Volume 28, Issue 3 (10-2020)                   www.ijcm.ir 2020, 28(3): 675-684 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari, Khademi. Biological weathering of sepiolite clay mineral as affected by the activity of an earthworm species )Eisenia foetida(. www.ijcm.ir 2020; 28 (3) :675-684
URL: http://ijcm.ir/article-1-1521-en.html
Abstract:   (1446 Views)
Sepiolite is an Mg-rich fibrous clay mineral which occurs in agricultural soils of arid regions. Although many investigations have been carried out on the formation and stability of this clay mineral, no information is yet available on the mineralogical changes of this mineral by earthworms. Therefore, this study was conducted to examine the effect of Eisenia foetida earthworms on sepiolite weathering using two factors including the presence or absence of earthworm and also various time periods (90, 135 and 180 days). Upon the completion of the experiment, the amount of available Mg، was measured and the mineralogical changes were studied using an X-ray diffractometer and a field emission scanning electron microscope (FESEM). The results indicated that sepiolite was partially weathered to kaolinite in the treatments with earthworm. The results also indicated that the amount of Mg in all samples decreased with time. Since the amount of dolomite increases with time, it could be concluded that dissolved Mg, released as a result of sepiolite weathering, may combine with dissolved Ca ion to produce dolomite.
Full-Text [PDF 826 kb]   (400 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Gobran G.R., Turpault M.P., Courchesne F., "Contribution of rhizospheric processes to mineral weathering in forest soils". In: Huang P.M., Gobran G.R., (Eds.) Biogeochemisry of Trace Elements in Rhizosphere. Elsevier B. V., Amsterdam, The Netherlands., (2005) 3-23. [DOI:10.1016/B978-044451997-9/50003-9]
2. [2] Khademi H., Arocena J.M., "Kaolinite formation from palygorskite and sepiolite in rhizosphere soils", Clays and Clay Minerals 56 (2008) 429-436. [DOI:10.1346/CCMN.2008.0560404]
3. [3] Khademi H., Mermut A.R., "Source of palygorskite in gypsiferous Aridisols and associated sediments from central Iran", Clay minerals 33 (1998) 561-578. [DOI:10.1180/claymin.1998.033.4.04]
4. [4] Singer A., "Palygorskite and sepiolite group minerals", In: Dixon, J.B., Weed S.B., (Eds.), Minerals in soil Environments. Soil Science Society of America, Madison, WI, (1989) 829-872. [DOI:10.2136/sssabookser1.2ed.c17]
5. [5] Neaman A., Singer A., "The effects of palygorskite on chemical and physicochemical properties of soils: a review", Geoderma 123 (2003) 297-303. [DOI:10.1016/j.geoderma.2004.02.013]
6. [6] Bakhshandeh S., Khormali F., Dordipour E., Olamaei M., Kehl M., "Comparing the weathering of soil and sedimentary palygorskite in the rhizosphere zone", Applied Clay Science 54 (2011) 235-241. [DOI:10.1016/j.clay.2011.09.007]
7. [7] Salehi M.H., Tahamtani L., "Magnesium uptake and palygorskite transformation abilities of wheat and oat", Pedosphere 22 (2012) 834-841. [DOI:10.1016/S1002-0160(12)60069-1]
8. [8] Lucas Y., "The role of plants in controlling rates and products of weathering: importance of biological pumping", Annual Review of Earth and Planetary Science 29 (2001) 135-163. [DOI:10.1146/annurev.earth.29.1.135]
9. [9] Suthar S., "Earthworm communities a bioindicator of arable land management practices: A case study in semiarid region of India", Ecological indicators 9 (2009) 588-594. [DOI:10.1016/j.ecolind.2008.08.002]
10. [10] Blouin M., Hodson M.E., Delgado E.A., Baker G., Brussaard L., Butt K.R., Dai J., Dendooven L., Pérès G., Tondoh J.E., Cluzeau D., "A review of earthworm impact on soil function and ecosystem services ", European Journal of Soil Science 64(2013) 161-182. [DOI:10.1111/ejss.12025]
11. [11] Christensen O., Mather J.G., "Dynamics of lumbricid earthworm cocoons in relation to habitat conditions at three different arable sites", Pedobiologia 34 (1990) 227-238.
