هم نهشت کردن زنلثیا در اثر تغییر فاز گرماپی کاتولوئینی تحت تأثیر محلول‌های باریم و سدیم‌دار

فاصله پوراسد، درامرز طوطی، علیرضا بدری، محمد علی برقی

1- گروه زمین شناسی، دانشگاه تهران، تهران
2- گروه شیمی، دانشگاه تهران، تهران

(دریافت مقاله: ۹۳/۰۲/۰۹، نسخه نهایی: ۹۳/۰۶/۱۱)

چکیده: در بررسی فرآیند تغییر فاز کاتولوئینی (H₃Al₂Si₃O₉(OH))، تحت تأثیر شاره‌های حاوی کاتیون‌های Na⁺، Ba²⁺ و یون‌های Na⁺ و OH⁻ و محلول نمک کلرور باریم (BaCl₂.2H₂O) و محلول نمک کلرور با درصد گران و زمین واکنش ۴۴ ساعت، محلول‌های قلیایی سدیمی به عنوان حالت‌سازگر در برابر تغییرات، تحت شرایط مورد بررسی قرار گرفتند. این تغییرات در سطح هیدروکسی (Na₂[Al₆Si₃O₁₈]·9H₂O) و فوجنستیت (Na₂[Al₂SiO₅]·6H₂O) از کاتولوئینی سنتز می‌شود. این تغییرات، اثرات مردم نزای به‌وسیله اکتانول‌ها، و غیب فازی حرارت و تغییر فاز نسوزی و به‌دور شرایط کاتولوئینی از نمونه‌های کاتیون‌های Na⁺ و Ba²⁺، به دست آمد.

واژه‌های کلیدی: کاتولوئینی، تغییر فاز، دگرگونی‌های گرماپی، هارمونوم، فوجنستیت، هیدروکسی سودالیت.
مواد و روش‌های آزمایش‌گاهی

در این بررسی یک نمونه خالص کالنتونیت فراوری شده به وسیله شرکت MERC (المان) تهیه و به‌عنوان ماده اولیه استفاده شد. شناسایی دقیق ترکیب کالنتونیت بنام نمونه اولیه (XRD) و تأمین جامدات هیپه‌میکانیزی از طریق پراش پروتو ایکس دم 8 ساخت شرکت زینمس با تبیین سی و مجهز به دیافراگم کتاب در شرایط 40 کیلو ولت و 30 آمپر انجام شد. از طرف دیگر برای تیورالدیتری فازهای هیپه‌میکانیزی به‌دست آمده DSC-9600A ساخت شرکت Zeiss در پژوهشگاه نظامی استفاده شد. در این روش، نمونه کالنتونیت اولیه به‌طور پراش پروتو در مورد X بررسی قرار گرفت که پراش پروتو ایکس نمونه اولیه در شکل 1.1 دهنده ترکیب کالنتونیتی نمونه اولیه، کالنتونیت ایست.

این آزمایش‌ها شامل دو بخش است که در بخش اول از محلول قلیایی هیدروکسید سدید به‌نتیجه‌گیری در غلظت‌های 12.5 و 5 و مولار و در بخش غلظت‌های هیدروکسید سدید با غلظت‌های 12.5 تا 5 مولار در حضور نمک کلرید آبادی باریم در غلظت نسبت 1 مولار هم‌مان استفاده شد. در این بخش از محلول قلیایی سواد یافته نشانه‌های Na⁺ و OH⁻ (BaCl₂:2H₂O) به‌عنوان خاستگاه بی‌پایانها بی‌پایان (Ba²⁺) در مخلوط رسوب، کلر و باریم، از دی‌چلرید Na به‌عنوان نشانه‌گذار 

با توجه به محلول‌های قلیایی با غلظت‌های مورد نظر، NaOH 100 میلی لیتر آب مقطوع اضافه کردم، سپس با قرار دادن آن و با Heidolph MR 3001 K به دقت 0.1 نشانه‌گیری مخالط هم‌مان در آب 350 rpm به مدت 60 دقیقه می‌تواند به‌حال محلول در این روش همزمان مغناطیسی با محاسبه داشته‌اند. در آزمایش، نمک کلر باریم آبادی به‌همراه هم‌مان محلول در آب در نتیجه محلول‌های سواد یافته هم‌مان در این حاوی محلول‌های قلیایی سواد یافته کنونی با استفاده از همزمان مغناطیسی به‌عنوان نشانه‌گذار 

