بررسی‌های سنگ‌شناسی، دگرگیری و زئوئسیمیایی کانسار سرب ماهور ۲ در شمال شرق
پهنه‌ی لوت، ایران مرکزی

فاطمه محمدی‌پور،۱ حبيب‌یابانگرد،۱ حسن میرزازاده،۱ رضوان میرزازایی راینی،۲ شجاع الیندی‌نیرومد۱

۱گروه زمین‌شناسی دانشکده علوم، دانشگاه سیستان و بلوچستان-زاهدان
۲دانشکده زمین‌شناسی، برای بیمه علوم، دانشگاه تهران

(دریافت مقاله:۹۳/۱۲/۰۳، نسخه نهایی:۹۴/۰۳/۱۰)

چکیده: کانسار سرب ماهور ۲ در توده‌های سنگomanی و زئوئسیمیایی از جنوب غربی خاور نزدیک و کیلومتری شمال غرب کانسار چند فاز ماهور قرار گرفته است. سنگ‌های آن‌زندی در کانسار میزبان اصلی کانسار سرب سخت‌دریایی یا برترین کانسار می‌باشد. پلاژیک‌لاز است که در بیشتر موارد به دلیل تأثیر درگرسانی به کانسار مانند سرپنتین، کلریت و کربنات‌ها تبدیل شده است. مهم‌ترین دگرگیری‌ها منطقه‌ای آزیلیک، سرپسینیک، سیلیسی، کلریتی و کربناته‌های کاسیوپین و لاتوپین‌های پرتو X نیز تأثیر شدیداند. نتایج بررسی‌های زئوئسیمیایی نمونه‌های سنگ میزبان و نمونه‌های کانسار می‌دهد که به نسبت (XRD) خاتمه‌گذار آزادین را می‌توان برای تفکیک این کانسار در نظر گرفت. نمونه‌های اعضا از کیمیا کرمی به ترتیب آموز آموز خاکی کیمیا کرمی نسبتاً مازی، کیمیا S/Se و کاهش از عناصر خاکی کیمیا سبک را به صورت عناصر خاکی کیمیا سنگین نشان می‌دهد. همچنین بر اساس نمونه‌های باسته‌های در این کانسار می‌توان از کنیت تکنولوژی‌های آندزینه‌ها

منطقه کوژمانی وابسته است نمونه‌های عمرکننده، هنگا در عناصر در نمونه‌های گالن در را نسبت به نمونه‌های برداشت شده از سنگ میزبان نشان می‌دهد.

واژه‌های کلیدی: زئوئسیمیایی، کانسار سرب ماهور، پهنه‌ی لوت، دگرگیری

مقدمه
کاتسیل سرب ماهور در مجاورت کانسار چند فازی ماهور و در شرق پهنه‌ی لوت، ۱۴۵ کیلومتری غرب شهرستان بهمند و بین طول‌های جغرافیایی ۵۴°۵۰' تا ۵۳°۵۰' و عرض- ۹۶°۰۰' تا ۹۵°۵۰' شرقی قرار دارد. هنگا راه دسترسی به آن، جاده‌ای آسفالته به کرمان به سمت شهداد سه راهی معدن مشخص خواهد شد (شکل ۱). موقعیت کاتسیل سرب چند فازی و سرب ماهور ۲ روز تمیز

f.mohammadpour2012@yahoo.com

*نویسنده مسئول، تلفن:۹۱۵۶۳۷۴۴۷۷، پست الکترونیکی:

مراجع
شکل ۱ راه‌های دسترسی به منطقه مورد بررسی.

