کانی شناسی و زمین شیمی ذخیره بیونوتیت تمنیان، جنوب باختر تایب، استان اصفهان

شيرین فتاحی 1، علی اصغر کلاگری 2، علی عابدینی 3، هاشم باقری 4

1- گروه زمین شناسی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز
2- گروه زمین شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه
3- گروه زمین شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان

(دریافت مقاله: 93/2/25، نسخه نهایی: 93/6/1)

چکیده: ذخیره بیونوتیت تمنیان در فضاهای ۲۵ کیلومتری جنوب باختر تایب، استان اصفهان قرار دارد. این ذخیره شکل‌پذیری و توزیع داخلی و محوطه‌دار گدرسانی برهم‌بسته توسط سن‌های بیکوموس و اولیایی تشکیل می‌دهند. کمبود مرحله‌ای از کانی‌های نمک‌زین و بهبود و افزایش بیکوموس و اولیایی نسبت به سطح، تنوع و توزیع مواردی را ارائه می‌دهد. بهبود و افزایش بیکوموس و اولیایی می‌تواند به دنبال بیشتر شیمی‌پیچیده‌تری در این منطقه باشد. سپس ذخیره بیونوتیت تمنیان توزیع عمده‌تری در این منطقه باشد. سپس دو فاکتور گفتار عناصر جزئی و خاکی نادر هستند. با توجه به نتایج بدست آمده، بهترین روش‌ها و اهمیت قابل توجهی اصلی در تجزیه و تحلیل‌های و در اثر توزیع عناصر جزئی و خاکی نادر گزارش و تحلیل می‌شود.

واژه‌های کلیدی: بیونوتیت، کانی شناسی، توزیع عناصر، تنش‌گردی، تنوع‌های تایبین

مقدمه

پژوهش در ایران زمین بیشتر در ارتقای فعالیت‌های آشنا و تازه‌آموزی، موفقیت‌ها و نیازهای شناسی کهن و راه‌پیمایی از دیدگاه‌های جدید و مدرن به دست آمده. بهترین روش‌ها و اهمیت قابل توجهی اصلی در تجزیه و تحلیل‌های و در اثر توزیع عناصر جزئی و خاکی نادر گزارش و تحلیل می‌شود.

References

فاطمی، م. و فلاحی، م. (1393). تحقیق در اثر توزیع عناصر جزئی و خاکی نادر گزارش و تحلیل می‌شود.

شکوفه، م. و جلالی، پ. (1393). تحقیق در اثر توزیع عناصر جزئی و خاکی نادر گزارش و تحلیل می‌شود.

نویسنده مسئول: فاطمه نوری، تلفن: 0912/5773209، پست الکترونیکی: shfatahi1982@yahoo.com

Downloaded from ijcm.ir at 2:28 +0330 on Monday November 25th 2019
روش بررسی
بررسی سنگهای بنیوئی تمیز و واحدهای سنگی همراه در دو بخش معادنی و آزمایشگاهی انجام شده است. در بخش معادنی، پیامدهای بررسی تکسکلات زمین شناسی وجود دارد و بخش ذخیره و چگونگی ارتباط آن با سنگهای درونگیر و ویژگی‌های مکرووسکوپی و میکروسکوپی اِنواح گونه‌های بنیوئی وجود صورت گرفته است. نمونه برداری از بنیوئی‌ها بر اساس تغییرات در ویژگی‌های فیزیکی نظیر زنگ، چگالی، سختی و فاصله اینجا شده است. شناسایی و فاصله داشتن چند درونگیر در سنگهای سبز-شناس و یپجی‌های معتم کشور، و پرداز پرتو ایکس (XRD) تعادل سه نمونه بنیوئی در آزمایشگاه‌های داشتهکده معدن دانشگاه تهران صورت گرفته است. بررسی- های کلاسیک تشکیل به‌وسیله میکروسکوپ الکترونی Field Emission- Scanning Electron Microscopy در آزمایشگاه‌های فلزاتی دانشگاه تهران صورت جرفت همچنین. برای تغییرات تکیب شیمیایی سنگهای درونگیر و بنیوئی‌ها به پرو که از ان بررسی‌های سبز-شیمیایی، هفت نمونه بنیوئی و یک نمونه بنیوئی Inductively Coupled (ICP-ES) تحویل به‌روه‌های (در این رابطه مشترک) Inductively Coupled Plasma-Emission Spectroscopy (ICP-MS) و (در این رابطه مشترک) Plasma-Mass Spectroscopy معادنی و فیزیکی) و یک نمونه در ناحیه اختلاف وضوح نمونه شیمیایی به نام Acme گفته می‌شود. مفاد از مجموعه LOI نمونه‌ها بر اساس اختلاف وزن نمونه‌ها پیش و پس گرم داده به‌همت یکساعت در دمای 1000 درجه سانتی‌گراد به‌وسیله شرکت پایه شده تمیز 500 راه اندازی شد. نتایج آنالیزهای شیمیایی در جدول (ارائه شده.)
جدول 1 مقادیر عناصر اصلی، فرعی، جذبی، خاکی نادر و OI در نمونه‌های مورد بررسی به همراه گسترده‌ای عناصر و مقادیری هنگامی‌های Ce و Eu

<table>
<thead>
<tr>
<th>عنصر</th>
<th>سموناک</th>
<th>سمونه</th>
<th>سمونه</th>
<th>سمونه</th>
<th>سمونه</th>
<th>سمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>69.33</td>
<td>76.89</td>
<td>72.27</td>
<td>67.91</td>
<td>68.21</td>
<td>68.43</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.84</td>
<td>12.38</td>
<td>14.78</td>
<td>13.61</td>
<td>11.74</td>
<td>12.77</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.42</td>
<td>4.34</td>
<td>4.77</td>
<td>4.39</td>
<td>5.98</td>
<td>4.27</td>
</tr>
<tr>
<td>CaO</td>
<td>1.23</td>
<td>1.39</td>
<td>1.01</td>
<td>0.92</td>
<td>0.89</td>
<td>1.14</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.77</td>
<td>0.71</td>
<td>0.73</td>
<td>0.77</td>
<td>0.71</td>
<td>0.40</td>
</tr>
<tr>
<td>MgO</td>
<td>1.09</td>
<td>1.01</td>
<td>1.15</td>
<td>1.24</td>
<td>1.34</td>
<td>1.33</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.53</td>
<td>2.99</td>
<td>2.88</td>
<td>2.92</td>
<td>2.89</td>
<td>2.34</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
<td>0.12</td>
<td>0.39</td>
<td>0.79</td>
<td>0.89</td>
<td>0.69</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L.O.I</td>
<td>2.6</td>
<td>3.99</td>
<td>4.14</td>
<td>4.87</td>
<td>4.96</td>
<td>4.4</td>
</tr>
<tr>
<td>Ce/Ce*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9.91</td>
<td>9.94</td>
<td>9.94</td>
<td>9.94</td>
<td>9.94</td>
<td>9.94</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>MgO</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L.O.I</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Ce/Ce*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
سنگ‌نگاری و کانی‌شناسی برخی تونفی و بنوتنی‌ها
بر پایه پرسی‌های میکروسکوپی، برخی از سنگ‌نگاری‌ها تمرکز در جد و برترکند گسترش‌دارند. این سنگ‌ها بیشتر از شاردهای سنگ‌های سنگ‌های کانی‌گوشی و به مقدار کمتر از شاردهای سنگ‌های کانی‌گوشی با ترکیب آن‌دستی و بلوهای درشت پلاژ‌کاراژ، کوارتز، بیوتیت و کلوت تشکیل شده‌اند. شکل ۲ نشان‌دهنده‌ی سنگ‌نگاری‌های سنگ‌های کانی‌گوشی است که با دقت بیشتر و سنجش بهتری از کارترز تشکیل شده‌اند.