های قلیایی مغناطیسی مخلوط در این مخلوط محلول‌های قلیایی مغناطیسی به‌عنوان نشانه‌گذار 

با استفاده از همزمان مغناطیسی به‌عنوان نشانه‌گذار
جدول 1 مقدار NaOH

<table>
<thead>
<tr>
<th>(g) NaOH</th>
<th>(mol/l)</th>
<th>1.25</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 مقدار نمک BaCl2.2H2O و سود NaOH

<table>
<thead>
<tr>
<th>Weight (g)</th>
<th>Mol/lit</th>
<th>Weight (g)</th>
<th>Mol/lit</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.446</td>
<td>1</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>22.446</td>
<td>1</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>22.446</td>
<td>1</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

بحث و بررسی
نتایج بررسی تاثیر غلظت Na+ به تنهایی بر تغییر فاز کاتولینیت در شرایط دمایی XRD الگوهای 96°C و مدت زمان 150 دقیقه، فازهای جامد و سخته و در شکل 2 و 3 نشان دادند. با توجه به این الگوها و قابلیت کاتولینیت تحت تاثیر غلظت 1.25 و 5 مولار هیدروکسید سدیم قرار گرفت. به همراه سودات بیشتری کاتولینیت تحت تاثیر غلظت 1.25 و 5 مولار و سود کالکسیس سودات و فوجنیت تحت تغییر فاز می‌پایل. الگوهای پرتو بیشتری در نمونه‌های به رنگ بلوطی و شفاف سودات داشتند. به رنگ رنگ‌های کاتولینیت تحت تاثیر غلظت 1.25 و 5 مولار به همراه سودات بیشتری کاتولینیت تحت تاثیر غلظت 1.25 و 5 مولار کالکسیس سودات و فوجنیت تحت تغییر فاز می‌پایل. الگوهای پرتو بیشتری در نمونه‌های به رنگ بلوطی و شفاف سودات داشتند.

شکل 1 (R) پرتو بیشتری کاتولینیت اولیه

شکل مورد تیز برای نمایه 100 میلی لیتر محلول قلیایی هیدروکسید سدیم با غلظت‌های مختلف.

شکل مورد تیز برای نمایه 100 میلی لیتر محلول کلر باریم و محلول قلیایی هیدروکسید سدیم با غلظت‌های مختلف.

و نیز فوجنیت بیشتر می‌شود (شکل 2). با توجه به این الگوهای کاتالیتیک فوجنیت در نمونه‌ی R2 با غلظت 5 مول در مقایسه با غلظت 1.25 مول، بیشتر است (شکل 3). در این نمونه شدت قلیایی کالکسیس و سودات نسبت به فوجنیت بیشتر است. با افزایش غلظت محلول قلیایی هیدروکسید سدیم از 1.25 به 5 مولار، رفتار آن در شدت قلیایی کالکسیس اولیه کاسته شد. به نشان دهنده تاثیر غلظت NaOH در میزان انحلال کالکسیس اولیه است.

در هر دو شکل، معرف عکس‌های Har و Ka عکس‌های Fau و Har و Fau عکس‌های کالکسیس و R2 معرف کالکسیس است.
شکل ۲: نمونه‌های XRD نمونه‌های R1 در دمای ۱۵۰°C و به مدت ۹۶ ساعت با غلظت ۰.۱۲۵ مولار هیدروکسید سدیم، هیدروکسید سدیم و Fau معرف کاتالیپت است.

شکل ۳: نمونه‌های XRD نمونه‌های R2 قرار گرفته در دمای ۱۵۰°C و به مدت ۹۶ ساعت با غلظت ۰.۰۵ مولار هیدروکسید سدیم، هیدروکسید سدیم و Fau معرف کاتالیپت است.

در شکل ۴ تصویر میکروسکوپ الکترونی نمونه‌های R2 نشان داده شده، منطقه‌های B و A به ترتیب نشان دهنده کاتالیپت فوجاسیت و هیدروکسید سودالیت است.