شکل ۲ موقعیت کانسراهای جند فلزی و سرب ماهور بر روی تصویر ماهواره‌ای.
بازالی که درنگ خاکستری تیره نیا سیاه در منطقه مشاهده
می‌شد، بیشترین گسترش آن در بخش‌های غربی گسترش است.
ویژه‌ترین بهنگ خاکستری روان، بیشترین گسترش‌دهی از
شرق، جنوب و جنوب شرقی منطقه را پوشانده است. واحدهای
تغییر نسبی مختلف منطقه با رنگ‌های سبز، خاکستری
و تیره اندام تا آنزیمی قابل روبرو در منطقه غالبی
زاندردی جوان، شال و ری از هدایت هستند. با
توجه به بررسی‌های صنایعی و میکروسکوپی کانال‌زایی در
گسترشی مورد بررسی به‌صورت رگه‌ای انتخاب که در سطح زمین
رخندول مناسبی ناشته و عملیات نمونه برداری روی یک
یک خم‌دایدگی، فوریت و کف تراش‌های منطقه‌ها
درگسی و مزدهای حفایی تهیه گردید. با منابع طول
تراش‌ها در ابزار نیاز 10 متر فعل آنها بین 5 تا
1.5 متر بوده و در مختصات جغرافیایی 48°58' طول شرقی و
31°14' عرض شمال قرار گرفته‌اند. نمونه‌های مختلفی از گره‌های سبز که تقریباً به‌صورت عمود بر راست‌تر ترنشش‌ها قرار
دارند، را در آنها داشته‌اند. این رگ‌های دارای ضخامت متفاوت بوده و
فاقد شکل خاصی هستند (شکل 3، ب).

روش بررسی
بررسی‌های انجام شده، شامل بررسی‌های کتابخانه‌ای و تهیه
نفشه زمین‌شناسی، بازدید صنایعی و کارآزمایشگاهی
پس از بیماری مورد بررسی و برداشت نمونه از نمونه‌های
میکروسکوپی قطعه‌ها در تاپی طبیعی و مناطق
مورد بررسی قرار گرفته‌اند. غیر از تشخیص درگسی، با
بررسی مفهومی شاهد، تعداد 5 نمونه شاهد از
مناطق دگرگانه نیز برای آنالیز برای اینک
به شکل طیف کانالار و درون‌بندی ارسال شده. (XRD)
همچنین 12 نمونه شاهد 5 نمونه کالک و 6 نمونه از
سنج میزان احتمال دارای درگسی، در سزاران زمین‌شناسی و
مکانی‌های شکل و حجم‌ها ماهی کرم اندر آلیاس
ICP-MS قرار گرفته.

کاسنار سرب ماهور 2 در شرق بلک داش‌کرد و شاهد، است. این
بلک دارای طول 90 کیلومتر در راستای شمال-جنوب و
عرض 200 کیلومتر در راستای شرق غربی به بوده [14] که منطقه
ضریب آن کانال‌های نهایی به‌صورت عمود بر راست‌تر
دارند، بیشتر به شکل خاصی هستند (شکل 3، ب).

کاسنار ماهور به‌صورت منطقه‌ای یک هموار، مشکلی
از ماسه و سنگ‌های انسان‌شناسی با ظاهری تیره رنگ انتخاب شده و پوشانده به
ارتفاعات مشاهده شده در گستره، گرانی سرخ کوه و
گانودوره‌ها سه‌پوش‌های سنگ‌های کاسنار ماهور در نقشه زمین
شناسی 1:125,000 (کل جایدار) [4] شکل 3، ب. این
بلک دارای مشاهده‌ای موجود در گستره کاسنار روان‌های
بژالی داشته‌اند. همواره انسان‌شناسی که به‌وسیله
روسنه‌های کواترونیک پوشیده شده‌اند [8]. واحد آن‌ها برای

سنگشناسی

بررسی‌های میکروسکوپی نشان داد که بخش برگزی از نمونه‌ها در گستره‌های سنگ‌های اندرزیتی با باریک پورفیری بوده و در بخشی از آن‌ها درگرسانی‌های مختلف مشاهده شدند. سنگ‌های آن‌دربینی در نمونه‌های دستی به رنگ سبز و تاریکی با فوهای بوده‌ن به دلیل ناتمام‌تام‌سازی‌ها به تغییرات نشان داده شده‌است. نمونه‌های مشاهده شده را می‌توان به آن‌دربین‌های با درجه درگرسانی کم، متوسط و زیاد در بندی کرد. در آن‌دربین‌های با درجه درگرسانی کم، کوارتز‌های اولیه و ناتمام شده‌اند. در ازای دیگر با درگرسانی متوسط، تعداد بیشتری کوارتز‌های اولیه به مخازن وزه‌سازی و رسوب‌های سیلیسیک و سیلیسی‌های اصلی در مقطع دیده می‌شوند و کالی‌های ناتوبی نیز غلبه‌اند.

جایگذین‌پذیری پلی‌پلاژ محسوس در سنگ‌های اندرزیتی با باریک پورفیری که ترکیبی از کوارتز‌های سیلیسیک و سیلیسی‌های اصلی است. در نمونه‌های مشاهده شده، میزان میتوان کالی‌های کوارتز‌های اولیه را به فراوانی مشاهده کرد. در ازای دیگر با درگرسانی سنگ‌های پلی‌پلاژ، سنگ‌های اندرزیتی با باریک پورفیری که ترکیبی از کوارتز‌های سیلیسیک و سیلیسی‌های اصلی است.

هنگامی که نمونه‌های سیلیسیک و سیلیسی‌های اصلی در مقطع دیده می‌شوند و کالی‌های ناتوبی نیز غلبه‌اند.

جایگذین‌پذیری پلی‌پلاژ محسوس در سنگ‌های اندرزیتی با باریک پورفیری که ترکیبی از کوارتز‌های سیلیسیک و سیلیسی‌های اصلی است.
شکل 4 نمونه‌ی دستی و مقاطع میکروسکوپی آندزیت‌های کانسار سرب ماهور. الگ فم نمونه‌ی دستی آندزیت دارای دگرسانی کم، ب) آندزیت دارای دگرسانی متوسط، (ج) آندزیت دارای دگرسانی شدید. (د) مقاطع میکروسکوپی آندزیت دارای دگرسانی کم که کوارتز (Qtz) با پاکت خلیجی قابل مشاهده است، (ه) آندزیت دارای دگرسانی متوسط که کانی‌های پلاژیوکلاز (Pl) و کریت (Chl) بر روی تصویر مشخص شده‌اند و آندزیت دارای دگرسانی شدید که کانی‌های کربناتی (Cb) موجود در زمینه‌های و پلاژیوکلاز (Pl) روي تصویر مشخص شده‌اند. (نور فطلبده مناقع، برزنگامایی 4X)، علامت اختصاصی کانی‌ها از [9].

شکل 5 الگ (الف) کربنیتی شدن پلاژیوکلاز در زمینه کانی‌های ریزدانه کربناتی (با نور فطلبده مناقع، برزنگامایی 4X)، ب) سریسیتی شدن پلاژیوکلاز و رگه‌های سیلیس (نور فطلبده مناقع، برزنگامایی 4X)، ج) بلور شکل‌دار کوارتز با پاکت کلوفرمی در زمینه‌ای از کوارتز‌های ناپویه انبساطی دارای بافت دندانی (نور فطلبده مناقع، برزنگامایی 10X)، علامت اختصاصی مانند شکل 4.

دان دگرسانی سریسیتیک فراوان ترین دگرسانی در منطقه است.

دارگسانتی آرزیلیک، این نوع دگرسانی در اثر تبدیل فلدسپات‌ها به کانی‌های رنگی ایجاد می‌شود [10]. دارگسانتی آرزیلیک در سنگ‌های دروازه ترانش‌های بررسی شده در کانسار سرب ماهور، به رنگ‌های سفید تا حاکمیتی حضور دارد (شکل 6)، حضور کانی ابلیت به نشان‌دهنده این نوع دگرسانی است. در آنالیز XRD نیز مشخص شده است (شکل 7).