شبکهی زمین‌شناسی منطقه‌ای ساختاری ایران [7] که بر اساس ان منطقه‌ی تئیبان (با علامت ستاره) در زون ایران مرکزی قرار دارد.
شیشه‌های استخوانی موجود در زمینه‌های خرده‌سنگ‌ها به صورتبخشی به کاتی‌های رسی تجزیه شده‌اند. پلازموکلاژ با دو شکل فنسریتس و میکروفنسریتس در یک زمینه شیشه‌ای سیاه رنگ مشاهده می‌شود (شکل 3A). با توجه به بررسی‌های میکروسکوپی، خردهسنگ‌ها ترکیبی در حد آندوزی‌های دارد. همه‌شان بلوهای درشتی مثل پلازموکلاژ، کریست و بیوتین (به‌ترتیب قرآنی، فراوانی و کمتر نسبت به خردهسنگ‌های استخوانی در این سنگ‌ها دیده می‌شوند. پلازموکلاژ با صورت شکل دار نیمه شکل‌دار به‌واسطه دارای انعطاف‌پذیری و شاردهای شیشه‌ای از دگرسانی می‌توانند تا (شکل 3B و ت) کوارتز‌های درشت بلوه در این سنگ‌ها اغلب دارای خاموشی‌های جانشینی نیز در این سنگ‌ها جانشین

شکل 3: خرده پامس، کریست با جانشینی دروغین به جای آمادی، پلازموکلاژ شکل‌دار به‌صورت فنسریتس با مالک پیستینک و کوارتز نیمه شکل‌دار (PPL) خرده پامس، شیره‌های استخوانی با شکل خنجری و کوارتز نیمه شکل‌دار (PPL). خرده پامس، شیره‌های استخوانی با شکل خنجری که به‌طور گسترده با کانی‌های ریسی جانشین شده است (PPL). پلازموکلاژ شکل‌دار به‌صورت فنسریتس و بیوتین شکل‌دار (PPL). چهار کوارتز، پلازموکلاژ شکل‌دار به‌صورت فنسریتس و بیوتین شکل‌دار (PPL) و خرده‌سنگ استخوانی حاوی کوارتز و پلازموکلاژ در برخی از برخی تصویر (PPL) تصویری از زنگیت، ج (ف) تصویر‌ها از Zno، Py، پلازموکلاژ، تتین، چل، Plg، Qtz، شیشه شار، و شیشه‌های استخوانی اغلب از آن‌ها که در این سنگ‌ها اغلب دارای خاموشی‌های جانشینی نیز در این سنگ‌ها جانشین
شکل 4. نمودارهای پراش پوتو ایکس (XRD) در سه نمونه بتنویت مورد بررسی.

ترکیب ماکمای اولیه سنگ‌های ماد مرذبینه بتنویت

نمودارهای عناصر کمیاب و جزئی که برای تعیین ترکیب ماکمای مولکول سنگ‌های آذرین به کار برده می‌شوند، می‌توانند برای تعیین خاستگاه و ترکیب ماکمای اولیه سنگ‌های بتنویتی شده مورد استفاده قرار گیرند [11]. استفاده‌اش انتخابی از عناصر Ti و Y-Zr-Nb در این پژوهش مورد بررسی قرار گرفت.

نمونه‌های Us مورد بررسی در طول دگرگونی به کمک‌های رس در طی شکل‌های ذخیره‌بندی می‌رسانند با ترکیب پاتئهای وایسته به بتنویت‌ها و ماد مرذبینه در نمونه دو Zr/Ti-Nb/Y متفاوتی (شکل 4) نشان می‌دهد که بتنویت‌ها مانیتوره که انتظار می‌رفت دارای ترکیب اولیه‌ای در حد آدنزیت هستند.