نتایج بررسی تغییرات غلظت Na⁺ و Ba²⁺ بر تغییر فاز کاتالیپت در شرایط گرمایی با توجه به XRD، مخلوطات سننی حاصل از تغییر فاز کاتالیپت در شرایط سننی دمای ۱۵۰°C، مدت زمان ۹۶ ساعت شامل زئولیت‌های گریزان، هیدروکسید سودالیت و هارمونوم است.
سودالیت نسبت فوجاسیت به بیشتر است (شکل 7). در کل با توجه به الگوی پرتو ایکس به دست آمده از نمونه‌های هیبرودکسی سودالیت و هم‌هشتمی می‌توان مشاهده کرد که، با افزایش غلظت هیدروکسید سدیم از 0.2 مولار شدت کاتی فوجاسیت نسبت به هیدروکسی سودالیت و هاروموتوم افزایش یافته است، و در این نمونه، کاتی هیدروکسید سدیم، فوجاسیت و هیدروکسی سودالیت از شدت بیشتری نسبت به هاروموتوم برخوردار بوده و شدت کاتی هیدروکسی SEM می‌باشد.

شکل 4 تصویر میکروسکوپی افیدر نسبت به هیدروکسی سودالیت و فوجاسیت سنتر شده در نمونه R2 زون A معرف کاتی فوجاسیت و منطقه ی B معرف کاتی هیدروکسی سودالیت است.

شکل 5 الگوی R3 در دمای 150°C و به مدت 48 ساعت در این نمونه از 1.25 مولار هیدروکسید سدیم در حضور نمک کلرید با روش آبیاری با غلظت ثابت 1 مولار بطور همزمان استفاده شده است. هاروموتوم معرف کاتی هیدروکسی سودالیت, Fau معرف کاتی هیدروکسی سودالیت, Har معرف کاتی فوجاسیت, H.S معرف کاتی فوجاسیت, Ka معرف کاتی هاروموتوم و Ka معرف کاتی هاروموتوم است.
شکل ۶. اینوئنی XRD گرایش R4 در دمای C1500 و به مدت ۹۶ ساعت. در این نمونه از ۲.۵ مولار هیدروکسید سدیم در حضور نمک کلرید Har و Fau معرف کاتیو فونجاسیت، S.H. معرف کاتیو هیدروکسی سودالیت. معروف کاتیو هیارومونوم و کاکتومینیل است.

شکل ۷. اینوئنی XRD گرایش R5 در دمای C1500 و به مدت ۹۶ ساعت. در این نمونه از ۵ مولار هیدروکسید سدیم در حضور نمک کلرید Har Fau و معرف کاتیو فونجاسیت، S.H. معرف کاتیو هیدروکسی سودالیت. معروف کاتیو هیارومونوم و کاکتومینیل است.

کاتیو باریمی در تشکیل شده در تمامی غلفت‌های تا ۳۰۴۰ هزاره های هرنی، سیدم در دار فونجاسیت، معمولاً در فرآیند مقادیر بالای سیدم است که به دلیل پایین آمدن غلفت سیدم پایین باریم و رقیق بودن محيط به خصوص پس از تشکیل قلبی محيط رقیق تر شده و نسبت H2O/Al2O3 محيط بالا همراه با هارومونوم و در شرايطی که محلول‌های هارومونوم تا ۳۰۴۰ هزاره های هرنی سیدم در دار فونجاسیت، معمولاً در فرآیند مقادیر بالای سیدم است که به دلیل پایین آمدن غلفت سیدم پایین باریم و رقیق بودن محيط به خصوص پس از تشکیل قلبی محيط رقیق تر شده و نسبت H2O/Al2O3 محيط بالا
موجب نابی‌دار و انحلال ساختارهای چار و جهی کاتالیزهای Na، Al، و Si در Al-O-Al و Si-O-Si بینه‌های پیوندی جاری و در نتیجه به این گیتگتی پیوندهای Na، Al، و Si در محلول فاز مایع که با دیگر کاتایوکس‌های آب‌ریز Al و Si موجود در محيط آزمایش ایجاد می‌شود. این کاتایوکس‌ها به سبب بار مثبت آنها سیلیکات و آلومینیوم سیلیکات و ایجاد خواستن شد. این چهار می‌تواند به خورش و جهی را می‌رساند. این چهار و جهی و قبلاً ناپیوند Al و Si نشان داده شده است. این تغییرات در آزمایش‌های Na، Al و Si محلول و نسبت آنها است. با توجه به نتایج بدست آمده، میزان انحلال کاتالیزهای Na، Al و Si، و تغییرات در غلظت‌های Na، Al و Si محلول و نسبت آنها است. با توجه به نتایج بدست آمده، میزان انحلال کاتالیزهای Na، Al و Si، و تغییرات در غلظت‌های Na، Al و Si محلول و نسبت آنها است.