12. [12] Suzuki Y., Matsubara T., Hoshino M., "Breakdown of mineral grains by earthworms and beetle larvae", Geoderma 112 (2003) 131-142. [DOI:10.1016/S0016-7061(02)00300-2]
13. [13] Carpenter D., Hodson M.E., Eggleton P., Kirk C., "Earthworm induced mineral weathering: preliminary results", European Journal of Soil Biology 43 (2007) S176-S183. [DOI:10.1016/j.ejsobi.2007.08.053]
14. [14] Hodson M.E., Blackb S., Brinzac L., Carpenter D., Lambkine D.C., Fred J., Mosselmansc W., Palumbo-Roef B., Schofieldg P.F., Sizmurh T., Versteegh E.A.A., "Biology as an agent of chemical and mineralogical change in soil", Procedia Earth and Planetary Science 10 (2014) 114 - 117. [DOI:10.1016/j.proeps.2014.08.039]
15. [15] Bityutskii N., Kaidun P., Yakkonen K., "Earthworms can increase mobility and bioavailability of silicon in soil ", Soil Biology and Biochemistry 99 (2016) 47-53. [DOI:10.1016/j.soilbio.2016.04.022]
16. [16] Zhu X., Lian B., Yang X., Liu C., Zhu L., "Biotransformation of earthworm activity on potassium-bearing mineral powder", Journal of Earth Science 24 (2013) 65-74. [DOI:10.1007/s12583-013-0313-6]
17. [17] Liu D., Lian B., Wang B., Jiang G., "Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral", Plos One 6(2011) e28803. [DOI:10.1371/journal.pone.0028803]
18. [18] Needham S.J., Worden R.H., Mcilroy D., "Animal-sediment interactions: the effect of ingestion and excretion by worms on mineralogy", Biogeosciences 1 (2004) 113-121. [DOI:10.5194/bg-1-113-2004]
19. [19] USDA-NRCS., "Soil survey laboratory methods manual". Soil Survey Investigations report, No. 42, (2004).
20. [20] Jackson M.L., "Soil Chemical Analysis: Advanced Course", University of Wisconsin, Madison, WI., (1979).
21. [21] Fanning D.S., Keramidas V.Z., El-Desoky M.A., "Micas". In: Dixon J.B., Weed S.B., (Eds.) Minerals in Soil Environments. Soil Science Society of America, Madison, WI, (1989) 551-634. [DOI:10.2136/sssabookser1.2ed.c12]
22. [22] Edwards C.A., Bohlen P.J., "Biology and ecology of earthworms (3rd edition)", Chapman and Hall, London., (1996)
23. [23] Hu L., Xia M., Lin X., Xu C., Li W., Wang J., Zeng R., Song Y., "Earthworm gut bacteria increase silicon bioavailability and acquisition by maize", Soil Biology and Biochemistry 125 (2018) 215-221. [DOI:10.1016/j.soilbio.2018.07.015]
24. [24] Liu D., Lian B., Wang B., "Solubilization of potassium containing minerals by high temperature resistant Streptomyces sp. isolated from earthworm's gut", Acta Geochimica 35 (2016) 262-270. [DOI:10.1007/s11631-016-0106-6]
25. [25] Welch S.A., Vandevivere P., "Effect of microbial and other naturally occurring polymers on mineral dissolution", Geomicrobiology journal 12 (1994) 227-238. [DOI:10.1080/01490459409377991]
26. [26] Welch S.A., Taunton A.E., Banfield J.F., "Effect of microorganisms and microbial metabolites on apatite dissolution", Geomicrobiology Journal 19 (2002) 343-367. [DOI:10.1080/01490450290098414]
27. [27] Mohammad jafari F., Landi A., Hojati S., Amerikhah H., "Release of Mg from sepiolite mineral under the influence of two organic acids (in Persian)", Iranian Journal of Crystallography and Mineralogy 23 (2015) 321-330.
28. [28] Barker W.W., Welch S.A., Chu S., Banfield J.F., "Experimental observations of the effects of bacteria on aluminosilicate weathering", American Mineralogist 83 (1998) 1551-1563. [DOI:10.2138/am-1998-11-1243]
29. [29] Calvaruso C., Turpault M.P., Frey-Klett P., "Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis", Applied and Environmental Microbiology 72 (2006) 1258-1266. [DOI:10.1128/AEM.72.2.1258-1266.2006]
30. [30] Basak B.B., Sarkar B., Biswas D.R., Sarkar S., Sanderson P., Naidu R., "Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities", Advances in Agronomy 141 (2017) 115-145. [DOI:10.1016/bs.agron.2016.10.016]
31. [31] Naderizadeh Z., Khademi H., Arocena J.M., "Organic matter induced mineralogical changes in clay-sized phlogopite and muscovite in alfalfa rhizosphere", Geoderma 159 (2010) 96-303. [DOI:10.1016/j.geoderma.2010.08.003]
32. [32] Hanc A., Pliva P., "Vermicomposting technology as a tool for nutrient recovery from kitchen bio-waste", Journal of Material Cycles and Waste Management 15 (2013) 431-439. [DOI:10.1007/s10163-013-0127-8]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb