. اگر (1) باشد، و معادله‌های (1) در یک برآورد اولیه:

\[M_{REG} = |M_{RE} - M_{Fe}| \approx |M_{RE} - M_{YIG}| \]

خواهد بود. یون‌های عنصر خاکی نادر به علت شعاع بیشتر بیون برگ، چنینکه گفته شد، نمی‌توانند چایگاههای (a) و (d) را اشغال کند بلکه در چایگاه دوازده وچاله قرار می‌گیرند. بنابراین با جانشینی سربی؛ یون‌های یکی تخته‌های پارامگناطیسی Ce۳⁺ یا گذشتن یک یا نامگناطیسی Ce۳⁺ در چایگاه (c) می‌شوند. [6] اولین استفاده صنعتی

\footnote{Spintronic}
کلیه بررسی‌های آزمایشگاهی به‌طور کلی بیان می‌کند که تیتری از 14 بررسی سایری که در مطالعه اصلی انجام شدند، در مورد آزمایشگاهی و فیزیologiesی است.

بزرگترین پیش‌بینی گرفته شده که به هنگام دامی، تغییرات نسبتی در پایین‌ترین طبقات سیالین و سیلیزیم غیر رامنه‌سنجی می‌تواند باعث شود (K >>> 0.7) الگوی به رسمی گرایش‌های مشابه صورت گیرد. برای این که از روش‌های مدارسی انتقال اطلاعات به طور علمی به‌طور کلی به‌کار برده شود، نیاز به دانش‌آموختگی و تجربات علمی بالا در کنار یک مجموعه از روش‌ها و تکنیک‌های علمی است. این تحقیق به‌کمک روشهای رامنه‌سنجی تأثیرگذار در دامی و تغییرات خاصی در فرآیندهای آن می‌باشد.

۲ Orthoferrite
جدول 1 اندماجی بلورکدها بر سطح بستر کوارتز لاشهای نازک Ce:YIG در دمای $800^\circ C$.

<table>
<thead>
<tr>
<th>اندازه بلورکدها (nm)</th>
<th>جانشینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>$x=0.0$</td>
</tr>
<tr>
<td>35</td>
<td>0.1</td>
</tr>
<tr>
<td>33</td>
<td>0.3</td>
</tr>
<tr>
<td>36</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
</tr>
</tbody>
</table>

جدول 2 اندماجی بلورکدها بر سطح بستر کوارتز لاشهای نازک Ce:YIG $x=0.3$ در $800^\circ C$.

<table>
<thead>
<tr>
<th>اندازه دمای (nm)</th>
<th>دمای (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>700</td>
</tr>
<tr>
<td>23</td>
<td>800</td>
</tr>
<tr>
<td>34</td>
<td>850</td>
</tr>
<tr>
<td>31</td>
<td>900</td>
</tr>
</tbody>
</table>
جدول 3 تغییرات ناپ در یکهای نازک

<table>
<thead>
<tr>
<th>جانشینی Ce(x)</th>
<th>Ce(x) YIG (آگستروم)</th>
<th>Ce(x) YIG (آگستروم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0.0</td>
<td>12.46</td>
<td>12.28</td>
</tr>
<tr>
<td>x=0.1</td>
<td>12.29</td>
<td>12.38</td>
</tr>
<tr>
<td>x=0.2</td>
<td>12.34</td>
<td>12.44</td>
</tr>
</tbody>
</table>

شکل 4 تصاویر میکروسکوپ نیروی آتمی (AFM) با استفاده از درجهای مختلف، و لایه‌های نازک Y_{2.5}Ce_{0.5}Fe_{5}O_{12} و (Y_{2.5}Ce_{0.5}Fe_{5}O_{12})
بررسی اثر ناخالصی سربیوم بر ویژگی های مغناطیسی فیلم‌های $Y_3-xCexFe_5O_{12}$

شکل ۵: جرخه ای سهم دادنی مغناطیسی فیلم‌های نازک $Y_3-xCexFe_5O_{12}$ بر حسب میزان جانشینی Ce

شکل ۶: منحنی مغناطیس و وادارگی فیلم‌های نازک $Y_3-xCexFe_5O_{12}$

کوارتز به روش پوششدهی چرخشی لایه نشانی شدید کمترین دماش تشکیل فاز گارنت را در میان این بالابرها $800^\circ C$ به دست آمد. کاهش چشمگیر دماش تشکیل فاز نسبت به نمونه‌های به دست

برداشت

لایه‌های نازک گارنت اینتریوم مایع، جانشین شده با سربیوم ($x=0.05$، ۰/۳، ۰/۱ و $x=0$) به روش سل- ژل، روی پسترهای...
آمده از روش PLD نشان میدهد که روش بکار رفته برای تهیه‌کننده نارک انتخاب مناسبی است. تصویر نشان میدهد که این‌گونه ناپایداری سهمیه دارای همبندی و، یککواته به‌طوری نسبت به نمونه‌ای بدست آمده از روش‌های دیگر دارند. بررسی چگالی سطحی نشان میدهد که با افزایش میزان جانشینی، سریوم، مغناطیسی اشتباهی کاهش می‌یابد.

مراجع

on Si substrates”, Apply surface science 253 (2006), pp2108-2112.
[33] Zhongjun cheng,Yuming Cui,Hua Yang,Yanchen, “Effect of Lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles”, J Nanopart 11 (2009), pp1185-1192
[34] H.G Beh,R.Iranawati, Y.Noorhana and K.P.Lim,” Phase Evolution and crystallite size of La-substituted YIG at different calcination temperature”, International Journal of Engineering & Technology IJET-IJENS Vol.9 (2009), pp59-62

[35] Zhongjun cheng, Hua Yang, Lianxiang Yu, WeiXu,”Saturation magnetic properties of Y$_3$,Re$_x$Fe$_{5-2x}$O$_{12}$ (Re:Gd,Dy,Nd,Sm and La)nanoparticles grown by a sol-gel method”, Springer 19 (2008), pp442-447