جدول ۳ بررسی تاثیر تغییرات غلظت کاتانون Na، Al و Si در محلول و نسبت آنها

<table>
<thead>
<tr>
<th>زنولیت‌های غیر بازدار</th>
<th>Mol/lit غلظت Na⁺</th>
<th>Mol/lit غلظت Ba²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>هاروموتوم</td>
<td>۱.۲۵</td>
<td>۱</td>
</tr>
<tr>
<td>فوگاسیت، هیدروکسی سودایی</td>
<td>۲.۳۵</td>
<td>۱</td>
</tr>
<tr>
<td>فوگاسیت، هیدروکسی سودایی</td>
<td>۵</td>
<td>۱</td>
</tr>
</tbody>
</table>

شکل ۳ تصویر میکروسکوپ الکترونی نمونه R6
 ضمن حرکت خود از محیط‌ها و منافع سنجش‌ها و شرکت در واکنش‌های دگرسانی، ضمن تشکیل کانی‌های جدید، دسترسی تغییر در ترکیب شیمیایی خود شده و در ادامه حرکت خود، با مساعد بودن شرایط دما و فشار، وقایعی ایجاد کاتانی‌های رنگ‌دار، کاتانی‌های رنگ‌دار در دغ‌رسانی با سیلیس کمتر می‌شوند. در نتیجه می‌توان با مطالعه تجربی حاضر با پاساژی هره بهتر فرآیندهای دگرسانی، شرایط تشکیل کاتانی‌های رنگ‌دار، و ترکیب شیمیایی خود با محیط‌های طبیعی، روی تیول آن را در جهت فلزات کاتانی‌های موجود در گرم‌های پیش بینی کرد.

برداشت

این بررسی تجربی، تغییر فاز کاتالیزیت را در شرایط دگرسانی قلبینی و حضور کاتانی‌های Na+ و Ba2+ در دمای 150°C و 96 ساعت همراه با ایجاد تغییرات فلزه در طول حاوی کاتانیژیون بررسی می‌کند. اثر حضور کاتانی‌های بازیم در نسبت به ساده‌تر و این ایجاد شرایط گرمایی به پایین‌تر، دارای ضریب در دو شرایط فاز کاتالیزیت‌ها و کاتانی‌های هم‌ساخته‌شده در یکته دیده [114] گسترده‌تر و نشان می‌دهد که کاهش تشکیل کاتانی‌های هم‌ساخته می‌تواند با کاهش در محیط‌های طبیعی و نشان فرآیندهایی است که موجب تشکیل کاتانی‌های مورد نظر در محیط‌های گرمایی می‌شود. به‌عنوان جمله، می‌توان مثال یکی از این شرایط تشکیل هارمون در طبیعت، دگرسانی گرمایی است. به‌دنبال تربیت که در محیط‌های طبیعی در اثر دگرسانی، در محیط‌ها و منافع سنجش‌ها که تحت تأثیر گرم‌های قرار گرفت و رونق‌های گرمابی تشکیل می‌شوند، بین تربیت می‌توان گفت که حضور هارمون در استحکام سهگاهی های آذری‌وارد، حفرهای و منافع سنجش‌ها و روندهای گرمایی در نتیجه دگرسانی و تغییر فاز تحت تأثیر شاره‌های دارای کاتانی‌های بازیم در است. به‌عنوان چنین می‌توان کرد که: گرم‌های OH- و انیون‌های Na+، Ba2+، و Cl- گرم‌های Na+، Ba2+، و Cl-