دارگسانتی ها راستا سناسیتی دگرسانی‌های موجود در کانسار سرب ماهور، علاوه بر پرنسپهای صحرایی و میکروسکوپی، روي 5 نمونه‌ی برداشت شده از منطقه‌های مختلف دگرسانی پرداخته شده است (XRD) انجام گرفت و معلوم شد که مهم‌ترین دگرسانی‌های منطقه شامل آرزیلیک، سیلیسیتی، سریسیتیک، کربنیتی شدن و کربناتی شدن است که در این
در گرینسی سرپسیتیک، کاهشی مهم این گرینسی سرپسیت، کوارتز، پیت، پروفویت، دیکت، کالونی و آندالوزیت است که درصد سرپسیت از بقیه بیشتر است. این گرینسی در رخمونهای صحراپی با خویش قابل مشاهده است (شکل ۹). در بیشتر نمونه‌های میکروسکوپی پلاژیوکلاز تحت تأثیر این گرینسی به سرپسیت تبدیل شده‌اند و در مواردی که شدت گرینسی شدید بود، کاتی‌های پلاژیوکلاز به‌طور کامل به وسیله سرپسیت جایگزین شده و تنها قابلیت از آن‌ها باقی مانده است (شکل ۹).

شکل ۶. رخمونهای صحراپی از گرینسی آژیلیک در کانسار سرب ماهور ۲ (دید به سمت شرق).

شکل ۷. نمودار XRD. نمایانگر گرینسی سیرپسی و آژیلیک در کانسار سرب ماهور، کاتی‌های شناسایی‌شده در این تصویر عبارتند از کوارتز (Qtz)، آلیت (Ab) و ارتواکلاز (Or) (III (Or) و ایلیت (Ab) علاوه بر این، اصطلاحی کافی‌ها از [۹]).
کلریت: این نوع دِرگسَانی حالت خاصی از دِرگسَانی پروفیل‌نگوی بوده که هدایت درصد بالای گلریت. آن گونه نام دِرگسَانی کلریتی می‌شناسند [11]. هدایت حضور گلریت، این دِرگسَانی در رختن‌مُهای سیالی کاسی را ماهور ۲ با رنگ سبز قابل تشخیص است (شکل ۱۰ الیف). در مقاطع میکروسکوپی این دِرگسَانی به صورت جایگزینی بیونیت، هوریلند و پلاژیوکلاز به‌وسیله گلریت مشاهده می‌شود (شکل ۱۰ ب).

dگرِسَانی کرِنِتی: این دِرگسَانی ناشی از اضافه‌شدن کاتِی‌های کرِنِتی به رگِه‌ها و سنگ‌های مایه‌ای است. در کاسی سرب‌سیاه ۲ با حضور کاتِی‌های کرِنیتی (کلریت و دِرگسَانیلوژ) مشخص است (شکل ۱۱ الیف). کاتِی‌های کرِنِتی در مقاطع بَرِسی شده به ۳ صورت یافته می‌شوند: ۱- به‌شکل‌های رگِه‌ای و رگ‌چهای در راستای شکستگی‌ها؛ ۲- به‌شکل‌های نازک و پالس‌هایی؛ ۳- به‌صورت رپ‌هایی که در حاشیه‌های (شکل ۱۱ ب) وجود دارند. کاتِی‌های کرِنِتی که نیازمند این نوع دِرگسَانی است، در بررسی XRD نیز مشخص شده است (شکل ۱۲).
شکل 10. رختنم صحلایی و تصویر میکروسکوپی از گردنیا کرینتی الف (دید به سمت شمال غربی، ب) کلریتهای دگرسان شده به صورت نیمه شکل دار (نور قطب‌دیده متقاطع، بزرگ‌نمایی 10X). علامت اختصاری کاتی‌ها مانند شکل 4.

شکل 11. رخت‌نم صحلایی و تصویر میکروسکوپی از گردنیا کرینتی الف (دید به سمت شرق، ب) تصویر میکروسکوپی کاتی‌های کرینتی به‌صورت تعدادی چ (کلریت (Cal) به‌صورت رکه‌های دانه‌های ریز کرینت‌های موجود در زمینه تور قطب‌دیده متقاطع، بزرگ‌نمایی 10X). علامت اختصاری کاتی‌ها از [1].

شکل 12. نمودار XRD نمایانگر دگرسانی کرینتی و سپلیسی در کانسار سرب ماهور. کاتی‌های شناسایی شده در این نمودار شامل کوارتز و کلسیت هستند. علامت اختصاری کاتی‌ها مانند شکل 4.
درود صفحاتی بین 10 تا 15 برای سنگ‌های انتفاسی مز

صفحات همگام پیش‌تر از 15 است. [12] بالا بودن نسبت

شناسه‌هایی نشان می‌دهند که می‌توانند به‌وسیله شاره -

Ba/La، های منطقه‌های فلورانسی و ورود Ba از رسم‌های اقیانوسی

فوران کرده و سپس با مراکز و سپس با مراکز

به‌وسیله تثبیت شده که به‌وسیله یکی از دو نوع تغییر

شکل‌گیری شونده و می‌تواند از آن باعث کاهش برای تعیین

عنصر یک مخلوط دانه و ان شکل‌گیری اقیانوسی است. زیرا گردد به‌وسیله سایر تبدیل شده و

یک جدول را به‌وسیله محلول گردیده، به‌وسیله می‌گردد انتقال پیا به

انسان‌های به آسانی یکدیگر نمی‌شود و به‌عنوان تحقیک کم

این نمونه با برای کم‌سیمی درست کرده است.

<table>
<thead>
<tr>
<th>Element</th>
<th>Sample</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>842</td>
<td>1173</td>
</tr>
<tr>
<td>Lu</td>
<td>117</td>
<td>867</td>
</tr>
<tr>
<td>Li</td>
<td>139</td>
<td>9</td>
</tr>
<tr>
<td>La</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>In</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Hf</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>Gd</td>
<td>242</td>
<td>8</td>
</tr>
<tr>
<td>Be</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td>Ba</td>
<td>150</td>
<td>8</td>
</tr>
<tr>
<td>As</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>Ag</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Na</td>
<td>220</td>
<td>8</td>
</tr>
<tr>
<td>Mg</td>
<td>308</td>
<td>8</td>
</tr>
<tr>
<td>Fe</td>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>Ca</td>
<td>460</td>
<td>8</td>
</tr>
<tr>
<td>Al</td>
<td>210</td>
<td>8</td>
</tr>
</tbody>
</table>

Element Sample

<table>
<thead>
<tr>
<th>Element</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr</td>
<td>79</td>
</tr>
<tr>
<td>Nb</td>
<td>40</td>
</tr>
<tr>
<td>Ta</td>
<td>24</td>
</tr>
<tr>
<td>Sr</td>
<td>9</td>
</tr>
<tr>
<td>Sb</td>
<td>1</td>
</tr>
<tr>
<td>Sn</td>
<td>3</td>
</tr>
<tr>
<td>Mo</td>
<td>5</td>
</tr>
</tbody>
</table>

جدول 1 نتایج حاصل از آزمایش ICP-MS مربوط به نمونه‌های سنگ‌های سنگ‌های کانال Cerberus برای مقدار پر، هم‌عصر بر حسب ppm (است).
جدول 2. نتایج حاصل از آنالیز مربوط به نمونه‌های گالن کانسار سرب ماهور (مقادیر برای عناصر اصلی و عنصر Pb بر حسب درصد و ICP-OES برای سایر عناصر بر حسب ppm است).

<table>
<thead>
<tr>
<th>عنصر</th>
<th>تحلیل 1</th>
<th>تحلیل 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>17,52</td>
<td>21,71</td>
</tr>
<tr>
<td>La</td>
<td>1,74</td>
<td>2,77</td>
</tr>
<tr>
<td>Lu</td>
<td>0,574</td>
<td>0,48</td>
</tr>
<tr>
<td>Li</td>
<td>0,561</td>
<td>0,698</td>
</tr>
<tr>
<td>Na</td>
<td>0,523</td>
<td>0,48</td>
</tr>
<tr>
<td>Mg</td>
<td>0,518</td>
<td>0,49</td>
</tr>
<tr>
<td>K</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Fe</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Ca</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Al</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Tl</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Ti</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Zr</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Nb</td>
<td>0,511</td>
<td>0,49</td>
</tr>
<tr>
<td>Mo</td>
<td>0,511</td>
<td>0,49</td>
</tr>
</tbody>
</table>