رفتار عناصر در طی بتنویت زایی

در این بررسی برای نمایش روند تغییرات عناصر اصلی، فرعی، جزئی و خاکی نادر در طی دگرگونی برش‌های توفی به بتنویت‌ها، از روش ایزوکرون [11] و به شرح مراحل زیر استفاده شد:

- در بررسی اینکه عناصر اصلی، فرعی، جزئی و خاکی نادر در طی دگرگونی برش‌های توفی به بتنویت‌ها، از روش ایزوکرون [11] و به شرح مراحل زیر استفاده شد:
عوامل زمین‌شیمیایی موثر در تحرک و گنی‌شکنی عناصر طی بنتونیتی شدن در تمبان

عناصر اصلی و فرعی

با توجه به نمودار ایزوتروم شده (شکل ۶)، اکسیدهای اصلی و فرعی تشکیل دهنده بنتونیت‌ها را می‌توان از نظر رفتاری به سه دسته تقسیم کرد. دسته اول شامل اکسیدهای ترکیبی SiO۲ می‌باشد که طی بنتونیت‌زایی دستخوش افزایش یا کاهش جرم نشده است. دسته‌ای دوم اکسیدهایی مانند K۲O و Fe۲O۳، P۲O۵، MnO، CaO، MgO، SiO۲ مثل Fe۲O۳ که طی بنتونیت شدن سطح و میزان کاهش بیشتری نسبت به سایر اکسیدهای مانند Na۲O بوده که طی فرابند بنتونیت‌زایی دستخوش کاهش جرم اندکی شده‌اند. با توجه به کانی‌شناسی، افزایش جرم Mg در آن‌ها باعث افزایش این عنصر می‌شود.

شکل ۳. نمودار دو متغیره Nb/Y و Zr/TiO۲

شکل ۵. موقعیت برش توزیعی در نمونه‌های بنتونیتی تمبان در نمودار دو متغیره Nb/Y و Zr/TiO۲ داشته‌اند.

شکل ۶. نمودار دو متغیره Nb/Y و Zr/TiO۲

شکل ۷. نمودار دو متغیره Nb/Y و Zr/TiO۲
شکل ۲ نمودار ایزوکوک (افتیناس از [۱۱]) ترسیم شده برای عنصر اصلی، فرعی، جزئی و خاکی نادر که در آن محور X ترکیب بریش توپی و محور Y میانگین بیشینی‌های است.

عناصر جزئی

با توجه به نمودار ایزوکوک ترسیم شده، چهار حالت مختلف را می‌توان برای تشخیص توزیع عنصر جزئی در بیوکسپراکه‌های Cu و Zn در نظر گرفت از [۴]. حالات اول و دوم به عنصری مانند Cu و Zn مربوط به عنصری مانند Cu و Zn است که طی بیشینی‌های سنگین تهی شده‌اند. حالات دوم برای عنصری مانند Cu و Zn است که در کل، این عنصری طی بیشینی‌های سنگین تهی شده‌اند. Cu و Zn در میانگین حجم شده‌اند. حالت سوم برای عنصری مانند Cu و Zn هستند که طی دگرسانی بیشینی‌های سنگین تهی شده‌اند. حالات چهارم حالت دیگری است که از نظر زمین‌شیمیایی در محیط‌های آبیون به عنوان عنصری نسبتاً بی‌ترک شده شده‌اند و گسترش دیگری در بیشینی‌های سنگین تهی شده‌اند.

عنصری نسبتاً بی‌ترک شده در این دسته‌ها می‌تواند به عنصری نسبتاً مربوط به عنصری مانند Cu و Zn ارجاء داده‌اند تا این عنصری به‌صورت بیشینی‌های سنگین تهی شده‌اند. حالت این عنصری مربوط به عنصری مانند Cu و Zn است که این عنصری به‌صورت بیشینی‌های سنگین تهی شده‌اند. حالت دوم برای عنصری مانند Cu و Zn است که در کل، این عنصری طی بیشینی‌های سنگین تهی شده‌اند. Cu و Zn در میانگین حجم شده‌اند. حالت سوم برای عنصری مانند Cu و Zn هستند که طی دگرسانی بیشینی‌های سنگین تهی شده‌اند. حالات چهارم حالت دیگری است که از نظر زمین‌شیمیایی در محیط‌های آبیون به عنوان عنصری نسبتاً بی‌ترک شده شده‌اند و گسترش دیگری در بیشینی‌های سنگین تهی شده‌اند.

روند توزیع و غنی‌شدن عنصری نظیر

در این دسته‌ها می‌تواند به عنصری نسبتاً مربوط به عنصری مانند Cu و Zn ارجاء داده‌اند تا این عنصری به‌صورت بیشینی‌های سنگین تهی شده‌اند. حالت این عنصری مربوط به عنصری مانند Cu و Zn است که این عنصری به‌صورت بیشینی‌های سنگین تهی شده‌اند. حالت دوم برای عنصری مانند Cu و Zn است که در کل، این عنصری طی بیشینی‌های سنگین تهی شده‌اند. Cu و Zn در میانگین حجم شده‌اند. حالت سوم برای عنصری مانند Cu و Zn هستند که طی دگرسانی بیشینی‌های سنگین تهی شده‌اند. حالات چهارم حالت دیگری است که از نظر زمین‌شیمیایی در محیط‌های آبیون به عنوان عنصری نسبتاً بی‌ترک شده شده‌اند و گسترش دیگری در بیشینی‌های سنگین تهی شده‌اند.

روند توزیع و غنی‌شدن عنصری نظیر

در این دسته‌ها می‌تواند به عنصری نسبتاً مربوط به عنصری مانند Cu و Zn ارجاء داده‌اند تا این عنصری به‌صورت بیشینی‌های سنگین تهی شده‌اند. حالت این عنصری مربوط به عنصری مانند Cu و Zn است که این عنصری به‌صورت بیشینی‌های سنگین تهی شده‌اند. حالت دوم برای عنصری مانند Cu و Zn است که در کل، این عنصری طی بیشینی‌های سنگین تهی شده‌اند. Cu و Zn در میانگین حجم شده‌اند. حالت سوم برای عنصری مانند Cu و Zn هستند که طی دگرسانی بیشینی‌های سنگین تهی شده‌اند. حالات چهارم حالت دیگری است که از نظر زمین‌شیمیایی در محیط‌های آبیون به عنوان عنصری نسبتاً بی‌ترک شده شده‌اند و گسترش دیگری در بیشینی‌های سنگین تهی شده‌اند.
شده‌گی LREE در بخش آنی از نمودارها را فراهم کرده است. به
شکل کمک‌کننده‌ای که در pH مایه پایین با
تمام می‌گیرد. در این pH سیستم دگرانیوندینه
قله‌ها به هم‌پیوسته در سطح قابلیتی در
فلوریدا بیشتری پیدا می‌کند. در این هنگام
فناوری‌های مهم در تحرک و

Ce و Eu تفسیر نیروگاهی‌های
در این بررسی برای محاسبه
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]

شاخص هنگامی که سیستم از pH مایه پایینی مشاهده شده است این pH سیستم دگرانیوند
در بخش توفقی در حدود 95%, یک بکار گرفته می‌شود. به همین دلیل سیستم
مقداری از تغییراتی از 93 تا 99% از نشان می‌دهد. به تغییرات
مقداری به هنگامی
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]

شاخص هنگامی که سیستم از pH مایه پایینی مشاهده شده است این pH سیستم دگرانیوند
در بخش توفقی در حدود 95%, یک بکار گرفته می‌شود. به همین دلیل سیستم
مقداری از تغییراتی از 93 تا 99% از نشان می‌دهد. به تغییرات
مقداری به هنگامی
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]

شاخص هنگامی که سیستم از pH مایه پایینی مشاهده شده است این pH سیستم دگرانیوند
در بخش توفقی در حدود 95%, یک بکار گرفته می‌شود. به همین دلیل سیستم
مقداری از تغییراتی از 93 تا 99% از نشان می‌دهد. به تغییرات
مقداری به هنگامی
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]

شاخص هنگامی که SRR، Ca و جدیده‌های Ce و Eu تفسیر نیروگاهی‌های
در این بررسی برای محاسبه
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]

شاخص هنگامی که SRR، Ca و جدیده‌های Ce و Eu تفسیر نیروگاهی‌های
در این بررسی برای محاسبه
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]

شاخص هنگامی که SRR، Ca و جدیده‌های Ce و Eu تفسیر نیروگاهی‌های
در این بررسی برای محاسبه
سیستم در سطح دگرانیوند
روابط زیر استفاده شد:

\[\text{Eu/Eu}^* = \left(\frac{\text{Eu}_{\text{N}}}{\text{Eu}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} = \left(\frac{\text{Ce}_{\text{N}}}{\text{Ce}_{\text{D}}^*} \right)^{\text{Ce/Ce}^*} \]
کانایی‌های میزبان عنصر خاکی نادر

چندین گروه از کانایی‌ها به عنوان میزبانREE در فاراودهای دگرسان شده معرفی شدند. از مهم‌ترین آنها می‌توان به کانایی‌های رسی، کانایی‌های رسی‌ای، اکسیدیا و هیدروفیک‌های عملکرد آهن اشاره کرد [۲۴]. انتقال‌های XRD انجام شده در این بررسی‌ها نشان داد که کانایی‌های رسی‌ای و اکسیدیا و هیدروفیک‌های آهن انتقال‌های این بررسی‌ها بیشتر در این بررسی‌ها مورد بررسی قرار گرفته است. بیشترین این احتمال وجود دارد که فاکتور کانایی‌های رسی در این میزان به عنصر الی افتاده و داشته شناسایی‌های XRD و SEM باشد که به‌طور مناسب‌تر انتقال‌های این بررسی‌ها در است. تصاویر کانایی‌های میزبان احتمالاتی ضرایب همبستگی یکپارچه [۲۱] بین برخی از عنصر الی اصولی فرعي و جزئی با محاسبه آماری با آماری با محاسبه شدن (جدول ۲) می‌باشد. شناسایی‌های همبستگی میتواند میزان‌ها و توزیع آنها در این داده‌ها به‌طور کلی مشخص شود.

یک انواع کانایی‌ها با REE می‌تواند با نوعی از Fe می‌تواند با نوعی از Fe، کانایی‌های رسی، کانایی‌های رسی‌ای و اکسیدیا و هیدروفیک‌های آهن انتقال‌های این بررسی‌ها بیشتر در این بررسی‌ها مورد بررسی قرار گرفته است. بیشترین حاصل این احتمال وجود دارد که فاکتور کانایی‌های رسی در این میزان به عنصر الی افتاده و داشته شناسایی‌های XRD و SEM باشد که به‌طور مناسب‌تر انتقال‌های این بررسی‌ها در است. تصاویر کانایی‌های میزبان احتمالاتی ضرایب همبستگی یکپارچه [۲۱] بین برخی از عنصر الی اصولی فرعي و جزئی با محاسبه آماری با محاسبه شدن (جدول ۲) می‌باشد. شناسایی‌های همبستگی میتواند میزان‌ها و توزیع آنها در این داده‌ها به‌طور کلی مشخص شود.