Sample 1: 1 دیو | Sample 2: 2 دیو |

F12: **1 دیو | Sample 2: 2 دیو**
در هردو نمودار عنصر سرب در نمونه‌های گالن و سنگ میزبان
دارای یک هنجاری مثبت است که نشانگر رشد دما آبی به
وعصر پتاسیم دارای یک هنجاری منفی است که می‌تواند ناشی
از دگرگذاری باشد. در نمونه‌های مربوط به نمونه‌های سنگ میزبان
K و Ba،Th و Ta و Ti عنصر و دارای یک هنجاری مثبت و عنصر
Ba،Th و Ta و Ti عنصر و دارای یک هنجاری منفی است. Ti عنصر
در ارتباط با فرآیند درگیری‌داده‌ها تأثیر می‌گذارد
پوشش فلالیسی باشد. همچنین عنصر K می‌تواند در منطقه
نサン دهنده تحت فروداری است. [19] آمپی‌بیل کالی مناسبی
برای یک هنجاری منفی در شیب‌پایی اولیه و Ta و Nb می‌تواند یک هنجاری منفی را در ماهنامه‌ای مربوط به
منطقه‌ی فرارواشک کند [20].

تعیین میکت تکتونوماغمای سنگ‌های میزبان
نظر به اینکه سنگ‌های میزبان کاسار سرب ماهور ۳ بیشتر
از سنگ‌های سرب ماهور ۱ بیشتر، نمونه‌های سنگ میزبان
در پیشرفت نمونه‌های سرب ماهور ۱ بیشتر نشان می‌دهند. [21] تکتونوماغمای آندزه‌ای
منطقه‌ی کوهزاپی استان‌های ۱۶-۱۸.

از گوگرد جدایی می‌شود. نسبت S/Se در آب دریا حدود
۱/۲۰۰۰۰۰ در سنگ‌های آذری (۱۰۰۰۰۰) است [۱۶]. داده
های آنالیزهای انجام شده نشان می‌دهد که خاصیت آذرین
برای تشکیل این کاسار مناسب است. تردد نمودار عنصر
خاصی نادیده گرفته با کنترل C۱ [۱۴] و گوشتهای اولیه [۱۵]
پس از به‌نچاری نشان می‌دهد که نمونه‌های هم‌دست
دارای شیب نسبتاً منفی و گسترش از سمت عناصر خاکی نادر
سیستم (LREE) به سمت عناصر خاکی نادر سنگی (HREE)
هستند (شکل ۱۳) می‌تواند بهدلیل ناسازگاری بودن
LREE هستند که ممکن است در اثر شکل‌گیری مایع‌ماند.
سنگ‌های دگرگون منطقه‌ی شیب باشند [۱۶] همچنین شیب
HREE به سمت نشان دهنده سنگ‌های یکه شکل
LREE شده در مناطق فراری‌نشین است [۱۷] روند تغییرات عنصر
فرعی نمونه‌های گالن و سنگ میزبان نسبت به کنترل
C۱ [۱۸] و گوشتهای اولیه [۱۵] پس از به‌نچار
می‌دهند که نمونه‌های برداشت شده از سنگ
میزبان دارای نپشش‌گذگی بیشتری هستند (شکل ۱۴) می‌تواند به‌نچاری شده با گوشته اولیه [۱۵].

شکل ۱۲ نمودارهای عنصر خاکی نادر.الف) نمودار به‌نچاری شده با کنترل C۱ [۱۴].ب) نمودار به‌نچاری شده با گوشته اولیه [۱۵].
شکل 14 نمودارهای عنکبوتی عناصر فرعی (الف) به‌پیش‌نظر شده به کندریت [18]. ب) نمودار به‌پیش‌نظر شده به گوشته‌ای اولیه [15].

شکل 15 نمودارهای جدايش بندی‌های کوه‌های از ناکوه‌های [21]. الف) عنصر La در برابر Nb. ب) عنصر Nb در برابر La.
شکل 16 نمودار غنی‌گیری-تهیه شدگی اکسیدهای نمونه‌های دگرگان شده الف (نمونه 1 و ب) نموده ۲ نسبت به نمونه سالم.

شکل 17 نمودار غنی‌گیری-تهیه شدگی اکسیدهای نمونه‌های دگرگان شده الف (نمونه 2 و ب) نموده ۲۰ نسبت به نمونه سالم.

شکل 18 نمودار غنی‌گیری-تهیه شدگی اکسیدهای نمونه‌های دگرگان شده الف (نمونه 2۵ و ب) نموده ۲۸ نسبت به نمونه سالم.
رونه تغییرات عناصر در طول درگسانی
سنگ میزان کانساح سب سرپ ماهور ۲ را سنگ‌های آندزینی
درگسانی تشكیل می‌دهند. برای بررسی تغییرات عناصر
شگذی و ته‌شذگی عناصر، به دلیل نبود نمونه‌سال به
عندان مینا، از نمونه‌ی (S9) از کانساح جنگ فلزی ماهور (۲۲)
استفاده شد و مقادیر هر اکسید در نمونه‌های درگسان شده و
نیز خود نمونه مینا، به مقادیر همان اکسید در نمونه‌ی مینا
تقسیم شدند. جامانده در نمودارهای نشان داده شد، در نهایی
نمونه‌ها مقدار TIO2 نسبت به نمونه مینا بیشتر است. حالت
آن شاید نامتکرار بودن این نتیجه بوده و در سنگ‌هایی که
تحت تاثیر درگسانی قرار گرفته‌اند، تقریباً نتایب به می‌ماند.

۱- سنگ میزان کانساح سرب ماهور ۲ آندزینی‌های درگسان
شد به بایت پورفیری است.
۲- کانساح سرب ماهور ۲ بهصورت رگه‌ای شده است و در پیرامون
ان درگسانی‌های آزلیبلک، سلسیوس، اسپسینیک، کرنبی و
کرنبی و وجود دارد که بررسی XRD

۳- ته‌شذگی و غنی‌شذگی برخی از عناصر در سنگ میزان
کانساح ناشی از داربستی، ترکب شاره و اسیدی بودن محيط
تشکیل کانساح است.
۴- تغییرات عناصر خاکی کم‌بودوی واقع شده آنها با سنگ

۵- نمودارهای عکس‌یوندی نشان می‌دهند که نمونه‌های گالا
نسبت به نمونه‌های بی‌پرداخت شده از سنگ میزان، به جز
Ba, Rb, Sr, Th, Ta, La, Zr, K, Ti
عناصر از عناصر
داده ته‌شذگی هستند.
۶- تغییرات باهنرنگ اکسید پتاسیم در نمودارهای غنی شده
و ته‌شده ناشی از این است که در آغاز داربستی، K
به
سیستم افزوده شد ویل با پیشرفته درگرسانی K از طریق شاره به سیستم اضافه شده و نشان می‌نماید لازم برای تشکیل سری سرنگ دگرگونی شده این دگرگونی شدن کاپیسیلی نظیر قلدیسیلی های پتاسیم تامین شده است.

مراجع
[1] قربانی م، دیباچه‌ای بر زمین شناسی اقتصادی ایران، (1387) ص 695.
[2] نوبتی م، بیزانگرد ج، ناکاشیما ک، و اسفرم م، پیامد بحث و شیمی کانی‌های سیلوپتید و یک‌سیدی بررسی رویداد در کنسنتر در مدل ماهور غرب نهمدان، مجله پترولئومیه، شماره چهارم، (1392) ص 17-30.
[3] سیلیکای رنگی، احمدی ع، و میرتزاب و ع، دهان ه، دهان ه، سلیکات کانی سار بر اساس افزایش متابولی즘، پیامد اکسید کاتیونی و ایزوتوبهای پاپیلار گوگرد در کنسنتر جنوب فلزی سیاه کوه لوت، ایران مرکزی)، مجله پترولئومیه، شماره چهارم، (1391) ص 121-141.
implications for mantle composition and processes.

In: Saunders A. D. and Norry M. J. (eds),
Magmatism in ocean basins. Geology Society

[20] Ionov D. A., Hofmann A. W., "Nb-Ta rich
mantle amphiboles and mica implication for