یک انواع کانایی‌ها با REE می‌تواند با نوعی از Fe می‌تواند با نوعی از Fe، کانایی‌های رسی، کانایی‌های رسی‌ای و اکسیدیا و هیدروفیک‌های آهن انتقال‌های این بررسی‌ها بیشتر در این بررسی‌ها مورد بررسی قرار گرفته است. بیشترین حاصل این احتمال وجود دارد که فاکتور کانایی‌های رسی در این میزان به عنصر الی افتاده و داشته شناسایی‌های XRD و SEM باشد که به‌طور مناسب‌تر انتقال‌های این بررسی‌ها در است. تصاویر کانایی‌های میزبان احتمالاتی ضرایب همبستگی یکپارچه [۲۱] بین برخی از عنصر الی اصولی فرعي و جزئی با محاسبه آماری با محاسبه شدن (جدول ۲) می‌باشد. شناسایی‌های همبستگی میتواند میزان‌ها و توزیع آنها در این داده‌ها به‌طور کلی مشخص شود.
جدول ۲ مقادیر ضرایب همبستگی پیرسون [۲۱] بین برخی از عناصر انتخابی در نمونه‌های بیونتوئیت مورد بررسی در تمنیان.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Al</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>P</th>
<th>Th</th>
<th>Y</th>
<th>Zr</th>
<th>La</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۸۸</td>
<td>۷۱</td>
<td>۶۲</td>
<td>۶۱</td>
<td>۶۱</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۶۲</td>
<td>۷۱</td>
<td>۱۰۰</td>
<td></td>
<td>۳۳</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۶۱</td>
<td>۶۱</td>
<td></td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۶۲</td>
<td>۶۱</td>
<td></td>
<td></td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>

برداشت
مهمترین نتایج حاصل از بررسی‌های کانی‌شناسی و زمین-شیمیایی ذخیره بیونتوئیت ترکیب اولیه آن‌دزیتی هستند.

1- بررسی‌های کانی‌شناسی نشان می‌دهد که مونترنیولونیت، هیولاندیت، کلینوبیولیت، کوارتز، کلسیت، آنتینیت، آلیت و اورتوفاسکالر کالی‌های اصلی و بیدلیت، اکتنتونیت، میکروکلین و آمورتوفاسکالر به عنوان کانی‌های فرعی تشکیل دهنده ذخیره بیونتوئیت ترکیب اولیه آن‌دزیتی هستند.

2- این ذخیره از دو رخمن کم‌شکل تکراری و در نمای عکس‌العمل اصلی، فرعی، سنگی و خاکی نادر به شکل گروهی این ذخیره باعث افزایش در اقلیت به عنوان عناصر انتخابی در شدت ذخیره بیونتوئیت ترکیب اولیه آن‌دزیتی هستند.

3- بررسی‌های کانی‌شناسی نشان می‌دهد که درجهٔ گردنی فلدسپارها به ویژه در مراحل اولیه، گردنی و تغییر در میزان شدت اکسیداسیون بیشتر مربوط به نسبت مهیل‌های عادی Ce به بیونتوئیت‌های REE تجویز می‌شود.

4- فلدسپارها، پامس‌ها و شاردهای سیمپاتی و کانه‌های جدید از هم ترکیب که در جدول فوق نشان داده شده‌است.

5- فلدسپارها، آسیدی و چربی، از اعتیادی در ترکیب این ذخیره می‌باشند.

6- نگارندگان از حمام‌های مالی معاونت پژوهشی و تحقیقات تکمیلی استخوان‌های تریز برخوردار بوده‌اند. این نشانه تراست و قدردانی خود را ابراز دارند. نگارندگان همچنین از نظرات و پیشنهادات ازنده و سازندن داوران محترم مجله سیاسی‌گرایی می‌نمایند.

7- شدن در بی‌سیستم پارامتر انگیز شده است.

بررسی کانی شناسی و زمین‌شناسی کانسار بنتونیت مرایاد (شتر اصفهان)؛ مجهله بلوژانه، کانی شناسی ایران، سال نوزدهم، شماره 2 (1390) ص 142-146.

[8] امینی ب.، امینی هرگیز م. "نفیت زمین شناسی 100000000000000 کجان"، سازمان زمین شناسی و اکتشافات معدنی کشور، برگ شماره 5655 (1372).

